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Abstract

In this paper, we consider supervised learning problems such as logistic regression and study
the stochastic gradient method with averaging, in the usual stochastic approximation setting
where observations are used only once. We show that for self-concordant loss functions, after n
iterations, with a constant step-size proportional to 1/R2

√

n where n is the number of observa-
tions and R is the maximum norm of the observations, the convergence rate is always of order
O(1/

√

n), and improves to O(R2/µn) where µ is the lowest eigenvalue of the Hessian at the
global optimum (when this eigenvalue is strictly positive). Since µ does not need to be known
in advance, this shows that averaged stochastic gradient is adaptive to unknown local strong
convexity of the objective function.

1 Introduction

The minimization of an objective function which is only available through unbiased estimates of the
function values or its gradients is a key methodological problem in many disciplines. Its analysis
has been attacked mainly in three communities: stochastic approximation [1, 2, 3, 4, 5, 6], optimiza-
tion [7, 8], and machine learning [9, 10, 11, 12, 13, 14, 15]. The main algorithms which have emerged
are stochastic gradient descent (a.k.a. Robbins-Monro algorithm), as well as a simple modification
where iterates are averaged (a.k.a. Polyak-Ruppert averaging).

The convergence rates of these algorithms depends primarily on the potential strong convexity of
the objective function [11, 12, 13, 14, 15]. For µ-strongly convex functions, the optimal rate of
convergence of function values is O(1/n) while for convex functions the optimal rate is O(1/

√
n) [20,

21]. For smooth functions, averaged stochastic gradient with step sizes proportional to 1/
√
n achieves

them up to logarithmic terms [16].

Convex optimization problems coming from supervised machine learning are typically of the form
f(θ) = E

[

ℓ(y, 〈θ, x〉)
]

, where ℓ(y, 〈θ, x〉) is the loss between the response y and the prediction 〈θ, x〉.
They may or may not have strongly convex objective functions. This most often depends on (a)
the correlations between covariates x, and (b) the strong convexity of the loss function ℓ. The
logistic loss u 7→ log(1 + e−u) is not strongly convex unless restricted to a compact set; moreover,
in the sequential observation model, the correlations are not known at training time. Therefore,
many theoretical results based on strong convexity to do not apply. The goal of this paper is
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to show that with proper assumptions, namely self-concordance, one can readily obtain favorable
theoretical guarantees for logistic regression, namely a rate of the form O(R2/µn) where µ is the
lowest eigenvalue of the Hessian at the global optimum, without any exponentially increasing constant
factor.

Another goal of this paper is to design an algorithm and provide an analysis that benefit from
hidden local strong convexity without requiring to know the local strong convexity constant in
advance. In smooth situations, the results of [16] implies that the averaged stochastic gradient
method with step sizes of the form O(n−1/2) is adaptive to the strong convexity of the problem.
However the dependence in µ in the strongly convex case is of the form O(µ−2n−1), which is sub-
optimal. Moreover, the final rate is rather complicated, notably because all possible step-sizes are
considered. Finally, it does not apply here because even in low-correlation settings, the objective
function of logistic regression cannot be globally strongly convex.

In this paper, we provide an analysis for stochastic gradient with averaging for generalized linear
models such as logistic regression, with a step size proportional to (R2

√
n)−1 where R is the radius of

the data and n the number of observations, showing such adaptivity. In particular, we show that the
algorithm can adapt to the local strong-convexity constant, i.e., the lowest eigenvalue of the Hessian
at the optimum. The analysis is done for a finite horizon N and a constant step size decreasing
in N as 1/R2

√
N , since the analysis is then slightly easier, though (a) a decaying stepsize could

be considered as well, and (b) it could be classically extended to varying step-sizes by a doubling
trick [17].

2 Stochastic approximation for generalized linear models

In this section, we present the assumptions our work relies on, as well as related work.

2.1 Assumptions

Throughout this paper, we make the following assumptions. We consider a function f defined on
a Hilbert space H, and an increasing family of σ-fields (Fn)n>1; we assume that we are given a
deterministic θ0 ∈ H, and a sequence of functions fn : H → R, for n > 1. We make the following
assumptions:

(A1) Convexity and differentiability of f : f is convex and three-times differentiable.

(A2) Generalized self-concordance of f [18]: for all θ1, θ2 ∈ H, the function ϕ : t 7→ f
[

θ1 +

t(θ2 − θ1)
]

satisfies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t).

(A3) Attained global minimum: f has a global minimum attained at θ∗ ∈ H.

(A4) Lipschitz-continuity of fn and f : all gradients of f and fn are bounded by R, that is, for
all θ ∈ H,

‖f ′(θ)‖ 6 R and ∀n > 1, ‖f ′
n(θ)‖ 6 R almost surely.

(A5) Adapted measurability: ∀n > 1, fn is Fn-measurable.

(A6) Unbiased gradients: ∀n > 1, E(f ′
n(θn−1)|Fn−1) = f ′(θn−1).

(A7) Stochastic gradient recursion: ∀n > 1, θn = θn−1 − γnf
′
n(θn−1).
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Among the seven assumptions above, the non-standard one is (A2): the notion of self-concordance
is an important tool for convex optimization and in particular the study of Newton’s method. It
corresponds to having the third derivative bounded by the 3

2 -th power of the second derivative. For
machine learning, [18] has generalized the notion of self-concordance by removing the 3

2 -th power,
so that it is applicable to cost functions arising from probabilistic modeling, as shown below.

Our set of assumptions corresponds to the following examples (with i.i.d. data, and Fn equal to the
σ-field generated by x1, y1, . . . , xn, yn):

– Logistic regression: fn(θ) = log(1+exp(−yn〈xn, θ〉)), with data xn uniformly almost surely
bounded by R and yn ∈ {−1, 1}. Note that this includes other binary classification losses,
such as fn(θ) = −yn〈xn, θ〉+

√

1 + 〈xn, θ〉2.

– Generalized linear models with uniformly bounded features: fn(θ) = −〈θ,Φ(xn, yn)〉+
log

∫

h(y) exp
(

〈θ,Φ(xn, y)〉
)

dy, with Φ(xn, y) almost surely bounded in norm by R, for all
observations xn and all potential responses y. This includes multinomial regression and con-
ditional random fields [19].

– Robust regression: we may use fn(θ) = ϕ(yn − 〈xn, θ〉), with ϕ(t) = log cosh t = log et+e−t

2 ,
with a similar boundedness assumption on xn.

2.2 Related work

Non-strongly-convex functions. When only convexity of the objective function is assumed,
then several authors [7, 8, 13, 14, 15] have shown that using a step-size proportional to 1/

√
n, together

with some form of averaging, leads to the minimax optimal rate of O(1/
√
n) [20, 21]. Without

averaging, the known convergences rates are suboptimal, that is, averaging is key to obtaining the
optimal rate [16]. Note that the smoothness of the loss does not change the rate, but may help to
obtain better constants, with the potential use of acceleration [22].

The compactness of the domain is often used within the algorithm (by using orthogonal projections)
and within the analysis (in particular to optimize the step size and obtain high-probability bounds).
In this paper, we do not make such compactness assumptions, since in a machine learning context,
the available bound would be loose and hurt practical performance.

