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Abstract. We study the asymptotic behavior of the solution of a model equation for Bose-
Einstein condensation, in the case where the trapping potential varies randomly in time. The
model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise
fluctuations in time whose amplitude ε tends to zero. The initial condition of the solution is a
standing wave solution of the unperturbed equation. We prove that up to times of the order
of ε−2, the solution decomposes into the sum of a randomly modulated standing wave and a
small remainder, and we derive the equations for the modulation parameters. In addition, we
show that the first order of the remainder, as ε goes to zero, converges to a Gaussian process,
whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite
functions, on a certain time scale.

1. Introduction

The first experimental realizations of Bose-Einstein condensation in weakly interacting gases
sparked off many theoretical and experimental studies on coherent atomic matter. The Schrödinger
equation with cubic nonlinearity and a harmonic potential has been widely used as a model
equation (see for example [24]). However, magnetic trapping imposes limitations on the study
of Bose-Einstein condensates, because only the weak-field seeking atomic states are confined,
which may cause a chain of drawbacks (see [28]). Such problems are avoided if Bose-Einstein
condensation is achieved in an optical trap based on the optical dipole force which confines
atoms in all hyperfine states. The authors in [28] succeeded to obtain condensation in all-optical
far-off-resonance laser trap. The use of optical traps may bring other advantages such as ob-
taining different geometrical configurations or creating more dense condensates. On the other
hand, in real situation, one should take into account stochasticity in the dynamical behavior of
the condensate, for the reason that some fluctuations of the laser intensity are observed in the
experiments. Those fluctuations may be regarded as fluctuations of the harmonic trap potential
in the mean field approximation (see [1]). In this case, one may be led to consider the following
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nonlinear Schrödinger equation (radially symmetric 2D Gross-Pitaevskii equation) perturbed by
a random quadratic potential:

i
∂

∂t
u = −1

r

∂

∂r
r
∂u

∂r
+ (1 + εξ̇(t))r2u− λ|u|2u− iγu, (1.1)

where λ = ±1 and ξ̇ is a white noise in time with correlation function E(ξ̇(t)ξ̇(s)) = δ0(t − s).
Here, δ0 denotes the Dirac measure at the origin, γ ≥ 0 and ε > 0. The product arising in the
right hand side is interpreted in the Stratonovich sense, since the noise here naturally arises as
the limit of processes with nonzero correlation length. We moreover assume that the noise is
real valued. The term εξ̇(t) represents the deviations of the laser intensity E(t) around its mean
value (see [1]). Also, in this model, the sign of λ is related to the sign of the atomic scattering
length, which may be positive or negative. A similar model was used in [12] in dimension three,
except that the fluctuations there were not assumed to be delta-correlated. Related equations
may also be found in the context of optic fibers. In [2] e.g., equation (1.1) without the harmonic
potential term, and simply with a multiplicative noise was considered as a model for optical
soliton propagation in fibers with random inhomogeneities. In [1], the qualitative properties of
solutions of (1.1) is studied by using the “moments method” which consists in finding (finite
dimensional) evolution equations satisfied by a few integral quantities of the solutions, like e.g.,
energy, momentum, and so on. A closed system of equations is found in the case where there is
no damping. The solutions of this system of stochastic differential equations are then formally
approximated in the limit where the noise tends to zero.

Our aim in this paper is, as a sequel to the mathematical study in [8], to investigate the
influence of random perturbations on the propagation of deterministic standing waves. The
method we will use, so called collective coordinate approach, consists in writing that the main
part of the solution is given by a modulated soliton and in finding then the modulation equations
for the soliton parameters. Such ideas to analyze the asymptotic behavior have been used by
many authors in the physics literature, as well as in the study of mathematical problems (see
for example, Weinstein [30], Jonsson et al [15, 16]). The modulation theory, in general, provides
an approximate and constructive answer to questions concerning the location of the standing
wave and the behavior of its phase for t > 0.

In order to state precisely the problem and our results, we consider a probability space
(Ω,F ,P) endowed with a standard filtration (Ft)t≥0 and a standard real valued Brownian mo-

tion W (t) on R
+ associated with the filtration (Ft)t≥0. We set ξ̇ = dW

dt and then consider the
stochastic nonlinear Schrödinger equation:

idu+ (∆u− |x|2u+ λ|u|2σu+ iγu)dt = ε|x|2u ◦ dW, (1.2)

where ◦ stands for a Stratonovich product in the right hand side of (1.2), σ > 0, ε > 0, γ ≥ 0
and λ = ±1. We will use the equivalent Itô equation which may be written as

idu+ (∆u− |x|2u+
i

2
ε2|x|4u+ λ|u|2σu+ iγu)dt = ε|x|2udW. (1.3)

Moreover, we do not restrict ourselves to dimension two here, and consider that in Eq. (1.2) or

(1.3), x ∈ R
d, d = 1 or 2.
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Let us give some notations. For p ≥ 1, Lp(Rd) is the Lebesgue space of complex valued, p-th
summable functions, and the inner product in the Hilbert space L2(Rd) is denoted by (·, ·), i.e.,

(u, v) =

∫

Rd

u(x)v(x)dx, for u, v ∈ L2(Rd).

Moreover 〈u, v〉 = Re(u, v). The norm in Lp(Rd) is denoted by | · |Lp . With the aim of studying
the spectrum of linearized operator we will consider the space L

2(Rd) of R
2-valued functions of

L2(Rd)×L2(Rd), and L̃
2(Rd) = L

2(Rd)+iL2(Rd), which is identified with the space of C
2-valued,

square integrable functions. L̃
2(Rd) is endowed with inner product

((U ,V)) = (u1, v1) + (u2, v2), |U|2
L̃2(Rd)

= ((U ,U)),

where

U
(

u1

u2

)

, V
(

v1
v2

)

∈ L̃
2(Rd).

Operator norms will be denoted by ‖ · ‖L(X) or ‖ · ‖L(X,Y ), if X and Y are Banach spaces where
the operators are defined.

We define for s ∈ R the space Hs(Rd) of tempered distributions v ∈ S ′

(Rd) whose Fourier

transform v̂ satisfies (1+|ξ|2)s/2v̂ ∈ L2(Rd). The norm in Hs(Rd) is denoted by |·|Hs . We denote

the weighted space {v ∈ H1(Rd); |x|v ∈ L2(Rd)} by Σ and its norm by | · |Σ = (| · |2H1 + |x · |2L2)
1/2.

We define the energy

H(u) =
1

2
|∇u|2L2 +

1

2
|xu|2L2 −

λ

2σ + 2
|u|2σ+2

L2σ+2 , (1.4)

which is a conserved quantity of the deterministic equation without damping, i.e., (1.2) with
ε = 0 and γ = 0. We will consider solutions in the space Σ, which is the natural space where
H is well defined, thanks to the embedding Σ ⊂ H1(Rd) ⊂ L2σ+2(Rd), for σ < 2d

d−2 if d ≥ 3 or
σ < +∞ if d = 1, 2.

In the case where ε = 0 and γ = 0, it is known that in the energy space Σ, equation (1.2) is
locally well posed for λ = ±1, σ < 2d

d−2 if d ≥ 3 or σ < +∞ if d = 1, 2 and globally well posed if

either λ = −1 or λ = 1 and σ < 2/d (see [21]). Also, blow up phenomena appear for λ = 1 and
σ ≥ 2/d under certain condition on the initial data, for example, a data with negative energy
(see [3]). We generalized in [8] these deterministic results to equation (1.2) and we also studied
the local existence of solutions in dimensions d = 1 or 2.

Theorem 1. ([8]) Assume σ > 0, γ ≥ 0 and λ = ±1. Assume u0 ∈ Σ if d = 1, or u0 ∈ Σ2

and 1/2 ≤ σ ≤ 1 if d = 2. Then there exist a stopping time τ∗(u0, ω) and a unique solution
u(t) adapted to (Ft)t≥0 of (1.2) with u(0) = u0, which is almost surely in C([0, τ ]; Σ) for any
τ < τ∗(u0). Moreover, we have almost surely,

τ∗(u0, ω) = +∞ or lim sup
tրτ∗(u0,ω)

|u(t)|Σ = +∞.
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Here, for m ∈ N, m ≥ 1,

Σm = Hm ∩ {u ∈ L2(Rd) ; (1 + |x|2)m/2u ∈ L2(Rd)} ⊂ Σ.

The dual space of Σm in the L2 sense, which we denote by Σ−m, is

Σ−m = H−m +

{

u ∈ S ′

(Rd) ;
u

(1 + |x|2)m/2 ∈ L2(Rd)

}

,

and the norm in Σ−m is given by

|u|Σ−m = inf

{

|u1|H−m +

∣

∣

∣

∣

u2

(1 + |x|2)m/2

∣

∣

∣

∣

L2

; u = u1 + u2

}

for u ∈ Σ−m.

The Σ2 regularity for the initial data in the case d = 2 is required for the energy equality, and
in order to get pathwise continuous solutions with values in Σ : the solution given by Theorem
1 is a strong solution in the probabilistic sense. ¿From now on, we fix λ = 1 and γ = 0, so that
we consider the equation

idu+ (∆u− |x|2u+
i

2
ε2|x|4u+ |u|2σu)dt = ε|x|2udW. (1.5)

We now go back to the deterministic case and consider the two parameter family of standing
wave solutions

ei(µt+θ)φµ(x) (1.6)

of equation (1.2) with ε = 0 and θ, µ ∈ R, i.e.,

i∂tu+ ∆u− |x|2u+ |u|2σu = 0, x ∈ R
d, t ≥ 0. (1.7)

The standing wave solution satisfies (1.7) if and only if φµ satisfies the following semilinear
elliptic equation:

−∆φ+ |x|2φ+ µφ− |φ|2σφ = 0, x ∈ R
d. (1.8)

The existence of the standing wave solutions is proved, with the help of the compact embedding
Σ ⊂ L2, for any µ > −λ0 where

λ0 = inf{|∇v|2L2 + |xv|2L2 ; v ∈ Σ, |v|L2 = 1} = d. (1.9)

The inverse scattering method gives some qualitative properties (e.g. asymptotic stability) for
this type of solitary waves for completely integrable systems. However integrability is restricted
to 1D cubic nonlinear Schrödinger equation without any potential term and does not apply to
(1.7). Stability properties of such solutions in non-integrable case have also been the object of
several studies, beginning with Cazenave and Lions [4], Weinstein [31], and Grillakis Shatah and
Strauss [14]. For the specific equation (1.8) with a harmonic potential, there have been some
studies on the orbital stability; see for example, Rose and Weinstein [26], the second author and
Ohta [10]. Note that together with the energy (1.4), another conserved quantity for equation
(1.7) is given by

Q(u) =
1

2
|u|2L2 (1.10)
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namely, we have Q(u(t)) = Q(u(0)) for any solution u ∈ C([0, T ]; Σ) of (1.7), and Eq.(1.8) can
be written as H ′(φµ) + µQ′(φµ) = 0. The proof of orbital stability is based on the use of the
functional

Sµ(u) = H(u) + µQ(u), u ∈ Σ, (1.11)

as a Lyapunov functional. In order to show the positivity of the second derivative of this
Lyapunov functional, the positivity of the following linearized operator

L−
µ = −∆ + |x|2 + µ− (2σ + 1)φ2σ

µ (1.12)

is essential. It appears that S′′
µ(φµ) is positive when restricted to the subspace of Σ of functions

orthogonal in L2 to both φµ and iφµ provided µ is sufficiently close to −λ0 and σ > 0, or µ > 0

is sufficiently large and σ ≤ 2/d. This implies that the set {eiθφµ, θ ∈ R} is a set of local
minimizers of Sµ restricted to the manifold {u ∈ Σ, Q(u) = Q(φµ)}.

Another condition which gives the positivity of S′′
µ(φµ),

∂µ|φµ|2L2 > 0 (1.13)

is often used (see, e.g., [14, 26]). The scaling invariance of the equation for the standing waves
allows, in general, to check whether (1.13) is satisfied for general µ; however we cannot expect this
scaling property here due to the harmonic potential. Thus it is natural to consider frequencies
µ which are close to −λ0 and make use of the properties of spectrum and solutions of linear
problems that are already known. Recall that the linear eigenvalue problem

−∆u+ |x|2u = λu, λ ∈ R

consists only of discrete eigenvalues λk (k ∈ N ∪ {0}) and the associated eigenfunctions are the
Hermite functions (see [29]). Thus the bifurcation argument near µ = −λ0 is effective, which is
also another method to ensure the existence of bound state solutions of (1.8) (see Kurth [19]).
We will consider only the ground state φµ of (1.8) in this paper. Namely φµ is the unique
positive radial solution of (1.8) (see Li and Ni [20] for the radial symmetry, Kabeya and Tanaka
[17] for the uniqueness). For (1.7), it was verified in [10] that there exists µ∗ such that for any
µ ∈ (−λ0, µ

∗) the positivity of S′′
µ(φµ) holds under the above suitable orthogonality conditions

for any σ > 0. We summarize here the properties of φµ that we will use later.

Proposition 1. Let d = 1 or 2, 0 < σ < +∞ and µ > −λ0. Let φµ be the unique positive
radial solution of (1.8).

(i) µ 7→ φµ is a C1 mapping from (−λ0,+∞) to Σ2 ( and Σ4 if σ ≥ 1/2 ), moreover it is a
C2 mapping if σ ≥ 1/2.

(ii) There is a µ∗ > −λ0 such that for any µ ∈ (−λ0, µ∗) there exist ν = ν(µ) > 0, for any
v ∈ Σ satisfying Re(v, φµ) = Re(v, iφµ) = 0, we have

〈S′′
µ(φµ)v, v〉 ≥ ν|v|2Σ. (1.14)

(iii) (φµ, ∂µφµ) is strictly positive for µ ∈ (−λ0, µ
∗).

(iv) φµ ∈ ⋂2≤q<∞W 2,q ∩ C2.

(v) For any µ1 > 0, there are positive constants C0,C1, depending on µ1, such that for all

µ ∈ (−λ0, µ1), the inequality |φµ(x)| ≤ C0e
−C1|x|2 holds, for all x ∈ R

d.
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We will give a few references concerning the proof of this proposition in Section 6.

The linearization problem around eiµtφµ in (1.7) is precisely written as

dy

dt
= JLµy in Σ−1,

where

J = −i :

(

Re u
Im u

)

7→
(

0 1
−1 0

)(

Re u
Im u

)

Lµ = S′′
µ(φµ)

(

L−
µ 0
0 L+

µ

)

, (1.15)

L+
µ = −∆ + |x|2 + µ− φ2σ

µ , (1.16)

L−
µ is already defined in (1.12) above. Note that the operator L+

µ is nonnegative since φµ is a
positive solution of Eq.(1.8). Note also that







L+
µ φµ = 0

L−
µ ∂µφµ = −φµ;

(1.17)

more precisely, JLµ has a two dimensional generalized null-space spanned by
(

∂µφµ
0

)

,

(

0
φµ

)

,

and the rest of spectrum is purely discrete on the imaginary axis for the frequencies µ close to
−λ0. We will study this linearized problem in details in Section 6 below, regarding JLµ as a
perturbed operator from JL−λ0 , where

JL−λ0

(

0 1
−1 0

)(

Ξ 0
0 Ξ

)(

0 Ξ
−Ξ 0

)

and Ξ = −∆+ |x|2−λ0. This kind of analysis was used in Pelinovsky and Kevrekidis [23] where
the spectrum of linearized operators around the standing wave solution are investigated using,
similarly, a bifurcation analysis and a regular perturbation method.

