Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2009

Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation

Résumé

We study the asymptotic behavior of the solution of a model equation for Bose- Einstein condensation, in the case where the trapping potential varies randomly in time. The model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations in time whose amplitude ε tends to zero. The initial condition of the solution is a standing wave solution of the unperturbed equation. We prove that up to times of the order of ε−2, the solution decomposes into the sum of a randomly modulated standing wave and a small remainder, and we derive the equations for the modulation parameters. In addition, we show that the first order of the remainder, as ε goes to zero, converges to a Gaussian process, whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite functions, on a certain time scale.
Fichier principal
Vignette du fichier
nlsqsm2_final.pdf (382.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00804572 , version 1 (25-04-2013)

Identifiants

Citer

Anne de Bouard, Reika Fukuizumi. Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation. Asymptotic Analysis, 2009, 63 (4), pp.189-235. ⟨10.3233/ASY-2008-0931⟩. ⟨hal-00804572⟩
183 Consultations
129 Téléchargements

Altmetric

Partager

More