Another difference between several analyses is the use of decaying step sizes of the form γn ∝ 1/
√
n

vs. the use of a constant step size of the form γ ∝ 1/
√
N for a finite known horizon N of iterations.

The use of a “doubling trick” as done by [17] for strongly convex optimization, where a constant step
size is used for iterations between 2p and 2p+1, with a constant that is proportional to 1/

√
2p, would

allow to obtain an anytime algorithm from a finite horizon one. In order to simplify our analysis,
we only consider a finite horizon N and a constant step-size that will be proportional to 1/

√
N .

Strongly-convex functions. When the function is µ-strongly convex, i.e., θ 7→ f(θ) − µ
2 ‖θ‖2 is

convex, there are essentially two approaches to obtaining the minimax-optimal rate O(1/µn) [20, 21]:
(a) using a step size proportional to 1/µn with averaging for non-smooth problems [7, 8, 13, 14, 15, 23]
or a step size proportional to 1/(R2+nµ), also with averaging, for smooth problems, where R2 is the
smoothness constant of the loss of a single observation [24]; (b) for smooth problems, using longer
step-sizes proportional to 1/nα for α ∈ (1/2, 1) with averaging [4, 5, 16].

Note that the “historical” step size, i.e., of the form C/n where C is larger than 1/µ, leads, without
averaging to a convergence rate of O(1/µ2n) [6, 16], hence leads to a worse dependence on µ.
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The solution (a) requires to have a good estimate of the strong-convexity constant µ, while the
second solution (b) does not require to know such estimate and leads to a convergence rate achieving
asymptotically the Cramer-Rao lower bound [4]. Thus, this last solution is adaptive to unknown
(but positive) amount of strong convexity. However, unless we take the limiting setting α = 1/2, it
is not adaptive to lack of strong convexity. While the non-asymptotic analysis of [16] already gives
a convergence rate in that situation, the bound is rather complicated and also has a suboptimal
dependence on µ. One goal of this paper is to consider a less general result, but more compact (note
also that the analysis of [16] only applies for globally strongly convex functions, see below).

Finally, note that unless we restrict the support, the objective function for logistic regression cannot
be globally strongly convex (since the Hessian tends to zero when ‖θ‖ tends to infinity). Another
goal of the paper is to show that stochastic gradient descent with averaging is adaptive to the local
strong convexity constant, i.e., the lowest eigenvalue of the Hessian of f at the global optimum,
without any exponential terms in RD (which would be present if a compact domain of diameter D
was imposed and traditional analyses were performed).

Adaptivity to unknown constants. The desirable property of adaptivity to the difficulty of an
optimization problem has also been studied in several settings. Gradient descent with constant step
size is for example naturally adaptive to the strong convexity of the problem (see, e.g., [25]). In
the stochastic context, [26] provides another strategy than averaging with longer step sizes, but for
uniform convexity constants.

3 Non-strongly convex analysis

In this section, we study the averaged stochastic gradient method in the non-strongly convex case,
i.e., without any (global or local) strong convexity assumptions. We first recall existing results in
Section 3.1, that bound the expectation of the excess risk leading to a bound in O(1/

√
n). We

then show using martingale moment inequalities how all higher-order moments may be bounded in
Section 3.2, still with a rate of O(1/

√
n). However, in Section 3.3, we consider the convergence of

the squared gradient, with now a rate of O(1/n). This last result is key to obtaining the adaptivity
to local strong convexity in Section 4.

3.1 Existing results

In this section, we review existing results for Lipschitz-continuous non-strongly convex problems [7,
8, 13, 14, 15]. Note that smoothness is not needed here. We consider a constant step size γn = γ > 0,

for all n > 1. We denote by θ̄n = 1
n

∑n−1
k=0 θk the averaged iterate.

We prove the following proposition, which provides a bound on the expectation of f(θ̄n) − f(θ∗)
that decays at rate O(γ + 1/γn), hence the usual choice γ ∝ 1/

√
n:

Proposition 1 With constant step size equal to γ, for any n > 0, we have:

Ef

(

1

n

n
∑

k=1

θk−1

)

− f(θ∗) +
1

2γn
E‖θn − θ∗‖2 6

1

2γn
‖θ0 − θ∗‖2 +

γ

2
R2. (1)

Proof. We have the following recursion, obtained from the Lipschitz-continuity of fn:

‖θn − θ∗‖2 = ‖θn−1 − θ∗‖2 − 2γ〈θn−1 − θ∗, f
′
n(θn−1)〉+ γ2‖f ′

n(θn−1)‖2

6 ‖θn−1 − θ∗‖2 − 2γ〈θn−1 − θ∗, f
′(θn−1)〉+ γ2R2 +Mn,
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with
Mn = −2γ〈θn−1 − θ∗, f

′
n(θn−1)− f ′(θn−1)〉.

We thus get, using the classical result from convexity f(θn−1)− f(θ∗) 6 〈θn−1 − θ∗, f ′(θn−1)〉:

2γ
[

f(θn−1)− f(θ∗)
]

6 ‖θn−1 − θ∗‖2 − ‖θn − θ∗‖2 + γ2R2 +Mn. (2)

Summing over integers less than n, this implies:

1

n

n−1
∑

k=0

f(θk)− f(θ∗) +
1

2γn
‖θn − θ∗‖2 6

1

2γn
‖θ0 − θ∗‖2 +

γ

2
R2 +

1

2γn

n
∑

k=1

Mk.

We get the desired result by taking expectation in the last inequality, and using the expectation
EMk = E(E(Mk|Fk−1)) = 0 and f

(

1
n

∑n−1
k=0 θk

)

6 1
n

∑n−1
k=0 f(θk).

The following corollary considers a specific choice of the step size (note that the bound is only true
for the last iteration):

Corollary 1 With constant step size equal to γ = 1
2R2

√
N
, we have:

∀n ∈ {1, . . . , N}, E‖θn − θ∗‖2 6 ‖θ0 − θ∗‖2 +
1

4R2
, (3)

Ef

(

1

N

N
∑

k=1

θk−1

)

− f(θ∗) 6
R2

√
N

‖θ0 − θ∗‖2 +
1

4
√
N
. (4)

Note that if ‖θ0 − θ∗‖2 was known, then a better step-size would be γ = ‖θ0−θ∗‖
R
√
N

, leading to a

convergence rate proportional to R‖θ0−θ∗‖√
N

. However, this requires an estimate (simply an upper-

bound) of ‖θ0 − θ∗‖2, which is typically not available.

We are going to improve this result in several ways:

– All moments of ‖θn − θ∗‖2 and f(θ̄n) − f(θ∗) will be bounded, leading to a sub-Gaussian
behavior. Note that we do not assume that the iterates are restricted to a predefined bounded
set (which is the usual assumption made to derive tail bounds [8, 27]).

– We are going to show that the squared norm of the gradient at θ̄n = 1
n

∑n
k=1 θk−1 converges at

rateO(n−1), even in the non-strongly convex case. This will allow us to derive finer convergence
rates in presence of local strong convexity in Section 4.

3.2 Higher-order bound

In this section, we prove higher-order bounds (see the proof in Appendix C, which is based on taking
powers of the inequality in Eq. (2) and using martingale moment inequalities), both for any constant
step-sizes and then for the specific choice γ = 1

2R2
√
N
.

