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Abstract. Super-resolution combines several low resolution images hav-
ing different sampling into a high resolution image. L1-norm data fit min-
imization has been proposed to solve this problem in a robust way. The
outlier rejection capability of this methods has been shown experimen-
tally for super-resolution. However, existing approaches add a regular-
ization term to perform the minimization while it may not be necessary.
In this paper, we recall the link between robustness to outliers and the
sparse recovery framework. We use a slightly weaker Null Space Prop-
erty to characterize this capability. Then, we apply these results to super
resolution and show both theoretically and experimentally that we can
quantify the robustness to outliers with respect to the number of images.
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1 Introduction

1.1 Problem Statement and State of the Art

The objective of super-resolution (SR) is to recover a high resolution (HR) im-
age from several low resolution (LR) images. SR relies on the different sampling
caused by motion between LR images acquisition. Several surveys of the subject
exist in the literature [1–3]. The variational approach to super-resolution leads
to the general form of a regularized minimization of the data-fit functional.
Most of the time, this data fit functional is an Lp-norm fit to the observed data.
The L2-norm (least squares data fit) has been the most frequent choice because
of the optimality properties of the solution when data is contaminated by ran-
dom noise [4]. Methods for least squares minimization such as the conjugate
gradient are also well-known and efficient. More recently, L1-norm minimization
has been proposed to remove outliers from images [5] and as a robust way to
perform super-resolution. It was shown that this method is robust to outliers in
super-resolution [6–8]. Whatever norm is chosen, a regularization term is gener-
ally added to the variational problem.
Tychonov [4], bilateral total variation [6,9], total variation [7,8] or non-local regu-
larization [10,11] have been considered. In all these cases, an a priori hypothesis is
made on the regularity of the HR image. However, when observation noise is ran-
dom, it is likely that such regularization is not necessary when many LR images
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are available [12]. When there is an unnecessary regularization, high resolution
features which could be recovered may be lost instead. In the case of unbounded
outliers, results based on the least squares solution of super-resolution are not
optimal because they are not well suited to the noise configuration.
In other areas of applied mathematics, it is known that the L1-norm minimiza-
tion has the ability to remove outliers. Candès and Tao showed in [13] that the
outliers removal power of L1-norm minimization is equivalent to a sparse recov-
ery problem with sparsity having the cardinality of the support of outliers. They
also showed that the observation matrix leads to the right result if it fulfills a
restricted isometry property (RIP). Since this paper, the Null Space Property
(NSP) has been shown to be an equivalent characterization of the capability to
recover sparse vector from underdetermined observations [14].

1.2 Contributions

To our knowledge characterizations of L1 norm minimization have not been used
in the context of super-resolution. In Section 2, we set up the variational super-
resolution problem. We then (Section 3) formulate the problem of forgiving
outliers in the data in a slightly weaker way than in [13]. Vaswani [15] stud-
ied partially known support which is a stronger formulation of sparse recovery.
Knowledge of the support is also used for structured sparsity where dedicated
methods are designed [16]. [17] considered weaker formulation of the robustness
of L1-norm recovery by considering a fixed sparsity support. We consider arbi-
trary set of supports for outliers, which will allow an easy application to the
super-resolution problem. This leads to an equivalent slightly weaker Null Space
Property. In Section 4, we apply these results to the super-resolution inter-
polation problem. We find lower bounds on the number of images ensuring the
robustness to a given number of outliers. We also show that allowing for arbi-
trary sets of supports for outliers can provide better practical results. Finally,
we show experiments illustrating these results in Section 5.

2 Super-Resolution Interpolation Model

2.1 Low Resolution Image Generation

In a finite dimensional context, LR images are generated by a linear map A:

A : R
ML×ML →

(

R
L×L

)N

u → (Aiu)i=1,N = (SQiu)i=1,N

(1)

where M is the super-resolution factor, N is the number of LR images, L×L is
the size of LR images, u is a HR image of size ML×ML, the Ai are linear maps
generating LR images, S is the sub-sampling operator by a factor M and Qi are
the deformations associated with each LR image. SR is the process of recovering
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u0 from w = Au0 +n (n is the observation noise). In this paper, we suppose that
the Qi are known. In this setting, the inversion of A is called super-resolution
interpolation.
It has been shown in [12] that A is almost surely full rank when motions are
random compositions of translations and rotations and N ≥ M2.