Concerning results related to the asymptotic behavior of solutions of (1.7) starting from
the standing wave solution (1.6), Jonsson, Fröhlich, Gustafson and Sigal [15, 16] analysed the
modulation equation, assuming that the effect of the harmonic potential term is sufficiently
small.

Our purpose here is to investigate the influence of random perturbations of the form given in
equation (1.5) on the phase and the frequency of standing wave solutions (1.6). We consider the
solution uε(t, x) of equation (1.5), given by Theorem 1, and with uε(0, x) = φµ0(x) where µ0 is
fixed such as µ0 ∈ (−λ0, µ

∗). We may expect that, if ε is small, the main part of the solution is
a standing wave, randomly modulated in its phase θ and frequency µ. We will briefly comment
in Section 3 that this is true for time less than ε−2, following the proof of the same kind of result
by the first author and Debussche in [6] for the Korteweg-de Vries equation with an additive
noise.
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Next, we study more precisely the behavior at order one in ε of the remaining term in the
preceding decomposition as ε goes to zero. The preceding decomposition says that the solution
uε(t, x) is written as

uε(t, x) = eiθ
ε(t)(φµε(t)(x) + εηε(t, x))

where θε(t) and µε(t) are the modulation parameters; these are semi-martingale processes defined
up to times of the order of ε−2. That means that the shape of the standing wave is preserved
over this time scale. We will show that the process ηε converges as ε goes to zero, in probability,
to a Gaussian process η. Moreover, θε(t) and µε(t) can be developed up to order one in ε, and
we get







dµε(t) = o(ε),

dθε(t) = µ0dt− ε
(|x|2φµ0 , ∂µφµ0)

(φµ0 , ∂µφµ0)
dW + o(ε).

(1.18)

This shows in particular that at first order the noise does not act on the frequency of the standing
wave, but only on its phase.

Finally we investigate the behavior of the process η as t goes to +∞, in the case σ > 1.
We study in Section 6 the distribution of the mode powers of η, i.e., E(|ηk(t)|2) for each k ∈
N ∪ {0}, when the frequency µ0 is sufficiently close to −λ0. Here, ηk is the component of η
on the k-th eigenfunction of −∆ + |x|2 (recall that the family of those eigenfunctions forms a

complete orthonormal system in L2(Rd)). Specifically, on a time scale of order of (µ0 + λ0)
−1/σ,

one can expect the power to be concentrated mainly in the third mode. This observation is
actually inspired by Papanicolaou [22], Kirr and Weinstein [18]. The authors in [22, 18] treated
a system perturbed by a multiplicative random potential with a small parameter κ describing the
amplitude of the random potential. In the limit t→ +∞, κ→ 0, κ2t = constant (at least in their
case), the mode powers satisfy a system of coupled equations which are called master equations.
In this context, the question of how the mode powers evolve with t is of fundamental interest.
We also derive our reduced master equation which explains the mode-power concentration.

The paper is organized as follows: in Section 2, we state precisely our results. In Section
3, we justify the existence of the modulation parameters and we give an estimate on the time
up to which the modulation procedure is available. In Section 4 we give the equations of
the modulation parameters. Section 5 is devoted to estimates on the remainder term whose
most technical parts are postponed to Section 7. Using these estimates, we will also show the
convergence as ε goes to zero. Section 6 is devoted to analyze the drift part of the limit equation
where we will use a bifurcation and a perturbation method from the linear eigenvalue problem
for µ0 close to −λ0. The mode-power concentration will also be proved in Section 6, deriving
the master equation. To lighten notations, we denote sometimes in what follows by C(α, · · · ) a
constant which depends on α and so on.

2. main results

We fix µ0 ∈ (−λ0, µ
∗) and consider for ε > 0 the solution uε(t, x) of equation (1.5) given by

Theorem 1 with initial data uε(0, x) = φµ0(x).
The first theorem says that we can decompose uε as the sum of a modulated standing wave

and a remainder with small Σ norm, for t less than some stopping time τ ε, and that this τ ε goes
7



to infinity in probability as ε goes to zero. We will see then that the remaining part is of order
one with respect to ε. The proof of the theorem is rather similar to those in [6, 7], but for the
sake of completeness we repeat it in the next section. We remark that the proof of theorems 2
and 3 will be completed in subsection 6.3 (see Remark 2.1 below). This decomposition is in the
form

uε(t, x) = eiθ
ε(t)(φµε(t)(x) + εηε(t, x)) (2.1)

for some semi-martingale processes θε(t), µε(t) with values in R, and ηε with value in Σ. We note
that the expression of the main part of the solution is not unique, neither are the modulation
parameters. They depend on the choice of some specific conditions on the remaining part. For
instance, in order to obtain the simple equation (1.18) for θε, the spectral projection of the
remaining part of the solution on the generalized nullspace of JLµ0 must be zero, at least at
order one in ε. However, in order to estimate the exit time, it is more convenient to use the
orthogonality of the remaining part to the nullspace of Lµ0 , since it ensures the positivity of
S′′
µ0

(φµ0). This is why we do not state precisely the orthogonality conditions in the following
Theorem 2 (see Remark 2.1 below).

Theorem 2. Assume d = 1 and 1/2 ≤ σ, or d = 2 and 1/2 ≤ σ ≤ 1. Let µ0 ∈ (−λ0, µ
∗) be fixed.

For ε > 0, let uε(t, x), as defined above, be the solution of (1.5) with u(0, x) = φµ0(x). Then
there exists α0 > 0 such that, for each α, 0 < α ≤ α0, there is a stopping time τ εα ∈ (0, τ∗(φµ0))

a.s., and there are semi-martingale processes µ̃ε(t) and θ̃ε(t), defined a.s. for t ≤ τ εα, with values

in R, so that if we set εη̃ε(t, x) = e−iθ̃
ε(t)uε(t, x) − φµ̃ε(t)(x), then, a.s. for t ≤ τ εα,

|µ̃ε(t) − µ0| ≤ α (2.2)

and
|εη̃ε(t)|Σ ≤ α. (2.3)

In addition, there is a constant C = C(α, µ0) > 0, such that for any T > 0 and any α ≤ α0,
there is an ε0 > 0, such that for each ε < ε0,

P(τ εα ≤ T ) ≤ exp
(

− C

ε2T

)

. (2.4)

Remark 2.1. For the proof of the estimate (2.4), the following orthogonality conditions will be
used :

Re(ηε, φµ0) = 0, a.s., t ≤ τ ε, (2.5)

and
Re(ηε, iφµ0) = 0, a.s., t ≤ τ ε (2.6)

where τ ε is the same stopping time as in Theorem 1. Hence, we first use these conditions on
the remaining part in Section 3, in order to define ηε, and in Section 6 we make a change of the
modulation parameters which allows to get a new decomposition (with the same stopping time
τ ε), satisfying at order one in ε the simple equation Eq. (1.18).

Remark 2.2. Attention is given to the upper bound (2.4) where the product ε2T appears.
From the theorem, we can expect, with high probability, that the solution of (1.2) stays in a
neighborhood of the randomly modulated standing wave at least for times small compared to
ε−2. Whether this time scale of ε−2 is optimal or not still leaves a room for discussion in our
case. In [9], the authors considered the same exit problem for Korteweg-de Vries equation with
an additive noise. An exponential lower bound of the same order in the parameters T and ε
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as the upper bound is proved in [9], which ensures that the typical time scale on which the
solution remains in the neighborhood of the modulated soliton is indeed ε−2. The proof of such
a lower bound requires the use of a Large Deviation Principle together with the resolution of
a control problem, which allows to get an upper bound on the rate function. The proof of
the LDP is far from obvious in our case since we cannot solve equation (1.5) by a contraction
argument; moreover the control problem is a control problem by a potential; as far as we know,
the nonlinear controllability problems by a time dependent potential is an open problem.

Next the following result is concerned with the analysis of the behavior of ηε, and of the
modulation parameters as ε goes to zero.

Theorem 3. Assume d = 1 and 1 ≤ σ, or d = 2 and σ = 1. Let µ0 ∈ (−λ0, µ
∗) be fixed and η̃ε,

θ̃ε, µ̃ε, for ε > 0 be given by Theorem 2, with α ≤ α0 fixed. Then, for any T > 0, the process
(η̃ε(t))t∈[0,T∧τε

α] converges in probability, as ε goes to zero, to a process η̃ satisfying

dη̃ = JLµ0 η̃dt− (I − Pµ0)

(

0
|x|2φµ0

)

dW, (2.7)

with η̃(0) = 0, where Pµ0 is the spectral projection onto the generalized null space of JLµ0. The
convergence holds in C([0, τ εα ∧ T ], L2).

The above process η̃ satisfies for any T > 0 the estimate

E

(

sup
t≤T

|η̃(t)|2Σ

)

≤ CT (2.8)

for some constant C > 0.
Moreover the modulation parameters may be written, for t ≤ τ εα, as

dθ̃ε = µ̃εdt+ εỹεdt+ εz̃εdW, (2.9)

and
dµ̃ε = εãεdt+ εb̃εdW (2.10)

for some adapted processes ỹε, ãε, z̃ε, b̃ε with values in R satisfying: as ε goes to zero, ãε,
b̃ε, ỹε converge to 0 in probability in C([0, T ]), while z̃ε converges in probability in C([0, T ]) to
−(∂µφµ0 , φµ0)

−1(∂µφµ0 , |x|2φµ0).

At last, we derive the following theorem concerning the asymptotic behaviour of η̃(t, x) for
large t > 0. As mentioned in the introduction, the operator JLµ0 may be regarded as a pertur-
bation from JL−λ0 . Let us write the equation as

dη̃ = (JL−λ0 +Bµ0)η̃dt− (I − Pµ0)

(

0
|x|2φµ0

)

dW,

and consider this equation as perturbation of the system

dη̃ = JL−λ0 η̃dt (2.11)

by the small bounded operator Bµ0 plus an additive noise with small amplitude as µ0 tends
to −λ0. The system (2.11) can be studied by decomposing the initial state on the complete
system of eigenstates of JL−λ0 . When (2.11) is perturbed, then the system of ODE’s becomes
an infinite coupled system of equations, and the behavior of its solutions may be rather complex.
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We get the following result on the evolution of the average power in the k-th mode of η. This
result is restricted to the one dimensional case, because it requires the condition σ > 1 (see
Remark 2.4) below.

Let us denote by λ̃k = λk − λ0 the eigenvalues of the operator −∆ + |x|2 − λ0 in 1D, and let

Φk(x) =
1

(2kk!)1/2π1/4
Hk(x)e

−|x|2/2

be the corresponding eigenfunction for k ∈ N ∪ {0}, Hk(x) being the Hermite polynomials. We

will see that JL−λ0 has purely discrete eigenvalues denoted by ξ±k = ±iλ̃k whose associated
eigenfunctions may be choosen as

~Φ±
k

(

±iΦk

∓Φk

)

, for k ≥ 1, ~Φ−
0

(

Φ0

0

)

, and ~Φ+
0

(

0
Φ0

)

for k = 0.

We then define η±k = ((η, ~Φ±
k )) for k ∈ N ∪ {0} in 1D.

Theorem 4. Assume d = 1 and σ > 1. Then the process η̃ defined by (2.7) and η̃(0) = 0
verifies, as µ0 tends to −λ0, for all t ∈ [0, T ],

E(|η̃±2 (t)|2) =

√
π

4
(σ + 1)

1
2σ (µ0 + λ0)

1/σt+O((µ0 + λ0)
κ+1/σt),

E(|η̃±k (t)|2) = O((µ0 + λ0)
κ+1/σt) for k 6= 2.

with κ = min{1 − 1/σ, 1/2σ}.

Remark 2.3. Theorem 4 says that on a time scale of order (µ0 + λ0)
−1/σ, one can expect

that the power distribution of η concentrates in the ~Φ±
2 -mode in 1D. However the total energy,

E(|η̃(t)|2L2), is not conserved in (2.7), our result is different from the energy diffusion discussed
in [18].

Remark 2.4. The spatial dimension d is limited to d = 1. This is only because we do not have
any result on the local existence of solutions for σ > 1, with an existence time that only depends
on the energy norm, in higher dimension. The problem is related to the lack of dispersive
estimate for the linear part of (1.2) (see [8]). However, with such a result in hand, a result
similar to Theorem 4 would be valid in 2D (see Remark 6.3 in Section 6).

3. modulation and estimates on the exit time

In this section, we give a proof of the existence of modulation parameters and the estimate on
the exit time (2.4). The arguments are similar to those in [7] but we repeat them for the sake
of completeness. The following lemma gives the evolution of the charge Q and of the energy H
by (1.5). For the proof, refer to Theorem 3 (i) in [8].

Lemma 3.1. Assume d = 1 and 0 < σ, or d = 2 and 1/2 ≤ σ ≤ 1. Let µ0 ∈ (−λ0, µ
∗) be fixed.

Let uε be the solution of (1.5) given by Theorem 1, with uε(0, x) = φµ0. Then for any stopping
time τ < τ∗(φµ0) we have

|uε(τ)|L2 = |φµ0 |L2 , a.s., (3.1)
10



H(uε(τ)) = H(φµ0) − 2εIm

∫ τ

0

∫

Rd

∇uε · xūεdxdW (s) + 2ε2
∫ τ

0
|xuε|2L2ds, a.s. (3.2)

We give a proof of existence of the modulation parameters using the implicit function theorem
under the orthogonality conditions (2.5) and (2.6). We will change parameters in subsection 6.3.

Proof of Theorem 2. Let Bφµ0
(2α) = {v ∈ Σ, |v − φµ0 |Σ ≤ 2α} for α with 0 < α < µ0/4. Let

also for some δ > 0,

Uφµ0
(δ) = {v ∈ Σ, inf

θ∈R

|v − eiθφµ0 |Σ < δ}.

We then consider a C2 mapping

I : (µ0 − 2α, µ0 + 2α) × (−2α, 2α) ×Bφµ0
(2α) → R × R

(µ, θ, u) 7→ (I1, I2)

defined by

I1(µ, θ, u) = Re

∫

Rd

(e−iθu− φµ)φµ0dx

and

I2(µ, θ, u) = Im

∫

Rd

(e−iθu− φµ)φµ0dx.

We then obtain, using Proposition 1 (i) and (iii),

I(µ0, 0, φµ0) = 0, ∂θI1(µ0, 0, φµ0)∂µI2(µ0, 0, φµ0) = 0,

∂µI1(µ0, 0, φµ0) = −1

2
∂µ|φµ|2L2

∣

∣

∣

µ=µ0

< 0,

∂θI2(µ0, 0, φµ0) = |φµ0 |2L2 > 0.

Here we apply the implicit function theorem and, for α ≤ α0 where α0 is sufficiently small, there
exists a C2 mapping (µ(u), θ(u)) defined for u ∈ Bφµ0

(2α), such that

I1(µ(u), θ(u), u) = I2(µ(u), θ(u), u) = 0.

