Frobenius structure for rank one $p-$adic differential equations - Archive ouverte HAL
Communication Dans Un Congrès Contemporary mathematics Année : 2005

Frobenius structure for rank one $p-$adic differential equations

Résumé

According to a criterion of B. Chiarellotto and G. Christol [Compositio Math. 100 (1996), no. 1, 77-99; MR1377409 (97b:14021)], a solvable rank one p-adic differential operator d/dx−g, with g=∑ni=1a−ixi, has a Frobenius structure if and only if a−1 is p-integral. Using natural estimates on tensor products, the author here generalizes this criterion to all g's in the Robba ring. As a corollary, he extends to the case p=2 the qualitative part of Matsuda's theorem [S. Matsuda, Duke Math. J. 77 (1995), no. 3, 607-625; MR1324636 (97a:14019)], according to which the Dwork-Robba twisted Artin-Hasse exponentials have Frobenius structures.
Fichier principal
Vignette du fichier
2004-Clermont-Ferrand.pdf (392.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00804859 , version 1 (26-03-2013)

Identifiants

Citer

Andrea Pulita. Frobenius structure for rank one $p-$adic differential equations. Eighth international conference on p-adic functional analysis, July 5-9 2004, Université Blaise Pascal, Clermont-Ferrand, France, Jul 2004, France. pp.247-258, ⟨10.1090/conm/384/0713⟩. ⟨hal-00804859⟩
194 Consultations
196 Téléchargements

Altmetric

Partager

More