Proposition 2 With constant step size equal to γ, for any n > 0 and integer p ∈ {1, . . . , ⌊n/4⌋},
we have:

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)p

6
(

3‖θ0 − θ∗‖2 + 20npγ2R2
)p
. (5)
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Corollary 2 With constant step size equal to γ = 1
2R2

√
N
, for any integer p > 1, we have:

E‖θN − θ∗‖2p 6
(

3‖θ0 − θ∗‖2 + 5pR−2
)p
, (6)

E
[

f(θ̄N )− f(θ∗)
]p

6
(

3
R2

√
N

‖θ0 − θ∗‖2 +
5√
N

)p
. (7)

Having abound on all moments allows immediately to derive large deviation bounds in the same two
cases (by applying Lemma 1 from Appendix A):

Proposition 3 With constant step size equal to γ, for any n > 0 and t > 0, we have:

P

(

f(θ̄n)− f(θ∗) > 30γR2t+
3‖θ0 − θ∗‖2

γn

)

6 2 exp(−t),

P

(

‖θn − θ∗‖2 > 60nγ2R2t+ 6‖θ0 − θ∗‖2
)

6 2 exp(−t).

Corollary 3 With constant step size equal to γ = 1
2R2

√
N
, for any t > 0 we have:

P

(

f(θ̄N )− f(θ∗) >
15t√
N

+
6R2‖θ0 − θ∗‖2√

N

)

6 2 exp(−t),

P

(

‖θN − θ∗‖2 > 15R−2t+ 6‖θ0 − θ∗‖2
)

6 2 exp(−t).

We can make the following observations:

– The iterates θn and θ̄n do not necessarily converge to θ∗ (note that θ∗ may not be unique in
general anyway).

– Given that (E[f(θ̄n)− f(θ∗)]p)1/p is affine in p, we obtain a subexponential behavior, i.e., tail
bounds similar to an exponential distribution.

– The proof of Prop. 2 is rather technical and makes heavy use of martingale moment inequalities.

– The constants in the bounds of of Prop. 2 (and thus other results as well) could clearly be
improved. In particular, we have, for p = 1, 2, 3, 4 (see proof in Appendix E):

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)

6 ‖θ0 − θ∗‖2 + nγ2R2,

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)2

6
(

‖θ0 − θ∗‖2 + 3nγ2R2
)2
,

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)3

6
(

‖θ0 − θ∗‖2 + 6nγ2R2
)3
,

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)4

6
(

‖θ0 − θ∗‖2 + 9nγ2R2
)4
.

3.3 Convergence of gradients

In this section, we prove higher-order bounds on the convergence of the gradient, with rate O(n−1)
for ‖f ′(θ̄n)‖2:
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Proposition 4 With constant step size equal to γ, for any n > 0 and integer p ∈ {1, . . . , ⌊n/4⌋},
we have:
(

E

∥

∥

∥

∥

f ′
(

1

n

n
∑

k=1

θk−1

)∥

∥

∥

∥

2p)1/2p

6
R√
n

[

10
√
p+40R2γp

√
n+

3

γ
√
n
‖θ0− θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖

]

. (8)

Corollary 4 With constant step size equal to γ = 1
2R2

√
N
, for any integer p ∈ {1, . . . , ⌊N/4⌋}, we

have:

(

E

∥

∥

∥

∥

f ′
(

1

N

N
∑

k=1

θk−1

)∥

∥

∥

∥

2p)1/2p

6
R√
N

[

10
√
p+ 20p+ 6R2‖θ0 − θ∗‖2 + 4R‖θ0 − θ∗‖

]

. (9)

We can make the following observations:

– The squared norm of the gradient ‖f ′(θ̄n)‖2 converges at rate O(n−1).

– Given that (E‖f ′(θ̄n)‖2p)1/2p is affine in p, we obtain a subexponential behavior for ‖f ′(θ̄n)‖,
i.e., tail bounds similar to an exponential distribution.

– The proof of Prop. 4 makes use of the self-concordance assumption (that allows to upperbound
deviations of gradients by deviations of function values) and of the proof technique of [4].

– The various terms may be improved for small p. In particular, we have, for p = 1, 2:

(

E

∥

∥

∥

∥

f ′
(

1

n

n
∑

k=1

θk−1

)
∥

∥

∥

∥

2)1/2

6
R√
n

[

3 + 2γ
√
nR2 +

2

γ
√
nR2

R‖θ0 − θ∗‖+
1

γ
√
nR2

R2‖θ0 − θ∗‖2
]

,

(

E

∥

∥

∥

∥

f ′
(

1

n

n
∑

k=1

θk−1

)
∥

∥

∥

∥

4)1/4

6
R√
n

[

5 + 6γ
√
nR2 +

2

γ
√
nR2

R‖θ0 − θ∗‖+
1

γ
√
nR2

R2‖θ0 − θ∗‖2
]

.

4 Self-concordance analysis

In the previous section, we have shown that ‖f ′(θ̄n)‖2 is of order O(n−1). If the function f was
strongly convex with constant µ > 0, this would immediately lead to the bound f(θ̄n) − f(θ∗) 6
1
2µ‖f ′(θ̄n)‖2, of order O(µ−1n−1). However, because of the Lipschitz-continuity of f on the full
Hilbert space H, it cannot be strongly convex. In this section, we show how the self-concordance
assumption may be used to obtain the exact same behavior, but with µ replaced by the local strong
convexity constant.

The required property is summarized in the following proposition about (generalized) self-concordant
function (see proof in Appendix B.1):

Proposition 5 Let f be a convex three-times differentiable function from H to R, such that for all
θ1, θ2 ∈ H, the function ϕ : t 7→ f

[

θ1 + t(θ2 − θ1)
]

satifies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t).
Let θ∗ be a global minimizer of f and µ the lowest eigenvalue of f ′′(θ∗), which is assumed strictly
positive.

If
‖f ′(θ)‖R

µ
6

3

4
, then ‖θ − θ∗‖2 6 4

‖f ′(θ)‖2
µ2

and f(θ)− f(θ∗) 6 2
‖f ′(θ)‖2

µ
.

We may now use this proposition for the averaged stochastic gradient. For simplicity, we only
consider the step-size γ = 1

2R2
√
N
, and the last iterate:
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Proposition 6 Assume γ = 1
2R2

√
N
. Let µ > 0 be the lowest eigenvalue of the Hessian of f at the

unique global optimum θ∗. Then:

Ef(θ̄N )− f(θ∗) 6
R2

Nµ

(

5R‖θ0 − θ∗‖+ 15

)4

,

E
∥

∥θ̄N − θ∗
∥

∥

2
6

R2

Nµ2

(

5R‖θ0 − θ∗‖+ 20

)4

.

We can make the following observations:

– The proof relies on Prop. 5 and requires a control of the probability that ‖f ′(θ̄N )‖R
µ 6 3

4 , which
is obtained from Prop. 4.

– We conjecture a bound of the form
(

R2

Nµ (�R‖θ0 − θ∗‖ +△√
p)4

)p
for the p-th order moment

of f(θ̄N )− f(θ∗).

– The key elements in the previous proposition are that (a) the constant µ is the local convex-
ity constant, and (b) the step-size does not depend on that constant µ, hence the claimed
adaptivity.