We apply this with u = uε(t), we get the existence of µε(t) = µ(uε(t)) and θε(t) = θ(uε(t))

such that the orthogonality conditions (2.5) and (2.6) hold with εηε(t) = e−iθ
ε(t)uε(t) − φµε(t).

Since uε(t) is a Σ-valued process, it follows that uε(t) is a semi-martingale process in Σ−4.
Noting that I is a C2 functional of u on Σ−4 (see Proposition 1 (i)), the processes µε and θε are
given locally by a deterministic C2 function of uε ∈ Σ. Then the Itô formula shows that µε and
θε are semi-martingale processes. Moreover, since it is clear that I(µε(t), 0, e−iθ

ε(t)uε(t)) = 0,
the existence of µε and θε holds as long as

|µε(t) − µ0| < α, and |e−iθε(t)uε(t) − φµ0 |Σ < α.

We now define two stopping times

τ̌ εα = inf{t ≥ 0, |µε(t) − µ0| ≥ α, or |e−iθε(t)uε(t) − φµ0 |Σ ≥ α},

τ εβ = inf{t ≥ 0, |µε(t) − µ0| ≥ β, or |e−iθε(t)uε(t) − φµε(t)|Σ ≥ β}.
11



The inequality |φµ0 − φµε(t)|Σ ≤ Cα holds as long as |µε(t) − µ0| ≤ α ≤ α0, with a constant
depending only on α0 and µ0. Indeed, we have

|φµε(t) − φµ0 |Σ ≤ |µε(t) − µ0| sup
t≤T∧τε

|∂µ(φµε(t))|Σ ≤ C(α0, µ0)|µε(t) − µ0|. (3.3)

It then follows that

τ εα ≤ τ̌ ε(C+1)α ≤ τ ε(C+1)2α.

Taking α0 sufficiently small again, the processes θε(t) and µε(t) are defined for all t ≤ τ εα0
, and

satisfy (2.2) and (2.3) for all t ≤ τ εα, α ≤ α0 under the orthogonality conditions (2.5) and (2.6).
It remains to prove (2.4). We give a proof in a similar way to the method in [6, 9]. We may

write a.s. for t ≤ τ εα, α ≤ α0,

Sµ0(e
−iθε(t)uε(t, ·)) − Sµ0(φµε(t))

= 〈S′
µ0

(φµε(t)), εη
ε(t)〉 + 〈S′′

µ0
(φµε(t))εη

ε(t), εηε(t)〉 + o(|εηε(t)|2Σ).

Note that o(|εηε(t)|2Σ) is uniform in ω, ε and t, since S′
µ0

(φµ0) and S′′
µ0

(φµ0) depend continuously

on µ0, and since |µε(t) − µ0| ≤ α and |e−iθε(t)uε(t, ·) − φµε(t)|Σ = |εηε(t, ·)|Σ ≤ α for all t ≤ τ εα.

We then assume α0 small enough so that the last term is less than ν
2 |εηε(t)|2Σ for all t ≤ τ εα.

Since, by Proposition 1, for any µ0 ∈ (−λ0, µ∗),

〈S′′
µ0

(φµ0)εη
ε, εηε〉 ≥ ν|εηε|2Σ

holds a.s. for t ≤ τ εα, and by the following inequality with σ ≥ 1/2,

|φ2σ
µε(t) − φ2σ

µ0
|Σ ≤ |µε(t) − µ0| sup

t≤T∧τε

|∂µ(φ2σ
µε(t))|Σ ≤ C(α0, µ0)|µε(t) − µ0|, (3.4)

we get

‖S′′
µ0

(φµε(t)) − S′′
µ0

(φµ0)‖L(Σ;Σ−1) ≤ C|µε(t) − µ0|.
It thus follows

Sµ0(e
−iθε(t)uε(t, x)) − Sµ0(φµε(t))

≥ 〈S′
µ0

(φµε(t)), εη
ε(t)〉 + ν|εηε|2Σ − C|µε(t) − µ0||εηε|2Σ − ν

2
|εηε(t)|2Σ.

On the other hand, since S′
µ0

(φµ0) = 0, using again (3.3) and (3.4), we get a.s. for t ≤ τ εα,

〈S′
µ0

(φµε(t)), εη
ε(t)〉 = 〈S′

µ0
(φµε(t)) − S′

µ0
(φµ0), εη

ε(t)〉,

|〈S′
µ0

(φµε(t)), εη
ε(t)〉| ≤ C|µε(t) − µ0||εηε(t)|Σ ≤ ν

4
|εηε(t)|2Σ + C|µε(t) − µ0|2.

Finally, for all α ≤ α0, and for all t ≤ τ εα, we obtain a.s.

Sµ0(e
−iθε(t)uε(t, ·)) − Sµ0(φµε(t)) ≥

ν

8
|εηε(t)|2Σ − C|µε(t) − µ0|2 (3.5)

for a constant C depending only on α0, µ0 and ν.
Here we estimate |µε(t) − µ0|2. Let t > 0, we denote the stopping time by τ = τ εα ∧ t. ¿From

(3.1) and (ηε, φµ0) = 0,

|uε(τ)|2L2 = |φµ0 |2L2 = |eiθε(t)(φµε(τ) + εηε)|2L2

= |φµε(τ)|2L2 + |εηε|2L2 + 2(φµε(τ) − φµ0 , εη
ε).
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Using this equality and (iii) of Proposition 1, we have for some constants C > 0 and δ > 0,

δ|µε(t) − µ0| ≤ ||φµε(τ)|2L2 − |φµ0 |2L2 |
≤ |εηε|2L2 + 2α|φµε(τ) − φµ0 |L2

≤ |εηε|2L2 + αC(µ0)|µε(t) − µ0|.
Choosing then α0 sufficiently small, we get

|µε(t) − µ0| ≤ C(α0, µ0)|εηε|2L2 . (3.6)

On the other hand, using S′
µ0

(φµ0) = 0 and (3.3),

|Sµ0(φµε(t)) − Sµ0(φµ0)| ≤ C(α0, µ0)|µε(t) − µ0|2;
using the above inequality, together with (3.6), and inserting these in (3.5), we obtain

ν

8
|εηε(t)|2Σ ≤ Sµ0(u

ε(t, ·)) − Sµ0(φµ0) + C(α0, µ0)|εηε|4L2 .

Again we choose α0 sufficiently small, then make use of (3.2) to get, for any τ ≤ τ εα
ν

16
|εηε(τ)|2Σ ≤ Sµ0(u

ε(τ, x)) − Sµ0(φµ0) = H(uε(τ, x)) −H(φµ0)

= −2εIm

∫ τ

0

∫

Rd

∇uε(s, x) · xūε(s, x)dxdW (s) + 2ε2
∫ τ

0
|xuε(s, ·)|2L2ds. (3.7)

Let us now fix T > 0. We may write setting τ = τ εα ∧ T ,

P(τ εα ≤ T ) ≤ P(|µε(τ) − µ0| ≥ α) + P(|εηε(τ)|Σ ≥ α).

Note that if |µε(τ)−µ0| ≥ α then |µε(τ)−µ0| = α and |εηε(τ)|Σ ≤ α, in particular, |εηε(τ)|L2 ≤
α. On the other hand, it follows from (3.6) that α ≤ C(α0, µ0)α

2 which is impossible for α
sufficiently small. Then |µε(τ) − µ0| < α and

P(τ εα ≤ T ) ≤ P(|εηε(τ)|Σ ≥ α).

Now we will estimate P

(

|εηε(τ)|Σ ≥ α
)

as in [9]. Here we remark that there exists a constant

C(α0, µ0) > 0 such that |uε(s, ·)|2Σ ≤ C for any s ∈ [0, τ ]. Taking ε sufficiently small, depending
on C, α, T , and ν we obtain using (3.7):

P

(

|εηε(τ)|Σ ≥ α
)

≤ P

(64

ν
ε
∣

∣

∣

∫ τ

0

∫

Rd

∇uε(s, x) · xūε(s, x)dxdW (s)
∣

∣

∣
≥ α

2

)

≤ P

(64

ν
ε sup
t∈[0,T ]

∣

∣

∣

∫ t∧τ

0

(

∫

Rd

∇uε(s, x) · xūε(s, x)dx
)

dW (s)
∣

∣

∣
≥ α

2

)

.

We conclude thanks to the classical exponential tail estimates for 1D stochastic integrals, once
we have noticed that for any t ∈ [0, τ ],

∣

∣

∣

∫

Rd

∇uε · xūε(t, x)dx
∣

∣

∣

2
≤ sup

t∈[0,τ ]
|uε(t)|2Σ ≤ C(α0, µ0), a.s.

�

Remark 3.1. The stopping time τ εα here is the first time for which the solution quits a neigh-
borhood of the modulated standing wave, but we do not know whether it also corresponds to
the exit time of a tubular neighborhood Uφµ0

(δ).
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We summarize the conclusion of this section; the solution uε(t, x) of Eq.(1.5) with uε(0, x) =
φµ0(x) may be written, for any t ≤ τ εα ∧ T , as the form (2.1) under the conditions (2.5) and
(2.6), where θε(t) and µε(t) are semi-martingale processes and τ εα is a stopping time satisfying
(2.4) with (2.2) and (2.3).

4. modulation equations

In this section we derive the system of equations coupling the modulation parameters µε, θε,
to the remaining term ηε. We fix α so that the conclusion of Section 3 holds and we write τ ε

for τ εα from now on. Since µε and θε are semi-martingale processes, adapted to the filtration
(Ft)t≥0 generated by (W (t))t≥0, we may thus write a priori the equations for µε and θε in the
form

{

dθε = µεdt+ εyεdt+ εzεdW,
dµε = εaεdt+ εbεdW,

(4.1)

where aε and yε are real valued adapted processes with paths in L1(0, τ ε) a.s., zε and bε are real
valued predictable processes, with paths in L2(0, τ ε) a.s.

Lemma 4.1. Let ηε = ηεR + iηεI , where ηεR = Re ηε and ηεI = Im ηε. With the above notations,
ηεR and ηεI satisfy the equations

dηεR = L+
µ0
ηεIdt− aε∂µφµεdt+ (µε − µ0)η

ε
Idt+ (φ2σ

µ0
− φ2σ

µε)ηεIdt+ εyεηεIdt−
ε

2
|x|4φµεdt

−ε
2
(zε)2φµεdt− εzε|x|2φµεdt− ε

2
(bε)2∂2

µφµεdt− εhεIdt−
ε2

2
|x|4ηεRdt

−ε2zε|x|2ηεRdt−
ε2

2
(zε)2ηεRdt− bε∂µφµεdW + ε|x|2ηεIdW + εzεηεIdW, (4.2)

dηεI = −L−
µ0
ηεRdt− yεφµεdt− (µε − µ0)η

ε
Rdt+ (2σ + 1)(φ2σ

µε − φ2σ
µ0

)ηεRdt

−εyεηεRdt+ εhεRdt−
ε2

2
|x|4ηεIdt− ε2zε|x|2ηεIdt−

ε2

2
(zε)2ηεIdt

−|x|2φµεdW − zεφµεdW − ε|x|2ηεRdW − εzεηεRdW, (4.3)

where hεR and hεI are defined by

ε2hεR + iε2hεI =

∫ 1

0
(1 − s)

∂2

∂s2

(

|φµε + sεηε|2σ(φµε + sεηε)
)

ds.

Proof. First we formally derive Eqs. (4.2) and (4.3). Using the fact that uε satisfies Eq.(1.5)
and θε satisfies equation (4.1), Itô formula gives

d(e−iθ
ε(t)uε(t)) = e−iθ

ε(t)
(

i∆uε − i|x|2uε − ε2

2
|x|4uε

+i|uε|2σuε − iµεuε − iεyεuε − ε2zε|x|2uε − ε2

2
(zε)2uε

)

dt (4.4)

−ie−iθε(t)(εzεuε + ε|x|2uε)dW.
14



We use Itô formula for φµε(t) and we get

d(φµε(t)) = εaε∂µφµε(t)dt+
ε2

2
(bε)2∂2

µφµε(t)dt+ εbε∂µφµε(t)dW. (4.5)

Next, we use the following properties

L−
µεηεR = L−

µ0
ηεR + (µε − µ0)η

ε
R − (2σ + 1)(φ2σ

µε − φ2σ
µ0

)ηεR,

L+
µεηεI = L+

µ0
ηεI + (µε − µ0)η

ε
I − (φ2σ

µε − φ2σ
µ0

)ηεI ,

(ηεR, φµ0) = 0, (ηεI , φµ0) = 0.

Also, we write for σ ≥ 1/2,

|φµε + εηε|2σ(φµε + εηε) = φ2σ+1
µε + ε(2σ + 1)ηεRφ

2σ
µε + iεηεIφ

2σ
µε + ε2hεR + iε2hεI .

Using these facts, (1.8) and (4.5), replacing e−iθ
ε(t)uε(t) by φµε(t) + εηε(t, x) in (4.4), and iden-

tifying the real and imaginary parts, we deduce the equations (4.2) and (4.3).
Here, we briefly explain how to justify the above computations; let Pn1 be the projection

onto the finite-dimensional space R
n1 spanned by the eigenfunctions Φk(x) of −∆ + |x|2 for

k = 0, 1, · · · , n1. We use a sequence of approximations indexed by n = (n1, n2) ∈ N
2. We mean,

by n goes to ∞, that first n1 goes to ∞ and then n2 goes to ∞. We consider the solutions
uε,n =

∑n1
k=0(u

ε,n,Φk)Φk, of the following equation.

duε,n =
(

i∆uε,n − i|x|2uε,n +
ε2

2
Pn1Θ

2
n2

(x)|x|4uε,n + iPn1gn2(u
ε,n)
)

dt− iεPn1Θn2(x)|x|2uε,ndW,
(4.6)

where Θ(x) is a smooth function such that

Θ(x) =

{

1, |x| ≤ 1/2,
0, |x| ≥ 1

and Θn2(x) = Θ
( |x|2
n2

)

. Also, gn2(x) =

{

|s|2σs, |s| ≤ n2,
n2σ

2 s, |s| ≥ n2.

Since this finite system involves only globally Lipschitz functions, we see that (4.6) has a
unique solution uε,n with paths a.s. in C(R+,Σm) with uε,n(0) = φµ0 and m ≥ 1. Moreover it
can be proved similarly to [8] that uε,n converges to the solution uε of (1.5), in probability, in
C([0, τ εα ∧ T ],Σ) as n goes to ∞. Indeed, this convergence holds in C([0, τ∗(φµ0)),Σ) and it is
clear that τ εα < τ∗(φµ0) almost surely. All the arguments in Section 3 are valid uniformly in n if
n ≥ n0(α0) for some n0 > 0. Hence, for fixed n, we apply the above arguments to uε,n instead
of uε and take the limit as n goes to infinity. �

As in [6, 7], we now take the L2 inner product of Eqs.(4.2) and (4.3) with φµ0 and make
use of the orthogonality conditions (2.5) and (2.6), we obtain the equations for the modulation
parameters yε, zε, aε and bε from the identification of drift parts and that of martingale parts.