2.2 Variational Formulation

When A is full rank and M2 ≤ N , L2-norm minimization guarantees that the
energy of the reconstruction noise is bounded by the energy of observation noise
times the operator norm of the pseudo-inverse A† of A. This leads to useful
results when observation noise is bounded. In the case of outliers, no assumption
is made on the power of the noise and L2 reconstruction does not guarantee
a good result (unbounded reconstruction noise). In this paper, we study the
efficiency of the L1-norm minimization of the data-fit:

argminu‖Au − w‖1 (2)

with w = Au0 + n0. We look for conditions on A ensuring that u0 is the unique
solution of (2) when n0 is an outlying noise. Outliers have the form : n0 = n.T
with T a vector of 0 and 1 representing the support of the noise (the . represents
the component-by-component vector product). We do not make any hypothesis
on n. In Section 3, A will be a general full rank matrix of an over-determined
system. In other sections, A will be an over-determined full rank SR operator of
size NL2 × (ML)2 with N > M2.

3 Forgiving Matrices

3.1 Definitions

We introduce the concept of a T -forgiving matrix A (A : R
m → R

p) :

Definition 1. Forgiving Matrix Let T be a set of supports in R
p (subset of

{0, 1}p). A is called T -forgiving if for all T ∈ T , n ∈ R
p, u0 ∈ R

m, we have:

u0 = argminu‖Au − (Au0 + n.T )‖1 (3)

and u0 is the unique minimizer.

When a matrix is T -forgiving, the L1 minimization recovers u0 from any obser-
vation Au0 contaminated by outliers whose support is in T .

Definition 2. Sparse Capable Matrix Let T be a set of supports in R
p. B

(Rp → R
q) is called T -sparse capable if for all T ∈ T , x0 ∈ R

p, y ∈ R
q, we have:

x0.T = argminx‖x‖1 subject to Bx = B(x0.T ) (4)

and x0.T is the unique solution to problem (4).
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The Null Space Property found in [14] only depends on the Null-Space of the
matrix (and its interaction with supports). It is a non-concentration property
which can be stated as follows:

Definition 3. Non-Concentration Property

Let T be a set of supports in R
p and V a subspace of R

p. We say that V has the
T -Non-Concentration Property (NCP) if for all v ∈ V \{0} and all T ∈ T

‖v.T ‖1 < ‖v.T c‖1 (5)

where T c stands for the complement support of T .
We say that a matrix has the T -Null Space Property (T -NSP) if its null

space has the T -NCP.

Remark 1. Notice that, given the finite-dimensional setting, the NCP property
implies the existence of a constant γ < 1 such that for all v ∈ V and all T ∈ T :

‖v.T ‖1 < γ‖v.T c‖1 . (6)

This constant is called the NSP constant in the area of sparse recovery.

For the completeness of the paper, we now proceed with the direct proof of
equivalence between the forgiveness of A and the Non-Concentration Property
for the image of A (ImA). This equivalence can be obtained by combining [13]
and [14] and slightly modifying the proofs to introduce arbitrary T instead of
considering families of supports with fixed size. Indeed, [13] proves that for-
giveness of a matrix (called linear coding capability) is equivalent to the sparse
capability of any matrix whose kernel is the image of the original one and [14]
proves that sparse capability is equivalent to the NCP (called there NSP).

3.2 Characterization of Forgiveness by the Non-Concentration

Property

Theorem 1. The two following propositions are equivalent:

1. A is T -forgiving
2. ImA has the T -Non Concentration Property.

Proof. 1 ⇒ 2: Let A be T -forgiving, and T ∈ T . Let w ∈ ImA\{0}, there is u0

such that w = Au0 6= 0. From the characterization of the L1 minimizer in (3),
we know that the following inequality holds

‖n.T ‖1 < ‖Au − (w + n.T )‖1 (7)

for all n ∈ R
p and for every sub-optimal u 6= u0. The strict inequality is a

consequence of the uniqueness. In particular, for n = w and u = 2u0 (u 6= u0

because Au0 6= 0), Au = 2w and:

‖w.T ‖1 < ‖w − w.T ‖1 = ‖w.T c‖1 . (8)
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This shows that ImA satisfies the NCP on T .
2 ⇒ 1: By hypothesis ImA has the NCP on T . Let u0 ∈ R

m, n ∈ R
p and T ∈ T .

