Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression

Résumé

In this paper, we consider supervised learning problems such as logistic regression and study the stochastic gradient method with averaging, in the usual stochastic approximation setting where observations are used only once. We show that for self-concordant loss functions, after $n$ iterations, with a constant step-size proportional to $1/R^2 \sqrt{n}$ where $n$ is the number of observations and $R$ is the maximum norm of the observations, the convergence rate is always of order $O(1/\sqrt{n})$, and improves to $O(R^2 / \mu n)$ where $\mu$ is the lowest eigenvalue of the Hessian at the global optimum (when this eigenvalue is strictly positive). Since $\mu$ does not need to be known in advance, this shows that averaged stochastic gradient is adaptive to unknown local strong convexity of the objective function.
Fichier principal
Vignette du fichier
twilight_final.pdf (247.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00804431 , version 1 (25-03-2013)
hal-00804431 , version 2 (26-10-2013)
hal-00804431 , version 3 (15-03-2014)

Identifiants

Citer

Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. 2013. ⟨hal-00804431v1⟩
437 Consultations
332 Téléchargements

Altmetric

Partager

More