– The bounds are only better than the non-strongly-convex bounds from Prop. 1, when the
Hessian lowest eigenvalue is large enough, i.e., µR2

√
N larger than a fixed constant.

5 Conclusion

In this paper, we have provided a novel analysis of averaged stochastic gradient for logistic regression
and related problems. The key aspects of our result are (a) the adaptivity to local strong convexity
provided by averaging and (b) the use of self-concordance to obtain a simple bound that does not
involve a term which is exponential in R‖θ0 − θ∗‖, which could be obtained by constraining the
domain of the iterates.

Our results could be extended in several ways: (a) with a finite and known horizon N , we considered
a constant step-size proportional to 1/R2

√
N ; it thus seems natural to study the decaying step

size γn = O(1/R2
√
n), which should, up to logarithmic terms, lead to similar results (and thus

likely provide a solution to a a recently posed open problem for online logistic regression [28]); (b)
an alternative would be to consider a doubling trick where the step-sizes are piecewise constant;
Finally, (c) it may be possible to consider other assumptions, such as exp-concavity [17] or uniform
convexity [26], to derive similar or improved results.
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A Probability lemmas

In this appendix, we prove lemmas relating bounds on moments to tail bounds, with the traditional
use of Markov’s inequality.

Lemma 1 Let X be a non-negative random variable such that for some positive constants A and
B, and all p ∈ {1, . . . , n},

EXp 6 (A+Bp)p.

Then, if t 6 n
2 ,

P(X > 3Bt+ 2A) 6 2 exp(−t).

Proof. We have, by Markov’s inequality, for any p ∈ {1, . . . , n}:

P(X > 2Bp+ 2A) 6
EXp

(2Bp+ 2A)p
6

(A+Bp)p

(2A+ 2Bp)p
6 exp(− log(2)p).

For u ∈ [1, n], we consider p = ⌊u⌋, so that

P(X > 2Bu+ 2A) 6 P(X > 2Bp+ 2A) 6 exp(− log(2)p) 6 2 exp(− log(2)u).

We take t = log(2)u and use 2/ log 2 6 3. This is thus valid if t 6 n
2 .

Lemma 2 Let X be a non-negative random variable such that for some positive constants A, B and
C, and for all p ∈ {1, . . . , n},

EXp
6 (A

√
p+Bp+ C)2p.

Then, if t 6 n,
P(X > (2A

√
t+ 2Bt+ 2C)2) 6 4 exp(−t).

Proof. We have, by Markov’s inequality, for any p ∈ {1, . . . , n}:

P(X > (2A
√
p+ 2Bp+ 2C)2) 6

EXp

(2A
√
p+ 2Bp+ 2C)2p

6
(A

√
p+Bp+ C)2p

(2A
√
p+ 2Bp+ 2C)2p

6 exp(− log(4)p)

For u ∈ [1, n], we consider p = ⌊u⌋, so that

P(X > (2A
√
u+ 2Bu+2C)2) 6 P(X > (2A

√
u+2Bu+2C)2) 6 exp(− log(2)p) 6 4 exp(− log(4)u)

We take t = log(4)u and use log 4 > 1. This is thus valid if t 6 n.

B Self-concordance properties

In this appendix, we show two lemmas regarding our generalized notion of self-concordance, as well
as Prop. 5. For more details, see [18] and references therein.

Lemma 3 Let ϕ : [0, 1] → R a convex function such that for some S > 0, ∀t ∈ [0, 1], |ϕ′′′(t)| 6
Sϕ′′(t). Assume ϕ′(0) = 0, ϕ′′(0) > 0. Then:

ϕ′(1)

ϕ′′(0)
S > 1− e−S and ϕ(1) 6 ϕ(0) +

ϕ′(1)2

ϕ′′(0)
(1 + S).
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Moreover, if α = ϕ′(1)S
ϕ′′(0) < 1, then ϕ(1) 6 ϕ(0) +

ϕ′(1)2

ϕ′′(0)

1

α
log

1

1− α
. If in addition α 6 3

4 , then

ϕ(1) 6 ϕ(0) + 2ϕ′(1)2

ϕ′′(0) and ϕ′′(0) 6 2ϕ′(1).

Proof. By self-concordance, we obtain that the derivative of u 7→ logϕ′′(u) is lower-bounded
by −S. By integrating between 0 and t ∈ [0, 1], we get

logϕ′′(t)− logϕ′′(0) > −St , i.e., ϕ′′(t) > ϕ′′(0)e−St,

and by integrating between 0 and 1, we obtain (note that ϕ′(0) = 0):

ϕ′(1) > ϕ′′(0)
1− e−S

S
. (10)

We then get (with a first inequality from convexity of ϕ, and the last inequality from eS > 1 + S):

ϕ(1)− ϕ(0) 6 ϕ′(1) 6 ϕ′(1)
ϕ′(1)

ϕ′′(0)

S

1− e−S
=
ϕ′(1)2

ϕ′′(0)

(

S +
S

eS − 1

)

6
ϕ′(1)2

ϕ′′(0)
(1 + S).

Eq. (10) implies that α > 1− e−S , which implies, if α < 1, S 6 log 1
1−α . This implies that

ϕ(1)− ϕ(0) 6 ϕ′(1)
ϕ′(1)

ϕ′′(0)

S

1− e−S
6
ϕ′(1)2

ϕ′′(0)

1

α
log

1

1− α
,

using the monotinicity of S 7→ S
1−e−S . Finally the last bounds are a consequence of S

α 6 1
α log 1

1−α 6

2, which is valid for α 6 3
4 .

Lemma 4 Let f be a convex three-times differentiable function from H to R, such that for all
θ1, θ2 ∈ H, the function ϕ : t 7→ f

[

θ1 + t(θ2 − θ1)
]

satifies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t). For
any θ1, θ2 ∈ H, we have:

∥

∥f ′(θ1)− f ′(θ2)− f ′′(θ2)(θ2 − θ1)
∥

∥ 6 R
[

f(θ1)− f(θ2)− 〈f ′(θ2), θ2 − θ1〉
]

.

Proof. For a given z ∈ H of unit norm, let ϕ(t) =
〈

z, f ′(θ2+t(θ1−θ2)
)

−f ′(θ2)−tf ′′(θ2)(θ2−θ1)
〉

and ψ(t) = R
[

f(θ2 + t(θ1 − θ2)) − f(θ2) − t〈f ′(θ2), θ2 − θ1〉
]

. We have ϕ(0) = ψ(0) = 0 and
ϕ′(0) = ψ′(0) = 0. Moreover, we have ϕ′′(t) 6 ψ′′(t) (using the same reasoning as in the proofs
of [18]). We thus have ϕ(1) 6 ψ(1), which leads to the desired result by maximizing with respect
to z.