We have to show that u0 is a minimizer of (3). Let u 6= u0. The L1-norm is the
sum of L1-norms taken on complementary supports:

f(u) = ‖Au − (Au0 + n.T )‖1

= ‖(Au − (Au0 + n.T )).T ‖1 + ‖(Au − (Au0 + n.T )).T c‖1

= ‖A(u − u0).T − n.T ‖1 + ‖A(u − u0).T
c‖1 .

(9)

We use the triangle inequality followed by the NCP :

f(u) ≥ ‖n.T ‖1 − ‖A(u − u0).T ‖1 + ‖A(u − u0).T
c‖1

f(u) > ‖n.T ‖1 = f(u0) .
(10)

This strict inequality shows that u0 is the unique minimizer of f . Consequently,
A is T -forgiving. �

With this slightly different result, the NCP can be checked on particular sets of
supports, and not only those having a given cardinal as usually done in the sparse
recovery framework. For example, in the context of image super-resolution, it is
interesting to consider outliers contaminating a fixed number of LR images. This
hypothesis models real situations like new object in the scene, light reflection...

Remark 2. The previous result implies the following already known result: the
NSP of order K is equivalent to the K-sparse recovery capability. We just have
to apply the result for TK the set of all supports of cardinal K.

Remark 3. Note that in the context of outlier removal, the NCP could be called
“Image Space Property“ for A.

4 Application to Super-Resolution

4.1 Sufficient Condition for K-Forgiveness

In this section, we suppose that we only have the knowledge of the number of
outliers K for the super-resolution problem. A is the super-resolution operator
and T is the set of supports of cardinal K. We call this special case of T -
forgiveness the K-forgiveness. We first give sufficient conditions on the number
of observed images for the NCP. Then we use the weaker Restricted Isometry
Property (RIP) which is another sufficient condition for sparse capability. For
any linear map A and support T , we call AT , the operator u → (Au).T .

Sufficient Condition for the NCP Let T be a support with cardinal K. We
look for a sufficient condition such that:

‖AT u‖1

‖AT cu‖1
< 1 (11)
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holds for all supports T of size K.
We start by bounding the L1-operator norm of AT . Let ai be the lines of A:

‖AT u‖1

‖u‖1
=

∑

i∈T | < ai, u > |
‖u‖1

≤
∑

i∈T

∑

j |ai,juj |
‖u‖1

. (12)

Because each coefficient of A is a sample of a cardinal sine, we have |ai,j | ≤ 1.
Therefore, we have

‖AT u‖1

‖u‖1
≤

∑

i∈T

∑

j |uj |
‖u‖1

≤ K .

(13)

Now we bound the ratio ‖AT u‖1

‖AT cu‖1

. We use the L1 conditioning κATc ,1 of AT c .

The Lp conditioning of an operator A is defined by:

κA,p =
sup‖u‖p=1‖Au‖p

inf‖u‖p=1‖Au‖p
(14)

This leads to the following inequalities :

‖AT u‖1

‖AT cu‖1
≤ K‖u‖1

‖AT cu‖1

≤ K

(

inf
‖AT cu‖1

‖u‖1

)−1

≤ K
κATc ,1

‖AT c‖1
.

(15)

We use the fact that the L1 operator norm ‖AT c‖1 can be bounded below the
values taken on particular examples. The SR operator transforms constant HR
images into constant LR images of same intensity. Consequently, ‖AT c‖1 ≥
(NL2 − K)/(ML)2 and:

‖AT u‖1

‖AT cu‖1
≤ K(ML)2

κAT c ,1

NL2 − K
. (16)

We consider κm
AT c ,1 the maximum L1 condition number of A restricted to the

lines T c. A condition for K-forgiveness is:

N > K
(

M2κm
AT c ,1 + 1

)

. (17)

This inferior bound on N is linear with respect to K and is tight. Indeed, we
can find a case where it is easy to see that N must be at least greater that a
constant times K: Consider a 1D super-resolution problem with a sub-sampling
factor of M = 2 and a number N = 2P > 2 observations with the corresponding
translations being 0, 1, . . . , 0, 1 respectively (i.e. there are P observation with
translation 0 and P with translation 1). In this case, the reconstruction according
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to equation (3) is the following HR signal: each sample is the median of the P
values measured for each sample of the original signal. It is then clear that the
L1 variational setting can not resist to more than P/2 outliers. The worst case
being that all outliers contaminate the same pixel (of the original signal) and
have the same (unrelated to the signal) value.