Let

Zε(t)

(

zε(t)
bε(t)

)

and Y ε(t)

(

yε(t)
aε(t)

)

. (4.7)

Lemma 4.2. Under the assumptions of Theorem 2, the modulation parameters satisfy the system
of the equations, for any t ≤ τ ε,

Aε(t)Zε(t) = F ε(t), (4.8)

and
Aε(t)Y ε(t) = Gε(t), (4.9)
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where Zε and Y ε are defined above, Aε is defined by

Aε(t)

(

(φµε , φµ0) 0
0 (∂µφµε , φµ0)

)

(4.10)

and F ε and Gε are given as follows;

F ε(t)

(

−(|x|2φµε , φµ0) − ε(|x|2ηεR, φµ0)
ε(|x|2ηεI , φµ0)

)

(4.11)

and

Gε
(

Gε1(t)
Gε2(t)

)

(4.12)

with

Gε1(t) = 2σ(ηεR, φ
2σ+1
µ0

) + (2σ + 1)((φ2σ
µε − φ2σ

µ0
)ηεR, φµ0) + ε(hεR, φµ0)

−1

2
ε2(|x|4ηεI , φµ0) − ε2zε(|x|2ηεI , φµ0)

and

Gε2(t) = ((φ2σ
µ0

− φ2σ
µε)φµ0 , η

ε
I) −

ε

2
(|x|4φµε , φµ0) − εzε(|x|2φµε , φµ0) −

ε

2
(zε)2(φµε , φµ0)

−ε
2
(bε)2(∂2

µφµε , φµ0) − ε(hεI , φµ0) −
ε2

2
(|x|4ηεR, φµ0) − ε2zε(|x|2ηεR, φµ0).

We deduce from the modulation equations obtained in Lemma 4.2 the following estimates for
the modulation parameters.

Corollary 4.3. Under the assumptions of Theorem 2, there is a α1 > 0 such that for any
α ≤ α1, there is a constant C(µ0, α) with

|zε(t)| + |bε(t)| ≤ C(µ0, α), for all t ≤ τ ε, ε ≤ ε0. (4.13)

Moreover, there are constants C1 and C2 depending only on α and µ0 such that

|aε(t)| + |yε(t)| ≤ C1|ηε(t)|L2 + εC2 a.s. for all t ≤ τ ε, ε ≤ ε0. (4.14)

In order to prove Corollary 4.3, we recall how hεR and hεI express in terms of φµε and εηε :
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hεR =
2σ

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−1

×
{

2((φµε + sεηεR)εηεR + s(εηεI)
2)εηεR + ((εηεR)2 + (εηεI)

2)(φµε + sεηεR)
}

ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×{(φµε + sεηεR)εηεR + s(εηεI)
2}2(φµε + sεηεR)ds,

hεI =
2σ

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−1

×
{

2((φµε + sεηεR)εηεR + s(εηεI)
2)εηεI + ((εηεR)2 + (εηεI)

2)sεηεI

}

ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×{(φµε + sεηεR)εηεR + s(εηεI)
2}2sεηεIds.

Proof. We may write almost surely for t ≤ τ ε that Aε(t) = A0 +O(|µε−µ0|+ |εηε|Σ), where

A0

(

|φµ0 |2L2 0
0 (∂µφµ0 , φµ0)

)

and O(|µε−µ0|+ |εηε|Σ) holds uniformly in ε, t and ω as long as t ≤ τ ε. Hence, choosing α ≤ α1

smaller if necessary (depending only on µ0), it follows that setting

Ãε(t) = A0 + 1l[0,τε)(t)(A
ε(t) −A0),

the matrix Ãε(t) is invertible, for all t, and for a.e. ω ∈ Ω,

‖(Ãε(t))−1‖L(R2) ≤ C(µ0, α).

Then Eq. (4.8) may be solved as Zε(t) = (Ãε(t))−1F ε(t) for t ≤ τ ε, which implies, using (3.3),

|zε(t)| + |bε(t)| ≤ C(µ0, α)|F ε(t)| ≤ C(µ0, α)(|φµ0 |2Σ + |µε − µ0|2 + |εηε|2Σ),

for any t ≤ τ ε.
We now prove the estimates for the drift part. Thanks to the Sobolev embedding Σ ⊂ L4σ if

d = 1, 2, we have

|(εhεR, φµ0)| + |(εhεI , φµ0)| ≤ ε

∫ 1

0
(1 − s)((|φµε |2σ + |εηε|2σ)(|ηεR| + |ηεI |), φµ0)ds

≤ C(|φµε |2σL4σ + |εηε|2σL4σ)|ηε|L2 |φµ0 |L∞

≤ C(α, µ0)|ηε|L2 . (4.15)

The estimates (4.15), (3.4) and (4.13) lead to

|Gε1(t)| + |Gε2(t)| ≤ C1|ηε(t)|L2 + εC2, a.s. for all t ≤ τ ε,
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where C1 and C2 depend only on µ0 and α. Lastly applying the same argument with (Ãε(t))−1

as above, (4.14) follows, with possibly different constants. �

We state the following corollary which will be useful to prove Lemmas 5.1, 5.2 and 5.4 below.

Corollary 4.4. Under the assumptions of Theorem 2, there exist some constants C1 and C ′
2

such that

|µε(t) − µ0| ≤ ε
(

C1

∫ T∧τε

0
|ηε(s)|L2ds+ TC ′

2

)

, a.s. for all t ≤ T ∧ τ ε. (4.16)

Proof. This corollary follows immediately from Corollary 4.3 and

µε(t ∧ τ ε) − µ0 = ε

∫ t∧τε

0
aε(s)ds+ ε

∫ t∧τε

0
bε(s)dW.

�

5. estimates on the remainder term and convergence

Let η = ηR + iηI with ηR = Re η and ηI = Im η. Consider the equation

dη = JLµ0dt− y

(

0
φµ0

)

dt−
(

0
|x|2φµ0

)

dW − z

(

0
φµ0

)

dW, (5.1)

where we set for all t ≥ 0,

y(t) = −
(L−

µ0
ηR, φµ0)

|φµ0 |2L2

, z(t) = −|xφµ0 |2L2

|φµ0 |2L2

. (5.2)

Note that JL−λ0 is skew-adjoint and generates a C0 unitary group by Stone’s theorem. Other
terms are linear, or deterministic and bounded in Σ, thus, equation (5.1) with η(0) = 0 has
a unique adapted solution η ∈ C(R+,Σ), a.s. Moreover, it is easy to check that η satisfies
(ηR, φµ0) = 0 and (ηI , φµ0) = 0. In this section we will show that ηε converges to η in probability
in C([0, τ ε ∧ T ], L2) for any T > 0 as ε goes to 0. First we list some estimates to prove that
convergence. For the proof of these estimates, see Section 7. We note that ηε, yε, zε, aε, bε

given by Section 3 and (4.1) are a priori defined only for t ≤ τ ε. We define them for t ∈ R
+ by

simply setting ηε(t) = ηε(τ ε) for t ≥ τ ε and the same for the others.

Lemma 5.1. Let T > 0 fixed. Under the assumption of Theorem 2, there exist constants C1

and C2 depending only on T , α, µ0, ( and N if d = 2 ) such that

(i) E

(

sup
t≤τ̃ε∧T

|ηε(t)|2L2

)

≤ C1, and (ii) E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

≤ C2,

where τ̃ ε = τ ε if d = 1, or τ̃ ε = τ ε ∧ τ̄ εN if d = 2, with

τ̄ εN = inf{t ≤ τ ε ∧ T, |εηε|Σ2 ≥ N}, for any N > 0.

18



Lemma 5.2. Let T > 0 fixed. Under the assumption of Theorem 3, there exists a constant C3

depending only on T , α, µ0, (and N if d = 2) such that

E

(

sup
t≤τ̃ε∧T

|ηε(t)|4Σ

)

≤ C3,

where τ̃ ε is defined in Lemma 5.1.

Lemma 5.3. Let T > 0 fixed. Under the assumption of Theorem 2, there exist C4, C5 and C6

depending only on T , α, µ0 such that

(i) E

(

sup
t≤T

|η(t)|4L2

)

≤ C4, (ii) E

(

sup
t≤T

|η(t)|2Σ

)

≤ C5,

and

(iii) E

(

sup
t≤T

|(1 + |x|4)η(t)|2L2

)

≤ C6.

We remark that the assumption σ ≥ 1 is needed only for Lemma 5.2. Using these lemmas we
obtain the following convergence.

Lemma 5.4. Let T > 0 and N > 0 be fixed. Under the assumptions of Theorem 3, ηε converges
to η, as ε tends to 0, in L2(Ω;C([0, τ̃ ε ∧ T ], L2)).

The convergence in probability in the time interval [0, τ ε ∧ T ] follows from Lemma 5.4 :

Corollary 5.5. Let T > 0 be fixed. Under the assumptions of Theorem 3, ηε converges to η, as
ε tends to 0, in probability, in C([0, τ ε ∧ T ], L2).

First, we admit Lemma 5.4 and we prove Corollary 5.5.

Proof of Corollary 5.5. In the 1D case, the conclusion follows directly from Lemma 5.4. In
2D, we prove that for any β > 0, δ > 0

P

(

sup
t∈[0,T ]

|1l[0,τε∧T ]η
ε − 1l[0,T ]η|L2 > δ

)

≤ β, (5.3)

provided that ε is sufficiently small. We note that

P

(

sup
t∈[0,T ]

|1l[0,τε∧T ]η
ε − 1l[0,T ]η|L2 > δ

)

≤ P

(

sup
t∈[0,T ]

|1l[0,τε∧T ](η
ε − η)|L2 > δ

)

+ P(τ ε ∧ T < T ).

It follows from (2.4) that for any β > 0 there exists ε0 > 0, P(τ ε ∧T < T ) ≤ β/3 for any ε ≤ ε0.
On the other hand,

P

(

sup
t∈[0,T ]

|1l[0,τε∧T ](η
ε − η)|L2 > δ

)

≤ P

(

sup
t∈[0,T ]

|1l[0,τ̄ε
N∧τε∧T ](η

ε − η)|L2 > δ
)

+ P(τ̄ εN ∧ τ ε ∧ T < T ). (5.4)

Concerning the second term, we first show that for any β > 0 there exist N0 and ε0 such that
for any ε ≤ ε0,

P

(

sup
t∈[0,τε∧T ]

|εηε|Σ2 ≥ N0

)

≤ β/3.
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Remarking εηε(t, x) = e−iθ
ε(t)uε(t, x) − φµε(t), it suffices to mention the estimate

P

(

sup
t∈[0,τε∧T ]

|uε(t)|Σ2 ≥ N
)

≤
E

(

supt∈[τε∧T ](1 + log(1 + |uε(t)|2Σ2))
)

1 + log(1 +N2)
≤ C(T, µ0, α)

1 + log(1 +N2)
≤ β

3

for sufficiently large N ; this follows simply from the bound (2.10) of Lemma 2.7 in [8]. It shows

P(τ̄ εN0
∧ τ ε ∧ T < T ) ≤ P

(

sup
t∈[0,τε∧T ]

|εηε|Σ2 ≥ N0

)

≤ β/3.

Now, using Lemma 5.4, we have for any β > 0,

P

(

sup
t∈[0,T ]

|1l[0,τ̄ε
N0

∧τε∧T ](η
ε − η)|L2 > δ

)

≤ β

3
,

provided ε is sufficiently small, and we get (5.3) by simply fixing N = N0 in (5.4). �

Next, we prove Lemma 5.4.
Proof of Lemma 5.4. Let vε = ηε− η, and also let the imaginary part and real part of vε be

vεR = ηεR − ηR, vεI = ηεI − ηI respectively. Then, vεR and vεI satisfy for t ≤ τ ε ∧ T :

dvεR = L+
µ0
vεIdt− aε∂µφµεdt+ (µε − µ0)η

ε
Idt+ (φ2σ

µ0
− φ2σ

µε)ηεIdt−
ε

2
|x|4φµεdt

−εzε|x|2φµεdt+ εyεηεIdt− εhεIdt−
ε

2
(bε)2∂2

µφµεdt− ε

2
(zε)2φµεdt

−ε
2

2
|x|4ηεRdt− ε2zε|x|2ηεRdt−

ε2

2
(zε)2ηεRdt− bε∂µφµεdW + ε|x|2ηεIdW + εzεηεIdW,

dvεI = −L−
µ0
vεRdt− yεφµεdt+ yφµ0dt− (µε − µ0)η

ε
Rdt+ (2σ + 1)(φ2σ

µε − φ2σ
µ0

)ηεRdt

+εhεRdt− εyεηεRdt−
ε2

2
|x|4ηεIdt− ε2zε|x|2ηεIdt−

ε2

2
(zε)2ηεIdt− |x|2(φµε − φµ0)dW

−zεφµεdW + zφµ0dW − ε|x|2ηεRdW − εzεηεRdW.

Now we apply Itô formula to L2 norms of |vεR|2L2 and |vεI |2L2 , then we obtain, after some
compensations, for any τ = τ̃ ε ∧ t,

|vεR(τ)|2L2 + |vεI(τ)|2L2 =

∫ τ

0
(D1(s) +D2(s) +D3(s))ds+

∫ τ

0
M1(s)dW (s), (5.5)
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where

D1(t) = 4σ(vεI , φ
2σ
µ0
vεR) − 2(vεI , y

εφµε − yφµ0) − ε(vεR, |x|4φµε)

−2εzε(vεR, |x|2φµε) − ε(bε)2(vεR, ∂
2
µφµε) − ε(zε)2(vεR, φµε),

D2(t) = ||x|2(φµε − φµ0)|2L2 + 2zε(|x|2(φµε − φµ0), φµε) − 2z(|x|2(φµε − φµ0), φµ0)

−2(µε − µ0)(ηR, η
ε
I) + 2(µε − µ0)(ηI , η

ε
R) − 2((φ2σ

µ0
− φ2σ

µε)ηεI , ηR)

−2(2σ + 1)(ηI , (φ
2σ
µε − φ2σ

µ0
)ηεR) + 4σ(ηεI , (φ

2σ
µε − φ2σ

µ0
)ηεR)

+(bε)2|∂µφµε |2L2 + |zεφµε − zφµ0 |2L2 − 2εyε(ηR, η
ε
I) + 2εyε(ηI , η

ε
R)

−2εbε(|x|2ηεI , ∂µφµε) − 2εzεbε(ηεI , ∂µφµε) + 2ε(|x|2(φµε − φµ0), |x|2ηR)

+εzε(|x|2(φµε − φµ0), η
ε
R) + 2εzε(|x|2ηεR, φµε) − 2εz(|x|2ηεR, φµ0) + 2ε(zε)2(φµε , ηεR)

−2εzεz(ηεR, φµ0) + 2ε2zε(ηR, |x|2ηεR) + ε2(|x|3ηR, |x|ηεR) + ε2(|x|3ηI , |x|ηεI)
+ε2(zε)2(ηR, η

ε
R) + ε2(zε)2(ηI , η

ε
I) + 2ε2zε(ηI , |x|2ηεI),

D3(t) = −ε(hεI , vεR) + ε(hεR, v
ε
I) − 2aε(vεR, ∂µφµε),

M1(t) = −2ε(ηR, |x|2ηεI) + 2ε(ηI , |x|2ηεR) − 2εzε(ηR, η
ε
I)

+2εzε(ηI , η
ε
R) − 2bε(vεR, ∂µφµε) − 2(vεI , |x|2(φµε − φµ0)) − 2(vεI , z

εφµε − zφµ0).