B.1 Proof of Prop. 5

Define ϕ : t 7→ f
[

θ∗ + t(θ − θ∗)
]

− f(θ∗). We have: ϕ(0) = ϕ′(0) = 0, 0 6 ϕ′(1) = 〈f ′(θ), θ − θ∗〉 6
‖f ′(θ)‖‖θ − θ∗‖, ϕ′′(0) = 〈θ − θ∗, f ′′(θ∗)(θ − θ∗)〉 > µ‖θ − θ∗‖2, and ϕ(t) > 0 for all t ∈ [0, 1], and
ϕ′′′(t) 6 R‖θ − θ∗‖ϕ′′(t) for all t ∈ [0, 1], i.e., S = R‖θ − θ∗‖. Lemma 3 leads to the desired result,

with α = ϕ′(1)S
ϕ′′(0) 6

‖f ′(θ)‖R
µ . Note that we also have, for all θ ∈ H,

f(θ)− f(θ∗) 6
(

1 +R‖θ − θ∗‖
)‖f ′(θ)‖2

µ
and ‖θ − θ∗‖ 6

(

1 +R‖θ − θ∗‖
)‖f ′(θ)‖

µ
.

10



C Proof of Prop. 2

We consider a direct proof based on taking powers of the inequality in Eq. (2), and then using the
appropriate martingale properties.

C.1 Derivation of recursion

We have the recursion:

2γ
[

f(θn−1)− f(θ∗)
]

+ ‖θn − θ∗‖2 6 ‖θn−1 − θ∗‖2 + γ2R2 +Mn,

with
Mn = −2γ〈θn−1 − θ∗, f

′
n(θn−1)− f ′(θn−1)〉.

This leads to

2γnf

(

1

n

n
∑

k=1

θk−1

)

− 2γnf(θ∗) + ‖θn − θ∗‖2 6 An,

with An = ‖θ0−θ∗‖2+nγ2R2+
∑n

k=1Mk. Note that E(Mk|Fk−1) = 0 and |Mk| 6 4γR‖θk−1−θ∗‖ 6

4γRA
1/2
k−1 almost surely. This leads to, by using the binomial expansion formula:

Ap
n 6

(

An−1 + γ2R2 +Mn

)p

=

p
∑

k=0

(

p

k

)

(

An−1 + γ2R2
)p−k

Mk
n

6
(

An−1 + γ2R2
)p

+
(

An−1 + γ2R2
)p−1

Mn +

p
∑

k=2

(

p

k

)

(

An−1 + γ2R2
)p−k(

4γRA
1/2
n−1

)k
.

This leads to (using E(Mn|Fn−1) = 0 and upper bounding γ2R2 by 4γ2R2):

E
[

Ap
n

∣

∣Fn−1

]

6
(

An−1 + 4γ2R2
)p

+

p
∑

k=2

(

p

k

)

(

An−1 + 4γ2R2
)p−k(

4γRA
1/2
n−1

)k

=
(

An−1 + 4γ2R2 + 4γRA
1/2
n−1

)p − 4γRp
(

An−1 + 4γ2R2
)p−1

A
1/2
n−1

6
(

A
1/2
n−1 + 2γR

)2p − 4γRp
(

An−1 + 4γ2R2
)p−1

A
1/2
n−1

=

2p
∑

k=0

(

2p

k

)

A
k/2
n−1(2γR)

2p−k − 4γRpA
1/2
n−1

p−1
∑

k=0

(

p− 1

k

)

Ak
n−1(2γR)

2(p−1−k)

=

2p
∑

k=0

A
k/2
n−1(2γR)

2p−kCk,

with

C2q =

(

2p

2q

)

for q ∈ {0, . . . , p},

C2q+1 =

(

2p

2q + 1

)

− 2p

(

p− 1

q

)

for q ∈ {0, . . . , p− 1}.

In particular, C0 = 1, C2p = 1, C1 = 0 and C2p−1 =
(

2p
2p−1

)

− 2p
(

p−1
p−1

)

= 0.
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We have, for q ∈ {1, . . . , p− 2},

C2q+1
2q + 1

2p− 2q − 1
6

(

2p

2q + 1

)

2q + 1

2p− 2q − 1

=
(2p)!

(2q + 1)!(2p− 2q − 1)!

2q + 1

2p− 2q − 1

=
(2p)!

(2q)!(2p− 2q)!

2p− 2q

2p− 2q − 1
=

(

2p

2q

)

2p− 2q

2p− 2q − 1
.

For q = p−2, we obtain C2q+1
2q+1

2p−2q−1 6 C2q
4
3 , while for q 6 p−3, we obtain C2q+1

2q+1
2p−2q−1 6 C2q

6
5 .

Moreover, for q ∈ {1, . . . , p− 2},

C2q+1
2p− 2q − 1

2q + 1
6

(

2p

2q + 1

)

2p− 2q − 1

2q + 1

=
(2p)!

(2q + 1)!(2p− 2q − 1)!

2p− 2q − 1

2q + 1

=
(2p)!

(2q + 2)!(2p− 2q − 2)!

2q + 2

2q + 1
=

(

2p

2q + 2

)

2q + 2

2q + 1
.

For q = 1, we obtain C2q+1
2p−2q−1

2q+1 6 C2q+2
4
3 , while for q > 2, we obtain C2q+1

2p−2q−1
2q+1 6 C2q+2

6
5 .

We have moreover

C2q+1A
q+1/2
n−1 (2γR)2p−2q−1

= C2q+1A
q
n−1(2γR)

2p−2q−2A
1/2
n−1(2γR)

6 C2q+1A
q
n−1(2γR)

2p−2q−2 1

2

[

2q + 1

2p− 2q − 1
(2γR)2 +

2p− 2q − 1

2q + 1
An−1

]

A
1/2
n−1(2γR)

=
1

2
C2q+1

2p− 2q − 1

2q + 1
Aq+1

n−1(2γR)
2p−2q−2 +

1

2
C2q+1

2q + 1

2p− 2q − 1
Aq

n−1(2γR)
2p−2q.

By combining all elements, we get that the terms indexed by 2q + 1 are bounded by the terms
indexed by 2q + 2 and 2q. All terms with q ∈ {2, . . . , p− 3} are expanded with constants 3

5 , while
for q = 1 and q = p− 2, this is 2

3 . Overall each even term receives a contribution which is less than
max{ 6

5 ,
3
5 + 2

3 ,
2
3} = 19

15 . This leads to

p−2
∑

q=1

C2q+1A
q+1/2
n−1 (2γR)2p−2q−1 6

19

15

p−1
∑

q=0

C2qA
q
n−1(2γR)

2p−2q,

leading to the recursion that will allow us to derive our result:

E
[

Ap
n

∣

∣Fn−1

]

6 Ap
n−1 +

34

15

p−1
∑

q=0

(

2p

2q

)

Aq
n−1(2γR)

2p−2q. (11)

C.2 First bound

In this section, we derive an almost sure bound that will be valid for small n. Since ‖θn − θ∗‖ 6

‖θn−1 − θ∗‖ + γR almost surely, we have ‖θn − θ∗‖ 6 ‖θ0 − θ∗‖ + nγR for all n > 0. This in turn
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implies that

An 6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR

n
∑

k=1

‖θk−1 − θ∗‖

An 6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR

n
∑

k=1

[

‖θ0 − θ∗‖+ (k − 1)γR
]

6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γnR‖θ0 − θ∗‖+ 2γ2R2n2

6 ‖θ0 − θ∗‖2 + nγ2R2 + 2γ2n2R2 + 2‖θ0 − θ∗‖2 + 2γ2R2n2

6 3‖θ0 − θ∗‖2 + 5nγ2R2 almost surely. (12)

C.3 Proof by induction

We now proceed by induction on p. If we assume that EAq
k 6

(

3‖θ0 − θ∗‖2 + kqγ2R2A
)q

for q < p
and a certain A (which we will take to be equal to 20). We first note that if n 6 4p, then from
Eq. (12), we have

EAp
n

6
(

3‖θ0 − θ∗‖2 + 5n2γ2R2
)p

6
(

3‖θ0 − θ∗‖2 + 20npγ2R2
)p
.