Sufficient Condition for the RIP A consequence of the equivalence between
outlier resistance and sparse recovery is that we can use the Restricted Isometry
Property [13] to find a sufficient condition for the K-forgiveness capability using
the more convenient L2 setting.

Definition 4. B has the restricted isometry property of order J and constant
δ ∈]0, 1[ if for all x ∈ R

N(L×L), for all supports T such that |T | = J

(1 − δ)‖x.T ‖2 ≤ ‖B(x.T )‖2 ≤ (1 + δ)‖x.T ‖2 . (18)

Given a matrix A, we set B as the orthogonal projection on (ImA)⊥, that
is B = P(ImA)⊥ = I − A(AHA)−1AH . Showing a RIP of order J = K + K ′

with constant δ <
√

K′−
√

K√
K′+

√
K

for B gives the K-sparse capability of B (See [18]).

Consequently, kerB = ImA has the NCP and A is K-forgiving. Moreover, if for
all T of cardinal J :

‖A(AHA)−1AH(x.T )‖2

‖x.T ‖2
≤

√
δ (19)

then B has RIP of order J and constant δ (we square equation (18) and use the
Pythagorean theorem). We can show using the same reasoning as in equation (13)
that ‖AH

T ‖2 = ‖AT ‖2 ≤
√

J . Consequently, we bound the ratio:

‖A(AHA)−1AH(x.T )‖2

‖x.T ‖2
≤ σmax

‖(AHA)−1AH(x.T )‖2

‖x.T ‖2
≤ σmaxσ−2

min‖AT ‖2

≤
κ2

A,2

√
J

σmax

(20)

where σ? are the extremal singular values of A. Replacing with an admissible
value of δ gives the condition:

κ4
A,2(K + K ′)

σ2
max

≤
√

K ′ −
√

K√
K +

√
K

. (21)

We take K ′ = 3K (which we found is the optimal choice for the resulting con-
stant) and get:

κ4
A,2

σ2
max

≤ C1√
K

(22)
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where C1 = 0.0670. σmax ≥ ‖Au‖2

‖u‖2

because σmax is the operator norm of A.

Taking u as a constant image leads to: σmax ≥
√

N/M2. Finally,

N > M2C−1
1 Kκ4

A,2 (23)

is a sufficient condition for A to be K-forgiving. This bound uses the L2 con-
ditioning of the full operator. It has been shown [12, 19] that the conditioning
κA,2 converges to 1 for a large number of images and random motions. For a 1D
signal and M = 2, this sufficient condition is roughly N > 30K asymptotically.
This bound has to be compared with the worst case scenario described in the
precious section N > 4K (which is a necessary condition).

4.2 Study of Particular Outlier Configurations

Here, the possibility to choose arbitrary sets of supports shows its benefit. Let T
be the set of supports contaminating Nc LR images. In the same way as before,
we want to find sufficient conditions for the NCP for T ∈ T . More precisely,
we allow for up to K = NcL

2 outliers as long as they contaminate at most Nc

images. We start by bounding operator norms with a tighter bound. Let S be
the set of contaminated LR images indices (|S| = Nc):

‖AT u‖1

‖u‖1
≤

∑

i∈S
‖Ai‖1

≤
∑

i∈S
‖SQi‖1

≤ C2Nc

(24)

where C2 is an upper bound of ‖Ai‖1. C2 is the maximum L1-norm of the
sinc used for interpolation. For 1D signals, the L1 norm of the sinc is roughly
bounded by the logarithm of the size of its support. We plot in Figure 1 a
numerical evaluation of this constant for 2D SR. Figure 1 shows the max of the
L1 norms of the sinc for translational SR. This bound yields:

‖AT u‖1

‖AT cu‖1
≤ ‖AT u‖1‖u‖1

‖u‖1‖AT cu‖1

≤ ‖u‖1C2Nc

‖AT cu‖1
.

