Outlier Removal Power of the L1-Norm Super-Resolution - Archive ouverte HAL
Communication Dans Un Congrès Lecture Notes in Computer Science Année : 2013

Outlier Removal Power of the L1-Norm Super-Resolution

Résumé

Super-resolution combines several low resolution images having different sampling into a high resolution image. L1-norm data fit minimization has been proposed to solve this problem in a robust way. The outlier rejection capability of this methods has been shown experimentally for super-resolution. However, existing approaches add a regularization term to perform the minimization while it may not be necessary. In this paper, we recall the link between robustness to outliers and the sparse recovery framework. We use a slightly weaker Null Space Property to characterize this capability. Then, we apply these results to super resolution and show both theoretically and experimentally that we can quantify the robustness to outliers with respect to the number of images.
Fichier principal
Vignette du fichier
Outlier_removal_power_of_the_L1_norm_super_resolution_cam.pdf (497.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00803695 , version 1 (22-03-2013)

Identifiants

Citer

Yann Traonmilin, Saïd Ladjal, Andrés Almansa. Outlier Removal Power of the L1-Norm Super-Resolution. 4th International Conference, SSVM 2013,, Jun 2013, Austria. pp.198-209, ⟨10.1007/978-3-642-38267-3_17⟩. ⟨hal-00803695⟩
283 Consultations
550 Téléchargements

Altmetric

Partager

More