Thus, we only need to consider n > 4p. We then get from Eq. (11):

E‖θn − θ∗‖2p 6 ‖θ0 − θ∗‖2p +
34

15

n−1
∑

k=0

p−1
∑

q=0

(

2p

2q

)

EAq
k(2γR)

2p−2q

6 ‖θ0 − θ∗‖2p +
34

15

n−1
∑

k=0

p−1
∑

q=0

(

2p

2q

)

(

3‖θ0 − θ∗‖2 + kqγ2R2A
)q
(2γR)2p−2q

using the induction hypothesis,

= ‖θ0 − θ∗‖2p +
34

15

p−1
∑

q=0

(

2p

2q

)

(2γR)2p−2q
n−1
∑

k=0

(

3‖θ0 − θ∗‖2 + kqγ2R2A
)q

6 ‖θ0 − θ∗‖2p +
34

15

p−1
∑

q=0

(

2p

2q

)

(2γR)2p−2q

q
∑

j=0

3j‖θ0 − θ∗‖2j
(

q

j

)

(

qγ2R2A
)q−j nq−j+1

q − j + 1

using
n−1
∑

k=0

kα 6
nα+1

α+ 1
for any α > 0,

= ‖θ0 − θ∗‖2p +
34

15

p−1
∑

j=0

3j‖θ0 − θ∗‖2j(4γ2R2n)p−j

p−1
∑

q=j

(

2p

2q

)(

q

j

)

(qA

4

)q−j nq−p+1

q − j + 1
.

We want to show that it is less than

(

3‖θ0 − θ∗‖2 + kpγ2R2A
)p

= 3p‖θ0 − θ∗‖2p +
p−1
∑

j=0

3j‖θ0 − θ∗‖2j(γ2R2n)p−j(Ap)p−j

(

p

j

)

.

By comparing all terms in ‖θ0 − θ∗‖2j , this is true as soon as for all j ∈ {0, . . . , p− 1},

34

15

p−1
∑

q=j

(

2p

2q

)(

q

j

)

(

qA/4
)q−j 1

q − j + 1

1

np−q−1
6 (Ap/4)p−j

(

p

j

)
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⇔ 34

15

p−1−j
∑

k=0

(

2p

2k + 2

)(

p− 1− k

j

)

(

(p− 1− k)A/4
)p−1−k−j 1

p− k − j

1

nk
6 (Ap/4)p−j

(

p

j

)

,

This is implied by (if n > 4p):

136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

(

p−1−k
j

)

(

p
j

)

(

p− 1− k
)p−1−k−j 1

p− k − j
6 1

⇐ 136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

(p− 1− k) · · · (p− k − j + 1)

p · · · (p− j + 1)

(

p− 1− k
)p−1−k−j

6 1

⇐ 136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

(p− j) · · · (p− k − j + 1)

p · · · (p− k)

(

p− 1− k
)p−1−k−j

6 1.

We have

136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

(p− j) · · · (p− k − j + 1)

p · · · (p− k)

(

p− 1− k
)p−1−k−j

6
136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

pk

p · · · (p− k)
pp−1−k−j

=
136

15

p−1−j
∑

k=0

A−1−kp−2k−1

(

2p

2k + 2

)

1

p · · · (p− k)

=
136

15

p−1−j
∑

k=0

A−1−k p−2k−1

(2k + 2)!

2p(2p− 1) · · · (2p− 2k − 1)

p · · · (p− k)

=
136

15

p−1−j
∑

k=0

A−1−k p
−2k−122k+2

(2k + 2)!

p(p− 1/2) · · · (p− k − 1/2)

p · · · (p− k)

6
136

15

p−1−j
∑

k=0

A−1−k 22k+2

(2k + 2)!

6
136

15

+∞
∑

k=0

(2/
√
A)2k+2

(2k + 2)!
=

136

15

[

cosh(2/
√
A)− 1

]

< 1 if A 6 20.

We thus get the desired result

EAp
n 6

(

3‖θ0 − θ∗‖2 + 20npγ2R2
)p
.

D Proof of Prop. 4

The proof is organized in two parts: first show a bound on 1
n

∑n
k=1 f

′(θk−1), then relate it to

f ′
(

1
n

∑n
k=1 θk−1

)

using self-concordance.
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D.1 Bound on 1

n

∑

n

k=1
f ′(θk−1)

We have, following [4, 16]:

f ′
n(θn−1) =

1

γ
(θn−1 − θn),

which implies, by summing over all integers between 1 and n:

1

n

n
∑

k=1

f ′(θk−1) =
1

n

n
∑

k=1

[

f ′(θk−1)− f ′
k(θk−1)

]

+
1

γn
(θ0 − θ∗) +

1

γn
(θ∗ − θn).

We denote Xk = 1
n

[

f ′(θk−1) − f ′
k(θk−1)

]

. We have: ‖Xk‖ 6 2R
n and E(Xk|Fk−1) = 0, with

(
∑n

k=1 E(‖Xk‖2|Fk−1)
)1/2

6 2R√
n
. We may thus apply the Burkholder-Rosenthal-Pinelis inequal-

ity [29, Theorem 4.1], and get:

E

[∥

∥

∥

∥

1

n

n
∑

k=1

[

f ′(θk−1)− f ′
k(θk−1)

]

∥

∥

∥

∥

2p]1/2p

6 2p
2R

n
+
√

2p
2R

n1/2
.

This leads to, with p 6 ⌊n/4⌋:

E

[
∥

∥

∥

∥

1

n

n
∑

k=1

f ′(θk−1)

∥

∥

∥

∥

2p]1/2p

6 2p
2R

n
+
√

2p
2R

n1/2
+

1

γn
‖θ0 − θ∗‖+

[ 1

γn

√

‖θ0 − θ∗‖2 + 18npγ2R2
]

6 2p
2R

n
+
√

2p
2R

n1/2
+

1

γn
‖θ0 − θ∗‖+

[ 1

γn
‖θ0 − θ∗‖+

1

γn

√

18npγR
]

6
√
p
2R√
n
+
√

2p
2R

n1/2
+

2

γn
‖θ0 − θ∗‖+

1

γn

√

18npγR using
√
p 6

√
n/2,

6
√
p
R√
n

[

2 + 2
√
2 +

√
18
]

+
2

γn
‖θ0 − θ∗‖

6 10
√
p
R√
n
+

2

γn
‖θ0 − θ∗‖. (13)

D.2 Using self-concordance

Using the self-concordance property of Lemma 4, we obtain:

∥

∥

∥

∥

1

n

n
∑

k=1

f ′(θk−1)− f ′
(

1

n

n
∑

k=1

θk−1

)∥

∥

∥

∥

=

∥

∥

∥

∥

1

n

n
∑

k=1

[

f ′(θk−1)− f ′(θ∗)− f ′′(θ∗)(θk−1 − θ∗)
]