Once we have obtained that, for ε sufficiently small,

E

(

sup
t≤T∧τ̃ε

|vεR(t)|2L2 + |vεI(t)|2L2

)

≤ C(T )

∫ T

0
E

(

sup
t≤T∧τ̃ε

|vεR(t)|2L2 + |vεI(t)|2L2

)

dt+ εC ′T, (5.6)

where C ′ may depend on N , we will conclude by Gronwall’s lemma, that

E

(

sup
t≤T∧τ̃ε

|vεR(t)|2L2 + |vεI(t)|2L2

)

≤ εC ′T 2 exp(CT ),

i.e.,

E

(

sup
t≤T∧τ̃ε

|ηε(t) − η(t)|2L2

)

→ 0, as ε→ 0.

We first consider the drift part D1. Remarking Proposition 1 (i), (v) and (4.13), we have the
estimate for t ≤ τ ε ∧ T,

|D1(t)| ≤ C|vε(t)|2L2 + εC ′,

where the constants depend only on µ0, σ and α except the term −2(vεI , y
εφµε − yφµ0). Let us

explain how to majorize this term. Noting that

(φµε(t), φµ0) ≥
1

2
|φµ0 |2L2 , t ≤ τ ε ∧ T (5.7)
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and using (4.13), (3.3) and (3.4),

|yε(t) − y(t)| =
∣

∣

∣
−

(L−
µ0
vεR, φµ0)

|φµ0 |2L2

+ (L−
µ0
ηεR, φµ0)

( 1

|φµ0 |2L2

− 1

(φµε , φµ0)

)

+(2σ + 1)
1

(φµε , φµ0)
((φ2σ

µε − φ2σ
µ0

)ηεR, φµ0) −
ε2

2(φµε , φµ0)
(|x|4ηεI , φµ0)

− ε2zε

(φµε , φµ0)
(|x|2ηεI , φµ0)

∣

∣

∣
≤ C(α, µ0)(|vεR|L2 + |µε − µ0||ηεR|L2 + ε2|ηεI |L2).

Then, we have

|(vεI , yεφµε − yφµ0)| ≤ |(vεI , yε(φµε − φµ0))| + |(yε − y)(vεI , φµ0)|
≤ C(α, µ0)|µε − µ0||vεI |L2(|ηε|L2 + ε) + C(α, µ0)|yε − y||vεI |L2

≤ C(α, µ0)(|vεI |L2 |vεR|L2 + |µε − µ0||vεI |L2 |ηε|L2

+ε2|vεI |L2 |ηεI |L2 + ε|µε − µ0||vεI |L2)

and it suffices to estimate, putting τ = τ̃ ε ∧ T,

E

∫ T

0
sup
t≤τ

(|µε − µ0||vεI |L2 |ηε|L2)dt.

Note that
∫ T

0
E

(

sup
t≤τ

|µε − µ0||vεI |L2 |ηε|L2

)

dt

≤
∫ T

0
E

(

sup
t≤τ

|µε − µ0|4
)1/4

E

(

sup
t≤τ

|ηε|4L2

)1/4
E

(

sup
t≤τ

|vεI |2L2

)1/2
dt (5.8)

≤ εC(T ) + εC ′(T )

∫ T

0
E

(

sup
t≤τ

|vεI |2L2

)

dt,

where we have used (4.16), Lemma 5.1 (ii) in the second inequality. Note that we have actually
from (4.16), by Hölder inequality,

|µε(t) − µ0| ≤ εC1T
3/4
(

∫ T

0
sup
s≤τ

|ηε(s)|4L2ds
)1/4

+ εTC ′
2.

Therefore,

E

(

sup
t≤τ

|µε(t) − µ0|4
)1/4

≤ εCT 3/4
(

E

∫ T

0
sup
s≤τ

|ηε(s)|4L2ds
)1/4

+ εCT.

The terms in D2 are estimated as

E

(

∫ T

0
sup

t≤τ̃ε∧T
|D2(t)|dt

)

≤ εC(T ). (5.9)
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We study some representative terms in D2 in what follows. The first term is estimated as, using
Proposition 1 (i) (v),

||x|2(φµε(t) − φµ0)|2L2 ≤ C(α, µ0)|µε(t) − µ0|2 sup
t≤τε∧T

||x|2∂µφµε |2L2 ≤ C(α, µ0)|µε(t) − µ0|2.

Then using (4.16) together with Lemma 5.1 (i), we get

E

(

∫ T

0
sup

t≤τ̃ε∧T
(||x|2(φµε(t) − φµ0)|2L2)dt

)

≤ εC(α, µ0, T ).

This argument is also valid for the 2nd and the 3rd terms. Concerning the 4th and 5th terms,
putting τ = τ̃ ε ∧ T,

∣

∣

∣

∫ τ

0

(

− 2(µε − µ0)(ηR, η
ε
I) + 2(µε − µ0)(ηI , η

ε
R)
)

dt
∣

∣

∣

≤ C

∫ T

0
sup
t≤τ

(|µε − µ0||η|L2 |ηε|L2)dt,

which is estimated as (5.8).

For the 6th term, we estimate simply using (3.4) and Proposition 1 (i),
∫ τ

0
| − 2((φ2σ

µ0
− φ2σ

µε)ηεI , ηR)|dt ≤ C(α, µ0)

∫ τ

0
|µε(t) − µ0||ηεI(t)|L2 |ηR(t)|L2dt

and then we may continue the computation as (5.8) above. The 7th and 8th terms are similarly
estimated.

The 9th term is estimated as follows, writing bε in details. First we note

(∂µφµε , φµ0) ≥
1

2
(∂µφµ0 , φµ0) > 0, for t ≤ τ ε ∧ T, (5.10)

by Proposition 1 (i), taking α smaller if necessary. Then, using Lemma 4.2,

(bε)2|∂µφµε |2L2 = ε2
(ηεI , |x|2φµ0)

2

(∂µφµε , φµ0)
2
|∂µφµε |2L2 ≤ ε2C(µ0, α)|ηεI |2L2 .

The use of Lemma 5.1 (i) leads to (5.9).

To estimate the 10th term we remark that

|zε(t) − z(t)| ≤ Cε|ηεR|L2 + C|µε − µ0| (5.11)

holds. Indeed, we can check this easily developing zε in details (see Lemma 4.2 and Eq. (5.2))

zε(t) − z(t) = −ε(η
ε
R, |x|2φµ0)

(φµε , φµ0)
+

(|x|2φµ0 , φµ0)

|φµ0 |2L2

− (|x|2φµε , φµ0)

(φµε , φµ0)

= −ε(η
ε
R, |x|2φµ0)

(φµε , φµ0)

−(|x|2(φµε − φµ0), φµ0)

(φµε , φµ0)
+

(φµε − φµ0 , φµ0)

|φµ0 |2L2(φµε , φµ0)
(|x|2φµ0 , φµ0).
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Recalling (5.7), then, using (4.13) and (3.3),
∫ τ

0
|zεφµε − zφµ0 |2L2dt ≤ 2

∫ τ

0
|zε(φµε − φµ0)|2L2dt+ 2

∫ τ

0
|(zε − z)φµ0 |2L2dt

≤ C

∫ τ

0
|µε − µ0|2dt+ Cε

∫ τ

0
|ηεR|2L2dt,

and
∫ T

0
E

(

sup
t≤τ

|zεφµε − zφµ0 |2L2

)

dt ≤ εC(T ),

from (4.16) and Lemma 5.1 (i).

All the other terms are similarly majorized; Lemma 5.3 (iii) is required for the 21st, 22nd,
23rd and 26th terms; the verification is left to the reader.

We estimate the terms of D3. Lemma 5.2 is needed here, together with the regularity σ ≥ 1
of the nonlinearity. We first note that

∣

∣

∣
− ε

∫ t∧τ̃ε

0
(hεI , v

ε
R)ds + ε

∫ t∧τ̃ε

0
(hεR, v

ε
I)ds

∣

∣

∣

≤
∫ t∧τ̃ε

0
(ε|ηε|2(|φµε |2σ−1 + |εηε|2σ−1), |vε|)ds

≤ εC(α, µ0)

∫ t∧τ̃ε

0
|ηε|2Σ|vε|L2ds

≤ C(α, µ0)C(T )
(

∫ t∧τ̃ε

0
ε2|ηε|4Σds+

∫ t∧τ̃ε

0
|vε|2L2ds

)

, (5.12)

where we have used the Sobolev embedding Σ ⊂ L4σ+2(Rd) with d = 1 or 2, in the second
inequality. Then, an application of Lemma 5.2 implies (5.6) for the terms of D3, with a constant
C ′ that may depend on N . In order to estimate −aε(vεR, ∂µφµε), we look at aε in details. From
Lemma 4.2,

−2aε(vεR, ∂µφµε)

= −2(vεR, ∂µφµε)

(∂µφµε , φµ0)
×
[

− 1

2
ε(|x|4φµε , φµ0) − εzε(|x|2φµε , φµ0) − ((φ2σ

µε − φ2σ
µ0

)φµ0 , η
ε
I)

−ε
2
(zε)2(φµε , φµ0) −

1

2
ε2(ηεR, |x|4φµ0) − ε2zε(ηεR, |x|2φµ0) −

ε

2
(bε)2(∂2

µφµε , φµ0) − ε(hεI , φµ0)
]

.

Except the terms −ε(hεI , φµ0) and −((φ2σ
µε−φ2σ

µ0
)φµ0 , η

ε
I), we see easily that all the terms inside the

bracket are bounded by εC(α, µ0), using (4.13) and noting |εηε(t)|L2 ≤ C(α, µ0) for t ≤ τ ε ∧ T.
On the other hand, by (3.4) and (5.12) we get

|((φ2σ
µε − φ2σ

µ0
)φµ0 , η

ε
I)| ≤ C(α, µ0)|µε − µ0||ηεI |L2 , |ε(hεI , φµ0)| ≤ εC(α, µ0)|ηε|2Σ.

Recalling (5.10), we have

| − 2aε(vεR, ∂µφµε)| ≤ C(α, µ0)
{

ε|vεR|L2 + ε|ηε|2Σ|vεR|L2 + |µε − µ0||ηεI |L2 |vεR|L2

}

,

which is estimated similarly as above.
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Next, we consider the martingale part M1. We give a proof for the terms, as representative
ones, −2(vεI , |x|2(φµε − φµ0)), and (vεI , z

εφµε − zφµ0). In a same way we can deal with the other
terms of M1. First we mention that it is possible to estimate

| − 2(vεI , |x|2(φµε − φµ0))| ≤ C|vεI |L2 ||x|2(φµε − φµ0)|L2 ≤ C|µε(t) − µ0||vεI |L2 ,

using (3.3), but with Σ2 instead of Σ. With this observation, we have, putting τ = τ̃ ε ∧ T ,

E

(

sup
t≤τ

|
∫ t∧τ

0
(vεI , |x|2(φµε − φµ0))dW |

)

≤ CE

((

∫ τ

0
|vεI |2L2 |µε − µ0|2ds

)1/2)

≤ CT 1/2
E

(

sup
t≤τ

|vεI |L2 |µε − µ0|
)

≤ εC(T )E
(

sup
t≤τ

|vεI |L2

(

∫ T

0
|ηε(s)|L2ds

)

+ 1
))

≤ εC(T )E
(

sup
t≤τ

|vεI |2L2

)

+ εC(T ),

where we have used a martingale inequality in the first inequality, (4.16) in the third one, and
Cauchy-Schwarz inequality together with Lemma 5.1 (i) in the last inequality.

Next we write (vεI , z
εφµε − zφµ0) as follows.

∫ τ

0
(vεI , z

εφµε − zφµ0)dW =

∫ τ

0
(vεI , z

ε(φµε − φµ0))dW +

∫ τ

0
(zε − z)(vεI , φµ0)dW.

Only the second term requires an explanation, since the first term may be estimated as above.
We recall the estimate (5.11), and we obtain

E

(

sup
t≤τ

∣

∣

∣

∫ t

0
(zε − z)(vεI , φµ0)dW

∣

∣

∣

)

≤ CE

((

∫ τ

0
|zε − z|2|vεI |2L2 |φµ0 |2L2ds

)1/2)

≤ εCT 1/2
E

(

sup
t≤τ

|ηεR|L2 |vεI |L2

)

+CT 1/2
E

(

sup
t≤τ

|µε(t) − µ0||vεI |L2

)

.

Then this right hand side is clearly majorized as previously (see (5.8)). Proceeding in the same
way with the other terms, we get

E

(

sup
t≤τ

∣

∣

∣

∫ t∧τ

0
M1(s)dW (s)

∣

∣

∣

)

≤ εC(T )E
(

sup
t≤τ

|vε|2L2

)

+ εC ′(T )

and (5.6) holds, assuming that ε is small enough so that εC(T ) ≤ 1/2. �

6. the limit equation

In the previous sections we have seen that a remaining term ηε satisfying the orthogonality
conditions (2.5) and (2.6) converges to a process η(t) defined by (5.1) as ε goes to zero, in
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probability, in C([0, τ ε ∧ T ], L2). Also, the modulation parameters verify, at order one in ε, the
system

{

dµε = o(ε),
dθε = µ0dt+ εy(t)dt+ εz(t)dW + o(ε),

(6.1)

where y(t) and z(t) are defined by (5.2).
In this section we study the statistical properties of this process η(t), in particular, as men-

tioned in the introduction, we are interested in the quantities

E(|η±k (t)|2), k ∈ {0} ∪ N, if d = 1.

For this purpose, we proceed in the following way.

• Investigate the properties of φµ0 when µ0 is close to −λ0

• Analyze the spectral properties of the operator JLµ0

• Simplify the coupling terms in Eq.(6.1)

At the end of this section, we will give a proof of Theorem 4, deriving the master equation in
our case.

6.1. Properties of φµ0. First, we give some arguments and references concerning the proof of
Proposition 1. Concerning (i), we refer to Theorem 18 of Shatah and Strauss [27], for the fact
that µ 7→ φµ is C1 (or C2) with values in Σ. To obtain the same result with Σ2 (or Σ4) instead
of Σ, it suffices to differentiate Eq.(1.8) with respect to µ, noting that φµ is real valued, and
then to use a bootstrap argument, inverting the operator −∆ + |x|2 + 1. See [10] for the proof
of (ii) which implies (iii); indeed, assume (∂µφµ, φµ) = 0 and (ii). Then we have

0 = −(φµ, ∂µφµ) = 〈L−
µ (∂µφµ), ∂µφµ〉 ≥ ν|∂µφµ|2Σ > 0

which is a contradiction. Suppose that there exists µ1 ∈ (−λ0, µ
∗) such that (∂µφµ1 , φµ1) < 0.

Then ψ(µ, x) =
|φµ1 |L2

|φµ|L2

φµ(x) satisfies (∂µψµ1 , φµ1) = 0 and

〈S′′(φµ1)∂µψµ1 , ∂µψµ1〉 ≤ (∂µφµ1 , φµ1) < 0,

which also contradicts to (ii). The statement of (iv) and (v) has been shown in [11].