− f ′
(

1

n

n
∑

k=1

θk−1

)

+ f ′(θ∗) + f ′′(θ∗)

(

1

n

n
∑

k=1

θk−1 − θ∗

)∥

∥

∥

∥

6
R

n

n
∑

k=1

[

f(θk−1)− f(θ∗)− 〈f ′(θ∗), θk−1 − θ∗〉
]

+R

[

f

(

1

n

n
∑

k=1

θk−1

)

− f(θ∗) +

〈

f ′(θ∗),
1

n

n
∑

k=1

θk−1 − θ∗

〉]

6 2R

(

1

n

n
∑

k=1

f(θk−1)− f(θ∗)

)

.
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This leads to, using Prop. 2:

(

E

∥

∥

∥

∥

1

n

n
∑

k=1

f ′(θk−1)− f ′
(

1

n

n
∑

k=1

θk−1

)∥

∥

∥

∥

2p)1/2p

6 2R

(

E

[

1

n

n
∑

k=1

f(θk−1)− f(θ∗)

]2p)1/2p

6
R

γn

(

3‖θ0 − θ∗‖2 + 40npγ2R2

)

. (14)

Summing Eq. (13) and Eq. (14) leads to the desired result.

E Results for small p

In Prop. 2, we may replace the bound 3‖θ0− θ∗‖2+20npγ2R2 with a bound with a smaller constant
for p = 1, 2, 3, 4:

E

[

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
]2

6
(

‖θ0 − θ∗‖2 + 3nγ2R2
)2

E

[

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
]3

6
(

‖θ0 − θ∗‖2 + 6nγ2R2
)3

E

[

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
]4

6
(

‖θ0 − θ∗‖2 + 9nγ2R2
)4
.
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This is done using the same proof principle but finer derivations, as follows. We denote γ2R2 = a
and ‖θ − θ∗‖2 = b. We have

EAn 6 a+ nb,

EA2
n 6 A2

n−1 + 2An−1b+ b2 + 4bAn−1

6 a2 + 6b[na+
n2

2
b] + b2n

= a2 + 6bna+ b2(n+ 3n2)

6 (a+ 3nb)2,

EA3
n 6 (A3

n−1 + 3A2
n−1b+ 3An−1b

2 + b3) + 3(An−1 + b)4bAn−1 + 8b3/2A
3/2
n−1

= (A3
n−1 + 3A2

n−1b+ 3An−1b
2 + b3) + 3(An−1 + b)4bAn−1 + 4bAn−1[2b

/2A
1/2
n−1]

6 (A3
n−1 + 3A2

n−1b+ 3An−1b
2 + b3) + 3(An−1 + b)4bAn−1 + 4bAn−1[

An−1

4
+ 4b]

= A3
n−1 +A2

n−1b[3 + 12 + 1] +An−1b
2[3 + 12 + 16] + b3

= A3
n−1 + 16A2

n−1b+ 31An−1b
2 + b3

6 a3 + 16b[na2 + 3bn2a+ b2(n2/2 + n3)] + 31b2[na+ bn2/2] + nb3

= a3 + 16nba2 + b2a[48n2 + 31n] + b3[8n2 + 16n3 + 31/2n2 + n]

= a3 + 16nba2 + b2a[48n2 + 31n] + b3[47/2n2 + 16n3 + n]

6 (a+ 6nb)3,

EA4
n 6 A4

n−1 + 4A3
n−1b+ 6A2

n−1b
2 + 4An−1b

3 + b4

+6[A2
n−1 + 2An−1b+ b2]4bAn−1 + 4[An−1 + b]4bAn−1[2b

1/2A
1/2
n−1]

6 A4
n−1 + 4A3

n−1b+ 6A2
n−1b

2 + 4An−1b
3 + b4

+6[A2
n−1 + 2An−1b+ b2]4bAn−1 + 4[An−1 + b]4bAn−1[

An−1

2
+ 2b] + 16b2A2

n−1

= A4
n−1 +A3

n−1b[4 + 24 + 8] +A2
n−1b

2[6 + 48 + 16 + 8 + 32] +An−1b
3[4 + 24 + 32] + b4

= A4
n−1 + 36A3

n−1b+ 110A2
n−1b

2 + 60An−1b
3 + b4

6 a4 + 36b[na3 + 8n2ba2 + b2a(48n3/3 + 31n2/2) + b3(47/6n3 + 4n4 + n2/2]

+110b2[na2 + 3bn2a+ b2(n2/2 + n3)]

+nb4 + 60b3[na+ bn2/2]

6 a4 + 36bna3 + b2n2a2[36× 8 + 110] + b3n3a[36× 48/3 + 36× 31/2 + 330 + 60]

+b4n4[6× 47 + 36× 4 + 18 + 55 + 110 + 1 + 30]

6 (a+ 9nb)4.

F Proof of Prop. 6

The proof follows from Prop. 5 applied to θ̄n. We thus need to provide a control on the probability
that ‖f ′(θ̄n)‖ >

3µ
4R .
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F.1 Tail bound for ‖f ′(θ̄n)‖

We derive a large deviation bound, as a consequence of Prop. 4 and Lemma 2:

P

(

∥

∥f ′(θ̄n)‖ >
2R√
n

[

10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖

])

6 4 exp(−t),

which is valid as long as t 6 n (condition from Lemma 2). It is valid for all t, because for all
gradients are bounded by R.

F.2 Bounding the function values

From Prop. 5, if ‖f ′(θ̄n)‖ >
3µ
4R , then f(θ̄n)− f(θ∗) 6 2 ‖f ′(θ̄n)‖2

µ . This will allow us to derive a tail

bound for f(θ̄n)− f(θ∗), for sufficiently small deviations. For larger deviations, we will use Prop. 2.

We consider the event

At =

{

∥

∥f ′(θ̄n)‖ 6
2R√
n

[

10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖

]}

.

If we have:

10
√
t+ 40R2γt

√
n 6

2

3

3µ

4R

√
n

2R
=
µ
√
n

4R2

and
3

γ
√
n
‖θ0 − θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖ 6

1

3

3µ

4R

√
n

2R
=
µ
√
n

8R2
,

then, by Prop. 5, we have:

At ⊂
{

f(θ̄n)− f(θ∗) 6
8R2

µn

[

10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖

]2}

⊂
{

f(θ̄n)− f(θ∗) 6
8R2

µn

[

10
√
t+ 20�t+△

]2}

,

with � = 2γR2
√
n and △ = 3

γ
√
n
‖θ0 − θ∗‖2 + 2

γR
√
n
‖θ0 − θ∗‖.

This implies that for all t > 0, such that 10
√
t+ 20�t 6 µ

√
n

4R2 ,

P

(

f(θ̄n)− f(θ∗) >
8R2

µn

[

10
√
t+ 20�t+△

]2)

6 4e−t.

Moreover, we have for all t > 0 (from Prop. 2):

P

(

f(θ̄n)− f(θ∗) > 30γR2t+
3‖θ0 − θ∗‖2

γn

)

6 2 exp(−t).