We now put ν = µ+ λ0. Eq.(1.8) is equivalent to

−∆φν + |x|2φν + (ν − λ0)φν − φ2σ+1
ν = 0. (6.2)

Lemma 6.1. Assume µ ∈ (−λ0, µ
∗). Let d = 1, 2 and σ ≥ 1/2. Let also φν be a solution of

(6.2). For any δ ∈ (0, 2), there exist C = C(δ) > 0 such that for ν sufficiently small,

(i)
∣

∣

∣
φν − C∗ν

1
2σ Φ0

∣

∣

∣

Σ
≤ Cν

2σ+1
2σ , (ii)

∣

∣

∣
|x|2φν − C∗ν

1
2σ |x|2Φ0

∣

∣

∣

L2
≤ Cν(1−

δ
2)

2σ+1
2σ ,

(iii)
∣

∣

∣
∂νφν −

1

2σ
C∗ν

1
2σ

−1Φ0

∣

∣

∣

Σ
≤ Cν

1
2σ .

Moreover if σ ≥ 1 and d = 2,

(iv)
∣

∣

∣
φν − C∗ν

1
2σ Φ0

∣

∣

∣

Σ2
≤ Cν

2σ+1
4σ .

Here we have put C∗ = |Φ0|
−σ+1

σ

L2σ+2 = (σ + 1)
d
4σ π

d
4 .
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Proof. The part (i) has already been proved in [10], we recall some ingredients used in [10]
which will be used for the proof of (ii) and (iii). If we decompose φν = aνΦ0 + yν with aν ∈ R

and (Φ0, yν)Σ = 0, then

|φν |Σ ≤ ν
1
2σC∗, |yν |Σ ≤ C(σ)ν

2σ+1
2σ , |aν | ≤ C(σ)ν

1
2σ . (6.3)

In order to prove (ii), we also use this decomposition. Let 1/θ + 1/θ′ = 1 so that, 2 ≤ θ(2 − δ)
and θ′ ≥ 1. It follows from Hölder inequality and Sobolev embedding,

||x|2yν |2L2 = ||x|2(φν − aνΦ0)|2L2

≤ C|φν − aνΦ0|2−δLθ(2−δ) ||x|4(φν − aνΦ0)
δ|Lθ′

≤ C(δ)|φν − aνΦ0|2−δΣ ≤ C(δ)ν(2−δ) 2σ+1
2σ .

The quantity ||x|4(φν−aνΦ0)
δ|Lθ′ is indeed bounded uniformly in ν from Proposition 1 (iv) (v).

This shows (ii).
Next we prove (iii). In the same way, we decompose ∂νφν = bνΦ0 + zν with bν ∈ R and

(Φ0, zν)Σ = 0. We insert this decomposition into the equation for ∂νφν , i.e.,

−∆∂νφν + |x|2∂νφν + (ν − λ0)∂νφν − (2σ + 1)φ2σ
ν ∂νφν = −φν ,

then we have

−∆(bνΦ0 + zν) + |x|2(bνΦ0 + zν) + (ν − λ0)(bνΦ0 + zν)

−(2σ + 1)(aνΦ0 + yν)
2σ(bνΦ0 + zν) = −(aνΦ0 + yν). (6.4)

Taking the L2 product with zν , we get

|zν |2Σ + (ν − λ0)|zν |2L2 − (yν , zν) + (2σ + 1)((aνΦ0 + yν)
2σbνΦ0, zν)

+(2σ + 1)((aνΦ0 + yν)
2σzν , zν). (6.5)

Since (Φ0, zν) = (Φ0, zν)Σ = 0, zν satisfies

((−∆ + |x|2)zν , zν) ≥ λ1|zν |2L2 ,

where λ1 is the second eigenvalue of −∆ + |x|2 and λ1 > λ0 = d ≥ 1. Thus,

|zν |2Σ ≥ (λ1 + 1)|zν |2L2 .

If ν is small enough, then ν − λ0 < 0 and so we have

|zν |2Σ − (λ0 − ν)|zν |2L2 ≥ |zν |2Σ − λ0 − ν

λ1 + 1
|zν |2Σ >

1 + ν

λ1 + 1
|zν |2Σ.

We also estimate the right hand side of (6.5) and we obtain, putting C0 = 1/(λ1 + 1),

C0|zν |2Σ ≤ |yν |L2 |zν |Σ + C(σ)C
−

σ(2σ+1)
σ+1

∗ |bν ||aν |2σ|zν |Σ + C(σ)C
− σ

σ+1
∗ |bν ||yν |2σL2σ+2 |zν |Σ

+C(σ)C
− 2σ2

σ+1
∗ |aν |2σ|zν |2Σ + C(σ)|yν |2σL2σ+2 |zν |2Σ.

Taking ν so small that C0 − C(σ)C
− 2σ2

σ+1
∗ |aν |2σ − C(σ)|yν |2σL2σ+2 < 1/2 (see (6.3)), and using the

order in ν of aν and yν , we obtain

|zν |Σ ≤ Cν
2σ+1
2σ + C(ν + ν2σ+1)|bν |. (6.6)

27



On the other hand, if we take the L2 product with Φ0 in Eq.(6.4),
(

ν − (2σ + 1)(φ2σ
ν Φ0,Φ0)

)

bν = −aν + (2σ + 1)(φ2σ
ν zν ,Φ0),

and it follows, using (6.6) and (6.3) together with (i) of Lemma 6.1, that

2σνbν(1 +O(ν)) = aν +O(ν
2σ+1
2σ

+1).

thus

bν =
1

2σ
C∗ν

1
2σ

−1 +O(ν
1
2σ ),

which completes the proof of (iii).
As for (iv), it suffices to estimate |∂αyν |L2 for all α with |α| = 2, and then to use (ii).

|∂αyν |2L2 = |∂α(φν − aνΦ0)|2L2 ≤ |∂(φν − aνΦ0)|L2 |∂α′

(φν − aνΦ0)|L2 ≤ Cν
2σ+1
2σ

with |α′| = 3 and C is uniformly bounded in ν; indeed (iv) of Proposition 1 allows us to have
φν ∈ C3

loc(R
2) if σ ≥ 1 with its norm uniformly bounded in ν for ν sufficiently small. We then

use the exponential decay of |∂α′

φν(x)| for large |x|, which may be proved if σ ≥ 1 repeating
the same proof of (v) of Proposition 1. �

6.2. Spectral Analysis. We investigate the spectral properties of the operator JLµ0 defined
by (1.15). Since a modification of the proof in [17] gives Ker(L−

µ0
) = {0}, and it is easily seen

that Ker(L+
µ0

) = {φµ0}, one can check, using Eq.(1.17) that

Kerg(JLµ0) = span

{(

∂µφµ0

0

)

,

(

0
φµ0

)}

. (6.7)

For the rest of the spectrum, we write the operator JLµ0 as follows;

JLµ0

(

0 L+
µ0

−L−
µ0

0

)

= JL−λ0 +

(

0 (λ0 + µ0) − φ2σ
µ0

−(λ0 + µ0) + (2σ + 1)φ2σ
µ0

0

)

where we have defined JL−λ0 in the introduction.

Now we consider the case d = 1. It is well known that the operator Ξ = −∆ + |x|2 − λ0 =

− d2

dx2 + x2 − 1 has purely discrete eigenvalues λ̃k = λk − λ0 = 2k (k ∈ N ∪ {0}), and the
corresponding eigenfunctions which are the Hermite functions Φk(x) (see e.g. [29]) form a
complete orthonormal system in L2(R).

For later use, we summarize some properties of the Hermite functions Φk(x). For any k ∈
N ∪ {0}, the relation

Φk+1(x) =
(

− d

dx
+ x
)

Φk(x) (6.8)

holds between Φk+1 and Φk. Thus we have
(

Φn,
( d

dx
+ x
)

Φk

)((

− d

dx
+ x
)

Φn,Φk

)

= (Φn+1,Φk) = 0, if n+ 1 6= k,

((

− d

dx
+ x
)

Φk,Φn

)

= (Φk+1,Φn) = 0, if k + 1 6= n.
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¿From these facts it may be verified that

(Φn, xΦk) = 0 if n+ 1 6= k and k + 1 6= n. (6.9)

It may also be seen that the spectrum of JL−λ0 consists only of the discrete eigenvalues

ξ±k (−λ0) = ±iλ̃k, k ∈ N ∪ {0},

and the (normalized) eigenfunction associated to ±iλ̃k for k 6= 0 may be choosen as

~Φ±
k =

1√
2

(

±iΦk

∓Φk

)

.

For k = 0,

Kerg(JL−λ0) = Kerg(L−λ0J) = span
{

~Φ−
0 ,
~Φ+

0

}

, with ~Φ−
0 =

(

0
Φ0

)

, ~Φ+
0 =

(

Φ0

0

)

, (6.10)

where ΞΦk = λ̃kΦk or equivalently (−∆ + |x|2)Φk = λkΦk (k ∈ N ∪ {0}) as mentioned above.

Remark 6.1. It may be proved, using a bifurcation argument as follows, that the spectrum of
JLµ0 consists only in pure imaginary discrete, simple eigenvalues (except 0) for µ0 sufficiently
close to −λ0. Indeed, fix k ∈ N ∪ {0} and consider for µ0 close to −λ0, the operators

Π±
k (JLµ0) = − 1

2πi

∫

Γ±

k

(JLµ0 − z)−1dz (6.11)

with the contour

Γ±
k = {z ∈ C, |z − ξ±k (−λ0)| = 1/2}.

It follows from Lemma of page 14 in Vol. VI of [25] that if

‖Π±
k (JLµ0) − Π±

k (JL−λ0)‖L(L̃2) < 1 (6.12)

for µ0 sufficiently close to −λ0, then

dimRanΠ±
k (JLµ0) = dimRanΠ±

k (JL−λ0). (6.13)

In order to prove (6.12), we remark that for any z ∈ ρ(JLµ0) ∩ ρ(JL−λ0),

‖(JLµ0 − z)−1 − (JL−λ0 − z)−1‖L(L̃2) ≤
∞
∑

n=1

‖JLµ0 − JL−λ0‖nL(L̃2)
‖(JL−λ0 − z)−1‖n+1

L(L̃2)
, (6.14)

and it follows from the spectral theorem that for any z ∈ Γ±
k ,

‖(JL−λ0 − z)−1‖L(L̃2) <
1

dist(z, σ(JL−λ0))
= 2.
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Using this, the sum of the series in the right hand side of (6.14) converges for µ0 sufficiently
close to −λ0, since we have for example,

‖JLµ0 − JL−λ0‖L(L̃2)

= sup
|ψ|

L̃2=1,

ψ=ψR+iψI∈L̃
2

{|((λ0 + µ0) − φ2σ
µ0

)ψI |2L2 + |((λ0 + µ0) + (2σ + 1)φ2σ
µ0

)ψR|2L2}1/2

≤ C(σ)(|λ0 + µ0| + |φµ0 |2σL∞) ≤ 1

8
, (6.15)

choosing µ0 close enough to −λ0. We have used Lemma 6.1 and Σ ⊂ L∞(R) so that |φµ0 |2σL∞

tends to 0 as µ0 tends to −λ0. Hence we obtain

‖Π±
k (JLµ0) − Π±

k (JL−λ0)‖L(L̃2) ≤ 1

2π

∫

Γ±

k

‖(JLµ0 − z)−1 − (JL−λ0 − z)−1‖L(L̃2)|dz|

≤ 1

π

∞
∑

n=1

(

1

4

)n

|Γ±
k | =

1

3
< 1,

where |Γ±
k | is the length of Γ±

k .
As a consequence, if d = 1, all the eigenvalues of JLµ0 , except the zero eigenvalue are discrete,

simple and on the imaginary axis since, otherwise, the bifurcation occurs toward two directions
due to the symmetry, but it is a contradiction to (6.13).

Remark 6.2. In dimension 2, denoting x = (x1, x2), we may write the operator as

−∆ + |x|2 − λ0 =
(

− d2

dx2
1

+ x2
1 − 1

)

⊗ I + I ⊗
(

− d2

dx2
2

+ x2
2 − 1

)

. (6.16)

It is known (see for example sections II.4 and VIII.10 of [25]) that the complete orthonormal
system in L2(R2) associated to the operator (6.16) is

{Ψj,l(x)}j,l≥0 = {Φj(x1)Φl(x2)}j,l≥0, (6.17)

and the m-th eigenvalue of the operator (6.16) is given, for m ∈ N ∪ {0}, by

λ̃j + λ̃l = 2m, with j, l,m ∈ N ∪ {0} and j + l = m.

The arguments of Remark 6.1 for the operator JL−λ0 are still valid in the case d = 2;
we can indeed use Lemma 6.1 (iv) and Σ2 ⊂ L∞(R2) for the smallness of |φµ0 |2σL∞ . However,
the bifurcation of pure imaginary eigenvalues outside the imaginary axis could occur since the
eigenvalues are not simple in 2D. To exclude this possibility, let P̄ be the orthogonal projection
on (Ker(L+

µ0
))⊥={φµ0}⊥. Since operators L+

µ0
and P̄L−

µ0
P̄ have no negative eigenvalue for µ0

close to −λ0, it follows from Corollary 1.1 in [13] that the bifurcation of eigenvalues cannot
happen outside the imaginary axis.
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6.3. Simplified modulation equations. Now the orthogonality conditions (2.5), (2.6), which
have been used to estimate the exit time τ ε in a convenient way, are not exactly the orthogonality
conditions to Kerg{JLµ0}. In order to slightly simplify the limit equations, we will now prove
that we can change these orthogonality conditions without changing the exit time τ ε.

Let Pµ0 be the spectral projection onto Kerg(JLµ0) defined by

Pµ0w = (∂µφµ0 , φµ0)
−1(wI , ∂µφµ0)

(

0
φµ0

)

+ (∂µφµ0 , φµ0)
−1(wR, φµ0)

(

∂µφµ0

0

)

(6.18)

for any w ∈ L2(Rd) with Rew = wR and Imw = wI . Set Qµ0 = I − Pµ0 and recall that η is the
solution of (5.1). Then

Qµ0

(

0
φµ0

)

= 0, d(Qµ0η) = JLµ0(Qµ0η)dt−Qµ0

(

0
|x|2φµ0

)

dW, Pµ0η = h(t)

(

0
φµ0

)

,

due to the orthogonality conditions (2.5), (2.6) satisfied by η. Here, h(t) satisfies the equation

dh = −ydt− L(φµ0)dW,

with L(φµ0) = (∂µφµ0 , φµ0)
−1(∂µφµ0 , |x|2φµ0) + z(t) and y(t), z(t) defined in (5.2).

We put

θ̃ε(t) = θε(t) + εh(t), µ̃ε(t) = µε(t),

εη̃ε(t, x) = εe−iεh(t)ηε(t, x) + e−iεh(t)φµε(t) − φµε(t).

Lemma 6.2. Let T > 0 fixed and h(t) be defined above. Then we have

lim
ε→0

E

(

sup
t∈[0,τε∧T ]

1

ε

∣

∣

∣
e−iεh(t)φµε(t) − φµε(t) + iεh(t)φµ0

∣

∣

∣

2

L2

)

= 0.