We may now use the last two inequalities to bound the expectation E[f(θ̄n)− f(θ∗)].
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We have:

E
[

f(θ̄n)− f(θ∗)
]

=

∫ +∞

0

P
[

f(θ̄n)− f(θ∗) > u
]

du

=

∫ △2 8R2

µn

0

P
[

f(θ̄n)− f(θ∗) > u
]

du +

∫ 8R2

µn

(

µ
√

n

4R2
+△

)

2

△2 8R2

µn

P
[

f(θ̄n)− f(θ∗) > u
]

du

+

∫ +∞

8R2

µn

(

µ
√

n

4R2
+△

)

2
P
[

f(θ̄n)− f(θ∗) > u
]

du

6

∫ △2 8R2

µn

0

du+

∫ ∞

0

4e−td

(

8R2

µn

[

10
√
t+ 20�t+△

]2)

+2

∫ +∞

4R2

µn

(

µ
√

n

4R2
+△

)

2

− 3

γn
‖θ0−θ∗‖2

exp
(

− u

30γR2

)

du using the two tail bounds,

= △2 8R
2

nµ
+

32R2

µn

∫ ∞

0

e−t

(

100 + 400�22t+ 400�
3

2
t1/2 + 20△1

2
t−1/2 + 40△�

)

dt

+60γR2 exp

(

− 1

30γR2

[

4R2

µn

(µ
√
n

4R2
+△

)2 − 3

γn
‖θ0 − θ∗‖2

])

6 △2 8R
2

nµ
+

32R2

µn

(

100Γ(1) + 400�22Γ(2) + 400�
3

2
Γ(3/2) + 20△1

2
Γ(1/2) + 40△�Γ(1)

)

+60γR2 exp

(

− 1

30γR2

[

4R2

µn

(µ
√
n

4R2
+△

)2 − µ

8R2

])

using
3

γn
‖θ0 − θ∗‖2 6

µ

8R2
,

with Γ denoting the Gamma function,

6 △2 8R
2

nµ
+

32R2

µn

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

+60γR2 exp

(

− 1

30γR2

[

µ

8R2

])

6 △2 8R
2

nµ
+

32R2

µn

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

+60γR2 1

2µ
30× 8γR4 using e−α 6

1

2α
for all α > 0,

6
32R2

nµ

[

1

4
△2 + 100 + 800�2 + 532�+ 40△�+ 57�2

]

.

For γ = 1
2R2

√
N
, with α = R‖θ0 − θ∗‖, � = 1 and △ = 6α2 + 4α, we get

E
[

f(θ̄N )− f(θ∗)
]

6
32R2

Nµ

[

1

4
△2 + 1489 + 40∆

]

6
32R2

Nµ

[

9α4 + 12α3 + 4α2 + 1489 + 240α2 + 160α

]

6
R2

Nµ

(

5α+ 15
)4
.

Note that the previous bound is valid if 3
γ
√
n
‖θ0 − θ∗‖2 + 2

γR
√
n
‖θ0 − θ∗‖ 6

µ
√
n

8R2 , i.e., under the

condition 6R2‖θ0 − θ∗‖2 + 4R‖θ0 − θ∗‖ 6
µ
√
N

8R2 . If the condition is not satisfied, then the bound is
still valid because of Prop. 1. We thus obtain the desired result.
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F.3 Bound on iterates

Following the same principle as for function values, we have:

E‖θ̄n − θ∗‖2 6

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)

2

0

P
[

‖θ̄n − θ∗‖2 > u
]

du+

∫ ∞

16R2

µ2n

(

µ
√

n

4R2
+△

)

2
P
[

‖θ̄n − θ∗‖2 > u
]

du

6

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)

2

0

P
[

‖θ̄n − θ∗‖2 > u
]

du+ E

[

1
‖θ̄n−θ∗‖2> 16R2

µ2n

(

µ
√

n

4R2
+△

)

2‖θ̄n − θ∗‖2
]

6

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)

2

0

P
[

‖θ̄n − θ∗‖2 > u
]

du

+P

[

‖θ̄n − θ∗‖2 >
16R2

µ2n

(µ
√
n

4R2
+△

)2
]1/2[

E
(

‖θ̄n − θ∗‖4
)

]1/2

using Cauchy-Schwarz inequality,

6

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)

2

0

P
[

‖θ̄n − θ∗‖2 > u
]

du

+P

[

‖θ̄n − θ∗‖2 >
16R2

µ2n

(µ
√
n

4R2
+△

)2
]1/2(

‖θ0 − θ∗‖2 + 3γ2nR2

)

using Prop. 2.

Moreover, if we denote by t the largest solution of 10
√
t+ 20�t = µ

√
n

4R2 , we have:

√
t =

−10 +

√

100 + 20�µ
√
n

R

40�
=

−10 + 10

√

1 + 20� µ
√
n

100R

40�

>
9

40�

√

20�
µ
√
n

100R
,

as soon as 20� µ
√
n

100R > 100, since if q > 100, −1 +
√
1 + q 6 9

10

√
t.
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This leads to:

E‖θ̄n − θ∗‖2 6

∫ △2 16R2

µ2n

0

P
[

‖θ̄n − θ∗‖2 > u
]

du+

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)

2

△2 16R2

µ2n

P
[

‖θ̄n − θ∗‖2 > u
]

du

+2 exp
(

− t

2

)

(

‖θ0 − θ∗‖2 + 3γ2nR2

)

with t >
( 9

40�

)2 20�

100

µ
√
n

R2
, using Prop. 5,

6 △2 16R
2

nµ2
+

∫ ∞

0

4e−td

(

16R2

µ2n

[

10
√
t+ 20�t+△

]2)

+
9

2t2

(

‖θ0 − θ∗‖2 + 3γ2nR2

)

using exp(−α) 6 9

16α2
for all α > 0,

6 △2 16R
2

nµ2
+

64R2

µ2n

∫ ∞

0

e−t

(

100 + 400�22t+ 400�
3

2
t1/2 + 20△1

2
t−1/2 + 40△�

)

dt

+
9

2

404�41002R4

94202�2µ2n

[

3

4
�2/R2 +

1

2R2
△
]

6 △2 16R
2

nµ2
+

64R2

µ2n

(

100Γ(1) + 400�22Γ(2) + 400�
3

2
Γ(3/2) + 20△1

2
Γ(1/2) + 40△�Γ(1)

)

dt

+686× 64
�2R2

µ2n

[

3

4
�

2 +
1

2
△
]

6 △2 16R
2

nµ2
+

64R2

µ2n

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

+686× 64
�2R2

µ2n

[

3

4
�2 +

1

2
△
]

6
64R2

nµ2

[

1

4
△2 + 100 + 800�2 + 532�+ 32△+ 40△�+ 686

3

4
�4 + 686

△�2

2

]

.

For γ = 1
2R2

√
N
, with α = R‖θ0 − θ∗‖, � = 1 and △ = 2α2 + 4α, we get

E‖θN − θ∗‖2 6
8R2

Nµ2

[

2△2 + 8△(32 + 40 + 343) + 8(100 + 800 + 532 + 515)

]

6
8R2

Nµ2

[

2△2 + 3320△+ 15576

]

6
8R2

Nµ2

[

8α4 + 16α3 + 32α2 + 3320× 2α2 + 3320× 4α+ 15576

]

6
R2

Nµ2

(

5α+ 20
)4
.

The previous bound is valid as long as µ
√
N

R > 10000
20 = 500. If it is not satisfied, then Prop. 1 shows

that it is still valid.
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