Proof. Note that h(t) is bounded in L4(Ω;L∞(0, T ;L2(Rd))) for any T > 0. Indeed, ηR is
bounded in L4(Ω;L∞(0, T ;L2(Rd))) by Lemma 5.3 (i) and E(supt≤T W (t)4) ≤ CT 2. It follows
from Taylor formula that

1

ε

∣

∣

∣
e−iεh(t)φµε(t) − φµε(t) + iεh(t)φµ0

∣

∣

∣

=
1

ε

∣

∣

∣
(e−iεh(t) − 1 + iεh(t))φµε(t) + iεh(t)(φµ0 − φµε(t))

∣

∣

∣

≤ 1

ε

(

|e−iεh(t) − 1 + iεh(t)||φµε(t)| + ε|h(t)||φµ0 − φµε(t)|
)

≤ 1

2
εh(t)2 + |h(t)||φµ0 − φµε(t)|,

the right hand side tends to zero as ε goes to zero in L2(Ω;L∞(0, τ ε ∧ T ;L2(Rd))) by (3.3),
(4.16) and Lemma 5.1 (ii). �

Thus letting
η̃(t, x) = η(t, x) − ih(t)φµ0 ,

we see that η̃ε(t, x) converges to η̃(t, x) as ε → 0, in probability, in L∞(0, T ;L2(Rd)), where
η̃ε(t, x) is defined by

uε(t, x) = eiθ̃
ε(t)(φµ̃ε(t) + εη̃ε(t, x)).
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Note that η̃ satisfies

Pµ0 η̃ = 0, η̃ = (I − Pµ0)η,

dη̃ = JLµ0 η̃dt−Qµ0

(

0
|x|2φµ0

)

dW, (6.19)

which is exactly the equation (2.7). This η̃ε(t, x) satisfies the conclusion of Theorem 2 with the

same exit time τ εα as that for ηε(t, x). The associated modulation parameters θ̃ε and µ̃ε satisfy
(2.9), (2.10) and (1.18), as follows from the results of Section 5.

6.4. Proof of Theorem 4. Finally we are in position to prove Theorem 4. We restrict here
to the one dimensional case, since the condition σ > 1 is needed. See Remark 6.3 for what can
be said in dimension two. Let us consider the projection in 1D, corresponding to µ0 = −λ0, P0

onto Ker(JL−λ0) defined by

P0w(wI ,Φ0)

(

0
Φ0

)

+ (wR,Φ0)

(

Φ0

0

)

for any w ∈ L2(Rd) with Rew = wR and Imw = wI .

Proof of Theorem 4. We obtain for any δ ∈ (0, 2), using Lemma 6.1 and Eq. (6.18), and
setting ν = µ0 + λ0 :

(I − Pµ0)

(

0
|x|2φµ0

)

= ν
1
2σC∗(I − P0)

(

0
|x|2Φ0

)

+ ν
1
σ Yν , (6.20)

for some Yν ∈ L̃2(Rd) satisfying |Yν |L̃2 ≤ C where C does not depend on ν.

Now we compute the power of each k-eigenmode of the process η̃ of (2.7). Noting that

η̃(t) =
∞
∑

k=0

η̃±k (t)~Φ±
k , η̃±k (t) = ((η̃(t), ~Φ±

k )),

we wish to compute the asymptotics as ν goes to zero of E(|η̃±k (t)|2). For this aim, we change
the time scale by setting

s = ν1/σt. (6.21)

Then Eq.(2.7) is written as

dη̃ = ν−
1
σ JLµ0 η̃ds− ν−

1
2σ (I − Pµ0)

(

0
|x|2φµ0

)

dW̃ (s), (6.22)

with the new standard Brownian motion W̃ (s) = ν1/2σW (ν−1/σs). By the definition of P0,

(I − P0)

(

0
|x|2Φ0

)(

0
|x|2Φ0 − (|x|2Φ0,Φ0)Φ0

)

.

Together with (6.20), we have

dη̃ = ν−
1
σ JL−λ0 η̃ds+ ν−

1
σBν η̃ds− C∗

(

0
|x|2Φ0 − |xΦ0|2L2Φ0

)

dW̃ (s) − ν
1
2σ YνdW̃ (s), (6.23)
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where

Bν =

(

0 ν − φ2σ
µ0

−ν + (2σ + 1)φ2σ
µ0

0

)

.

We take the L̃
2 product of Eq. (6.23) with ~Φ±

k . If k = 0, since λ̃0 = 0,

dη̃±0 = ν−
1
σ ((Bν η̃, ~Φ

±
0 ))ds− ν

1
2σ ((Yν , ~Φ

±
0 ))dW̃ (s).

Itô formula for |η̃±0 |2 leads to

d|η̃±0 |2 = 2ν−
1
σ Re

(

¯̃η±0 ((Bν η̃, ~Φ
±
0 ))
)

ds− 2ν
1
2σ Re

(

¯̃η±0 ((Yν , ~Φ
±
0 ))
)

dW̃ (s) + ν
1
σ |((Yν , ~Φ±

0 ))|2ds.
(6.24)

In the same way, noting that JL−λ0 = L−λ0J , we get for k ≥ 1,

dη̃±k = ∓iλ̃kν−1/ση̃±k (s)ds+ ν−1/σ((Bν η̃, ~Φ
±
k ))ds

−C∗√
2
(|x|2Φ0,∓Φk)dW̃ (s) − ν1/2σ((Yν , ~Φ

±
k ))dW̃ (s).

Then, again with the Itô formula,

d|η̃±k |2 =
1

2
C2
∗ (|x|2Φ0,Φk)

2ds (6.25)

+
√

2ν−
1
σ {(Im η̃,∓Φk) Re((Bν η̃, ~Φ

±
k )) − (Re η̃,±Φk) Im((Bν η̃, ~Φ

±
k ))}ds

+
√

2C∗ν
1
2σ (|x|2Φ0,∓Φk) Re((Yν , ~Φ

±
k ))ds+ ν

1
σ |Re((Yν , ~Φ

±
k ))|2ds

−C∗(Im η̃,∓Φk)(|x|2Φ0,∓Φk)dW̃ (s) +
√

2ν
1
2σ {(Re η̃,±Φk) Im((Yν , ~Φ

±
k ))

−(Im η̃,∓Φk) Re((Yν , ~Φ
±
k ))}dW̃ (s).

We recall that η̃(0) = 0. Note also that by (6.15) and Lemma 6.1 (i),

‖Bν‖L(L2) ≤ Cν

for some positive constant C. Hence, using Lemma 5.3 (i),

E

(√
2ν−

1
σ

∫ t

0

∣

∣

∣
(Im η̃,∓Φk) Re((Bν η̃, ~Φ

±
k )) − (Re η̃,±Φk) Im((Bν η̃, ~Φ

±
k ))
∣

∣

∣

)

ds

≤
√

2ν−
1
σ E

(

∫ t

0
‖Bν‖L(L2)|η̃(s)|2L2ds

)

≤ 2Cν1− 1
σ

∫ t

0
E

(

sup
s≤T

|η̃(s)|2L2

)

ds ≤ Cν1− 1
σ t.

Integrating Eqs (6.24) and (6.25) on [0, t ∧ T ] and taking the expectation, we obtain

E(|η̃±k (t)|2) =
1

2
C2
∗ (|x|2Φ0,∓Φk)

2t+O(νκt), if k ≥ 1,

E(|η̃±0 (t)|2) = O(νκt), (6.26)

where κ = min{ 1
2σ , 1 − 1

σ}. On the other hand, noting that for any k ≥ 1

(|x|2Φ0,Φk) =
1

2
(xΦ0,Φk+1) +

1

2
(Φ1, xΦk),

it follows from (6.9) that

(|x|2Φ0,Φk) = 0, except for k = 2, and (|x|2Φ0,Φ2) =
1

2
(xΦ1,Φ2). (6.27)
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Indeed, by (6.8), if k 6= 0, we get

(x2Φ0,Φk) = −(∂xΦ0, ∂xΦk) = −(xΦ0 − Φ1, xΦk − Φk+1)

= −(x2Φ0,Φk) + (xΦ0,Φk+1) + (Φ1, xΦk).

These computations finally lead to

E(|η̃±2 (t)|2) =
C2
∗

2
(xΦ1,Φ2)

2t+O(νκ0 t),

E(|η̃±k (t)|2) = O(νκ0 t) if k 6= 2.

This is the master equation in the case d = 1. Note that this does not mean anything if
σ = 1. Recall ν = λ0 + µ0. To complete the statement in Theorem 4, it suffices to remark that
(xΦ1,Φ2) = −1. �

Remark 6.3. In the case d = 2, the above arguments would work up to Eq.(6.26), setting (see
Eq. (6.17))

η̃(t) =
∞
∑

j,l=0

η̃±j,l(t)
~Ψ±
j,l, η̃±j,l(t) = ((η̃(t), ~Ψ±

j,l)),

provided that we could take σ > 1. We could also compute the quantity (|x|2Ψ0,0,Ψj,l) for
j + l = m and m ≥ 1. Indeed, by (6.17), and with x = (x1, x2), we have

(|x|2Ψ0,0,Ψj,l) = ((x2
1 + x2

2)Φ0(x1)Φ0(x2),Φl(x1)Φj(x2)) = δ0j(x
2
1Φ0,Φl)x1 + δ0l(x

2
2Φ0,Φj)x2

for j + l = m and m ≥ 1. Then, using (6.27),

(|x|2Ψ0,0,Ψj,l) =

{

1
2(x1Φ1,Φ2) if (j, l) ∈ {(0, 2), (2, 0)}
0, otherwise

As a consequence, we would obtain the following master equation (in the new time scale (6.21))
in 2D :

E(|η̃±j,l(s)|2) =
C2
∗

8
(x1Φ1,Φ2)

2s+O(νκs), if (j, l) ∈ {(0, 2), (2, 0)},

E(|η̃±j,l(s)|2) = O(νκs) if (j, l) /∈ {(0, 2), (2, 0)}.
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7. appendix

In this section we will prove the estimates in Lemmas 5.1 and 5.3. All the computations in
this section applying Itô formula may be justified with a similar method to the proof of Lemma
4.1. We begin with (i) of Lemma 5.1.
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Proof of Lemma 5.1 (i). Itô formula leads the equations

d|ηεR|2L2 + d|ηεI |2L2 = 4σ(ηεI , φ
2σ
µ0
ηεR)dt+ ||x|2φµε |2L2dt+ (zε)2|φµε |2L2dt+ 2zε|xφµε |2L2dt

−2aε(ηεR, ∂µφµε)dt+ (bε)2|∂µφµε |2L2dt− 2yε(ηεI , φµε)dt

+2(2σ + 1)(ηεI , (φ
2σ
µε − φ2σ

µ0
)ηεR)dt+ 2(ηεR, (φ

2σ
µ0

− φ2σ
µε)ηεI)dt

−2εzεbε(ηεI , ∂µφµε)dt− ε(ηεR, |x|4φµε)dt− ε(zε)2(ηεR, φµε)dt

−ε(bε)2(ηεR, ∂2
µφµε)dt− 2εbε(|x|2ηεI , ∂µφµε)dt+ 2ε(|x|4φµε , ηεR)dt

+2εzε(|x|2φµε , ηεR)dt+ 2ε(zε)2(φµε , ηεR)dt− 2ε(ηεR, h
ε
I)dt+ 2ε(ηεI , h

ε
R)dt

−2bε(ηεR, ∂µφµε)dW − 2(ηεI , |x|2φµε)dW − 2zε(ηεI , φµε)dW.

We note that

| − 2ε(ηεR, h
ε
I) + 2ε(ηεI , h

ε
R)| ≤ (ε|ηε|2(|φµε |2σ−1 + |εηε|2σ−1), |ηε|)

≤ |ηε|2L2 |εηε|L∞(|φµε |2σ−1
L∞ + |εηε|2σ−1

L∞ )

≤ C|ηε|2L2

where C depends only on α, σ, µ0 and moreover on N if d = 2 for t ≤ τ̃ ε ∧ T . It follows from
Eqs. (4.13) and (4.14) that a.s. for t ≤ τ̃ ε ∧ T , putting τ = t ∧ τ̃ ε,

|ηεR(t)|2L2 + |ηεI(t)|2L2 ≤ C

∫ τ

0
(1 + |ηεR(s)|2L2 + |ηεI(s)|2L2)ds+

∣

∣

∣

∫ τ

0
M(s)dW (s)

∣

∣

∣

with

|M(s)| ≤ C ′(1 + |ηεR(s)|L2 + |ηεI(s)|L2), a.s. for s ≤ τ.

Indeed we may use Proposition 1 (i), (iv), and (v). Taking the expectation of the supremum in
time and using a martingale inequality, we get

E

(

sup
t≤τ̃ε∧T

|ηε(t)|2L2

)

≤ CE

(

∫ τ̃ε∧T

0
sup

s≤τ̃ε∧T
(1 + |ηε(s)|2L2)

)

+ C ′
E

(

∫ τ̃ε∧T

0
(1 + |ηε(t)|2L2)dt

)1/2

≤ CE

(

∫ T

0
sup

s≤τ̃ε∧T
(1 + |ηε(s)|2L2)

)

+ C ′T 1/2
E

(

sup
t≤τ̃ε∧T

(1 + |ηε(t)|2L2)
)1/2

from which, by Gronwall inequality,

E( sup
t≤τ̃ε∧T

|ηε(t)|2L2) ≤ C1(T )

follows. �

Proof of Lemma 5.1 (ii). We apply Ito formula and we have

d|ηε(t)|4L2 = 2(|ηε(t)|2L2 , d|ηε(t)|2L2) + |2bε(ηεR, ∂µφµε) + 2(ηεI , |x|2φµε) + 2zε(ηεI , φµε)|2dt. (7.1)

We use the previous computations :

|ηε(t)|4L2 ≤ C

∫ τ

0
(1 + |ηε(t)|4L2)dt+

∣

∣

∣

∫ τ

0
M ′(s)dW (s)

∣

∣

∣

a.s. for t ≤ τ , with

|M ′(s)| ≤ C ′(1 + |ηε(s)|3L2), a.s. for s ≤ τ. (7.2)
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Then, integrating Eq. (7.1), taking the expectation and using Gronwall Lemma, we have

sup
t≤T

E

(

1l[0,τ̃ε)(t)|ηε(t)|4L2

)

≤ C(T ).

Hence,

E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

≤ C + C ′
E

(

sup
t≤τ̃ε∧T

|
∫ τ

0
M ′(s)dW (s)|

)

,

and by (7.2) and the martingale inequality given by Theorem 3.14 in [5], we have

E

(

sup
t≤τ̃ε∧T

|
∫ t∧τ

0
M ′(s)dW (s)|

)

≤ 3E

(

(

∫ T∧τ̃ε

0
(1 + |ηε(s)|6)ds)1/2

)

≤ 3T 1/2
E

(

sup
t≤τ̃ε∧T

(1 + |ηε(t)|3L2)
)

≤ 1

2
E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

+ C(T ),

where we have used Young inequality in the last inequality. Finally we obtain

E

(

sup
t≤τ̃ε∧T

|ηε(t)|4L2

)

≤ C(α, T ).

�

Proof of Lemma 5.2. Itô formula to (L−
µ0
ηεR, η

ε
R) + (L+

µ0
ηεI , η

ε
I) results in, taking account of

some compensations,

d((L−
µ0
ηεR, η

ε
R) + (L+

µ0
ηεI , η

ε
I))

−4σ(µε − µ0)(φ
2σ
µ0
ηεR, η

ε
I)dt+ 2(L−

µ0
ηεR, (φ

2σ
µ0

− φ2σ
µε)ηεI)dt

−2(2σ + 1)(L+
µ0
ηεI , (φ

2σ
µε − φ2σ

µ0
)ηεR)dt− 2aε(L−

µ0
ηεR, ∂µφµε)dt− 2yε(ηεI , L

+
µ0
φµε)dt

+(bε)2(L−
µ0

(∂µφµε), ∂µφµε)dt+ (L+
µ0

(|x|2φµε), |x|2φµε)dt+ 2zε(L+
µ0

(|x|2φµε), φµε)dt

+(zε)2(L+
µ0

(φµε), φµε)dt− 4σεyε(ηεR, η
ε
I)dt− ε(L−

µ0
ηεR, |x|4φµε)dt+ 4σεzε(φ2σ

µ0
ηεR, |x|2φµε)dt

+2σε(zε)2(φ2σ
µ0
ηεR, φµε)dt+ ε(zε)2(ηεR, L

+
µ0

(φµε))dt− ε(bε)2(ηεR, L
−
µ0

(∂2
µφµε))dt

−2ε(L−
µ0
ηεR, h

ε
I)dt+ 2ε(L+

µ0
ηεI , h

ε
R)dt− 2εbε(L−

µ0
(∂µφµε), |x|2ηεI)dt− 2εbεzε(L−

µ0
(∂µφµε), ηεI)dt

+2ε(|x|2L+
µ0

(|x|2φµε), ηεR)dt+ 2εzε(|x|2L+
µ0

(φµε), ηεR)dt+ 2σε2(|x|4φ2σ
µ0
ηεR, η

ε
R)dt

−(6 − 2d)ε2|xηεR|2L2dt+ 4σε2zε(φ2σ
µ0
ηεR, |x|2ηεR)dt+ 2σε2(zε)2(φ2σ

µ0
ηεR, η

ε
R)dt

−2σε2(|x|4φ2σ
µ0
ηεI , η

ε
I)dt+ (6 − 2d)ε2|xηεI |2L2dt− 4σε2zε(|x|2φ2σ

µ0
ηεI , η

ε
I)dt

−2σε2(zε)2(φ2σ
µ0
ηεI , η

ε
I)dt− 2bε(ηεR, L

−
µ0

(∂µφµε))dW − 2(ηεI , L
+
µ0

(|x|2φµε))dW

−2zε(ηεI , L
+
µ0
φµε)dW − 8ε(ηεR, x · ∇ηεI)dW − 4dε(ηεR, η

ε
I)dW

+4σε(φ2σ
µ0
ηεR, η

ε
I)dW − 4σεzε(φ2σ

µ0
ηεR, η

ε
I)dW (7.3)
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We set

D3(t) = −4σ(µε − µ0)(φ
2σ
µ0
ηεR, η

ε
I) − 4σεyε(ηεR, η

ε
I)

−2aε(L−
µ0
ηεR, ∂µφµε) − 2yε(ηεI , L

+
µ0
φµε)

D4(t) = −2ε(L−
µ0
ηεR, h

ε
I) + 2ε(L+

µ0
ηεI , h

ε
R)

D5(t) = the rest of drift terms

M2(t) = martingale parts

and we have a.s., for t ≤ τ̃ ε ∧ T, putting τ = t ∧ τ̃ ε,

(L−
µ0
ηεR(t), ηεR(t)) + (L+

µ0
ηεI(t), η

ε
I(t)) =

∫ τ

0
(D3(s) +D4(s) +D5(s))ds+

∫ τ

0
M2(s)dW (s).

Since |εηε(s, ·)|Σ ≤ C(α, µ0) for s ≤ τ ε ∧ T,

E

(

sup
t≤τ̃ε∧T

∫ t

0
|D3(s)|ds

)

≤ C(σ, µ0, α)
(

E

(

∫ T

0
sup

s≤τ̃ε∧T
|ηε(s)|2Σ

)

+ T
)

E

(

sup
t≤τε∧T

∫ t

0
|D5(s)|ds

)

≤ C(σ, µ0, α)T.

A use of martingale inequality leads to

E

(

sup
t≤τ̃ε∧T

∣

∣

∣

∫ t

0
M2(s)dW (s)

∣

∣

∣

)

≤ 24εT 1/2
E

(

sup
t≤τ̃ε∧T

|ηε(t)|2Σ
)

+C(µ0, α, T )E
(

sup
t≤τ̃ε∧T

|ηε(t)|2L2

)

+ C(T, µ0).

Therefore, if we get

E

(

sup
t≤τ̃ε∧T

∫ t

0
|D4(s)|ds

)

≤ C(σ, µ0, α,N)E
(

∫ T

0
sup

s≤τ̃ε∧T
|ηε(s)|2Σ

)

, (7.4)

noting that for some ν > 0

(L−
µ0
ηεR, η

ε
R) + (L+

µ0
ηεI , η

ε
I) ≥ ν(|ηεR|2Σ + |ηεI |2Σ),

the estimate

E

(

sup
t≤τ̃ε∧T

|ηε(t)|2Σ
)

≤ C(α, µ0, T,N)

will hold, similarly to the proof of Lemma 5.1 (i), choosing ε small enough. Then, using again
Itô formula for |ηε(t)|4Σ, since

d|ηε|2Σ = { the right hand side of (7.3)} + (1 − µ0)d|ηε|2L2 + 2(2σ + 1)(φ2σ
µ0
ηεR, dη

ε
R)dt

+
(

φ2σ
µ0

(−bε∂µφµε + ε|x|2ηεI + εzεηεI),−bε∂µφµε + ε|x|2ηεI + εzεηεI

)

dt+ 2(φ2σ
µ0
ηεI , dη

ε
I)dt

+
(

φ2σ
µ0

(|x|2φµε + zεφµε + ε|x|2ηεR + εzεηεR), |x|2φµε + zεφµε + ε|x|2ηεR + εzεηεR

)

dt,

we may write, for t ≤ τ̃ ε ∧ T = τ ,

|ηε(t)|4Σ ≤ C

∫ τ∧t

0
(1 + |ηε(s)|4Σ)ds+

∣

∣

∣

∫ τ∧t

0
A(s)dW (s)

∣

∣

∣
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with

|A(s)| ≤ C ′(1 + |ηε|2L2)|ηε|2Σ + εC ′′|ηε|4Σ, a.s. for s ≤ τ.

We then conclude using Lemma 5.1 (ii), and ε small enough.
We now study in details D4(t) = −2ε(L−

µ0
ηεR, h

ε
I) + 2ε(L+

µ0
ηεI , h

ε
R); this is divided into

D4(t) = −2ε(∇ηεR,∇hεI) + 2ε(∇ηεI ,∇hεR) − 2ε(|x|2ηεR, hεI) + 2ε(|x|2ηεI , hεR)

−2εµ0(η
ε
R, h

ε
I) + 2εµ0(η

ε
I , h

ε
R) + 2ε(2σ + 1)(φ2σ

µ0
ηεR, h

ε
I) − 2ε(φ2σ

µ0
ηεI , h

ε
R).

In order to estimate these terms in d = 2, we need the stopping time τ̄ εN which allows us to
make use of the Sobolev embedding Σ2 ⊂ L∞(R2). The case d = 1 is easier, so we give here a
proof for d = 2. Using |εηε(s, ·)|Σ ≤ C(µ0, α) for t ≤ τ ε ∧ T, and

|εhε|L2 ≤ C|εηε|2σL4σ+4 |ηε|L2σ+2 ≤ C(α, µ0, σ)|ηε|Σ, t ≤ τ ε ∧ T,

we have

| − 2εµ0(η
ε
R, h

ε
I) + 2εµ0(η

ε
I , h

ε
R) + 2ε(2σ + 1)(φ2σ

µ0
ηεR, h

ε
I) − 2ε(φ2σ

µ0
ηεI , h

ε
R)|

≤ C(µ0, σ)|ηε|L2 |εhε|L2 ≤ C(µ0, σ, α)|ηε|L2 |ηε|Σ, t ≤ τ ε ∧ T.

In the same way, we obtain also

| − 2ε(|x|2ηεR, hεI) + 2ε(|x|2ηεI , hεR)| ≤ C(µ0, α, σ)|ηε|2Σ, t ≤ τ ε.
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We perform the calculations of |2ε(∇ηεI ,∇hεR)| since the other term is treated similarly. We
develop here the derivative of hεR:

∇hεR =
2σ

ε2

∫ 1

0
(1 − s)(σ − 1)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×
{

2(φµε + sεηεR)(∇φµε + sε∇ηεR) + 2s2ε2ηεI∇ηεI
}

×
{

2((φµε + sεηεR)εηεR + s(εηεI)
2)εηεR + ((εηεR)2 + (εηεI)

2)(φµε + sεηεR)
}

ds

+
2σ

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−1

×
{

2
(

(φµε + sεηεR)εηεR + s(εηεI)
2
)

ε∇ηεR

+2
(

(∇φµε + sε∇ηεR)εηεR + (φµε + sεηεR)ε∇ηεR + 2sε2ηεI∇ηεI
)

εηεR

+((εηεR)2 + (εηεI)
2)(sε∇ηεR + ∇φµε) + (2ε2ηεR∇ηεR + 2ε2ηεI∇ηεI)(φµε + sεηεR)

}

ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)(σ − 2)[(φµε + sεηεR)2 + (sεηεI)

2]σ−3

×
{

2(φµε + sεηεR)(∇φµε + sε∇ηεR) + 2s2ε2ηεI∇ηεI
}

×
(

(φµε + sεηεR)εηεR + s(εηεI)
2
)2

(φµε + sεηεR)ds

+
4σ(σ − 1)

ε2

∫ 1

0
(1 − s)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×
{(

(φµε + sεηεR)εηεR + s(εηεI)
2
)2

(∇φµε + sε∇ηεR) + 2((φµε + sεηεR)εηεR + s(εηεI)
2)

((φµε + sεηεR)ε∇ηεR + (∇φµε + sε∇ηεR)εηεR + 2sε2ηεI∇ηεI)(φµε + sεηεR)
}

ds.

We estimate the term, as an example,
2σ

ε2
|(∇ηεI , AεηεR)| where

A =

∫ 1

0
(1 − s)(σ − 1)[(φµε + sεηεR)2 + (sεηεI)

2]σ−2

×
{

2(φµε + sεηεR)(∇φµε + sε∇ηεR) + 2s2ε2ηεI∇ηεI
}

×2((φµε + sεηεR)εηεR + 2s(εηεI)
2)ds.
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It is majorized for t ≤ τ ε ∧ τ̄ εN ∧ T , assuming σ ≥ 1, as follows;

2σ

ε2
|(∇ηεI , AεηεR)| ≤ C(|φµε |L∞ + |∇φµε |L∞)|φµε |2(σ−1)

L∞ |∇ηε|L2 |ηε|L2

+C(|φµε |L∞ + |∇φµε |L∞)

∫

Rd

|∇ηε||εηε|2(σ−1)|ηε|

+
C

ε
|φµε |2(σ−1)

L∞

∫

Rd

|∇ηε||εηε||ε∇ηε| + C

ε

∫

Rd

|∇ηε||εηε|2σ−1|ε∇ηε|

+
C

ε
|φµε |2(σ−1)

L∞

∫

Rd

|∇ηε||εηε|2 +
C

ε

∫

Rd

|∇ηε||εηε|2σ

≤ C(µ0, α,N)(|∇ηε|L2 |ηε|L2 + |∇ηε|2L2),

where in the last inequality we have used

|εηε|L∞ ≤ C|εηε|Σ2 ≤ N, t ≤ τ ε ∧ τ̄ εN ∧ T.
We remark that in case of d = 1 we can simply benefit from

|εηε|L∞ ≤ C|εηε|Σ ≤ C(µ0, α), t ≤ τ ε ∧ T.
Other terms are also estimated as above and then we may prove (7.4) where we replace τ ε

with τ ε ∧ τ̄ εN in d = 2. �

Proof of Lemma 5.3 (i). This estimate may be proved similarly to the proof of Lemma 5.1
(i), it is sufficient to mention the following; we have, recalling that η satisfies Eq. (5.1),

d(|ηR|2L2 + |ηI |2L2) = 4σ(ηR, φ
2σ
µ0
ηI)dt− 2(ηI , |x|2φµ0)dW + ||x|2φµ0 |2L2dt−

|xφµ0 |4L2

|φµ0 |2L2

dt

by Itô formula. �

Proof of Lemma 5.3 (ii). We apply Itô formula to (L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI), then we have

d((L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI)) = (L+

µ0
(|x|2φµ0), |x|2φµ0)dt− 2(ηI , L

+
µ0

(|x|2φµ0))dW.

Therefore,

E

(

sup
t≤T

((L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI))

)

≤ CT 1/2
(

E(sup
t≤T

|ηI(t)|2L2)
)1/2

+ C ′T

≤ ν

2
E(sup

t≤T
|ηI(t)|2L2) + CT

where ν is given by

(L−
µ0
ηR, ηR) + (L+

µ0
ηI , ηI) ≥ ν(|ηR|2Σ + |ηI |2Σ),

which holds since ηR and ηI satisfy (ηR, φµ0) = 0 and (ηI , φµ0) = 0. Accordingly, we obtain

E

(

sup
t≤T

(|ηR(t)|2Σ + |ηI(t)|2Σ)
)

≤ CT.

Note that this constant C depends only on µ0, ν. Hence the right hand side is bounded linearly
in T which shows (2.8). �
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Proof of Lemma 5.3 (iii). Itô formula for |(1 + |x|4)η|2L2 implies

d|(1 + |x|4)ηR|2L2 = 2((1 + |x|4)ηR, L+
µ0
ηI)dt,

d|(1 + |x|4)ηI |2L2 = −2((1 + |x|4)ηI , L−
µ0
ηR)dt+ 2

(L−
µ0
ηR, φµ0)

|φµ0 |2L2

(φµ0 , (1 + |x|4)ηI)dt

−2((1 + |x|4)ηI , |x|2φµ0)dW + 2
((1 + |x|4)ηI , φµ0)

|φµ0 |2L2 |xφµ0 |2L2

dW

+
∣

∣

∣
(1 + |x|4)1/2(−|x|2φµ0 +

|xφµ0 |2L2φµ0

|φµ0 |2L2

)
∣

∣

∣

2

L2
dt.

We here note that

((1 + |x|4)ηR, L+
µ0
ηI) − ((1 + |x|4)ηI , L−

µ0
ηR)

= −4(2 + d)(|x|2ηR, ηI) − 8(|x|2x · ∇ηR, ηI) + 2σ((1 + |x|4)ηI , φ2σ
µ0
ηR).

Hence,

d|(1 + |x|4)η|2L2 = D(t)dt+M(t)dW (t)

with

|D(t)| ≤ C|(1 + |x|4)η|2L2 + C ′(1 + |η|2Σ)

and

|M(t)| ≤ C|(1 + |x|4)ηI |L2 + C ′.

Similarly as above, Gronwall lemma, a martingale inequality and the estimates proved in Lemma
5.3 (ii) allow to conclude

E(sup
t≤T

|(1 + |x|4)η(t)|2L2) ≤ C(T ).

�
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