(25)

We introduce the pseudo-inverse A†
T c = (AH

T cAT c)−1AH
T c (recall that AT c has

full column rank if N − Nc < M2):

supu

‖u‖1

‖AT cu‖1
= supv∈ImAT c

‖A†
T cv‖1

‖v‖1

≤ ‖(AH
T cAT c)−1‖1supv∈ImATc

‖AH
T cv‖1

‖v‖1

≤ ‖(AH
T cAT c)−1‖1C3

(26)
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where C3 is the maximum L1 norm of the columns of QH
i SH . This leads to the

following sufficient condition :

Proposition 1. If Nc images are contaminated, having N images with :

NcC2C3‖
(

AH
T cAT c

)−1 ‖1 < 1 (27)

guarantees a perfect reconstruction by L1 minimization

We evaluate in Figure 1, the constant C2 and the product C2C3. We cannot
bound ‖(AH

T cAT c)−1‖1 without knowledge of the motions because the its L2

operator norm cannot be bounded (LR grids could be arbitrarily close). However,
with random motions, we know that (AH

T cAT c)1 ∼ 1
N I (see [12]) when T is fixed

(on the first images for example) and N → ∞. Asymptotically, the constraint is
Nc < C4N (for L = 200, C4 = 60). This is much better than the previous result
without hypothesis on the support, were the equivalent constant would have
been L2C−1

1 = 597000 for L = 200. To have an idea of how robust the L1 SR
problem is, we can compare this result asymptotically with the case of random
matrices [20] which have been studied in the context of sparse recovery. The
equivalent condition would be: for outliers with sparsity K, with NL2 − M2L2

observations and a signal of size NL2, the constraint would be K < (N −
M2)L2/log(N/(N − M2)). We see that asymptotically, this constraint is much
better because log(N/(N − M2)) → 0 when N grows
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Fig. 1. Constants for translational SR (a) evaluation of C2 with respect to L (b)
evaluation of C3 with respect to L (c) evaluation of C2C3 with respect to L.

5 Experiments

5.1 Algorithm

The equivalence of the L1 minimization with sparse recovery shown in Section 3
allows for the use of existing algorithms. Daubechies et al. [18] showed that
iteratively reweighted least squares (IRWLS) convergence to the L1 K-sparse
solution is guaranteed when A is K + 2γ

1−γ sparse capable (with γ the NSP

constant, see the remark in section 3.1) and when weights are carefully chosen
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(and the regularization of the weights ǫn → 0 ). We use this algorithm with
the super-resolution L2 data-fit functional. We construct iterations equivalent
to [18]:

un+1 = argminu‖Ωn(Au − w)‖2
2

zn+1 = Aun+1 − w

rn+1 = decreasing sort of abs(zn+1)

ǫn+1 = min(ǫn, rn+1(K + 1))

Ωn+1 = diag
(

[

z2
n+1 + ǫ2n+1

]−1/4
)

(28)

We chose this algorithm because it converges quickly (a few iterations in practice)
and convergence can be checked by looking at the variations of ǫ. Our aim is to
give practical cases when outliers can be rejected.

5.2 Results

We show examples of outlier rejection using IRWLS. These practical results are
better than our theoretical bounds which match the experience from compressed
sensing. In Figure 2, we show an experimental evaluation of the number of im-
ages needed when Nc images are fully contaminated by outliers. For each Nc, N ,
the PSNR of the result of IRWLS is calculated for 30 experiments with different
motion parameters. We plot the value of 10th percentile (90% of the reconstruc-
tions have a better PSNR). Each line of this matrix can be interpreted as a
phase transition diagram. In Figure 3, we contaminate one LR image with the
absolute value of Gaussian random noise of variance 125 (pixels take values in
[0, 255]). In this case, 6 clean images give a perfect reconstruction of the HR
image. In Figure 4, even with more contaminated images (4 noisy LR images
on 8 LR images), if the location of outliers is different between LR images, L1

minimization is still robust.

6 Conclusion

We have studied the outlier rejection capability of L1 super-resolution in a quan-
titative way. The link between the outliers resistance problem and sparse recovery
allows for the direct translation of the results of the literature of sparse recov-
ery to over-determined super-resolution. We showed that if enough images are
available, outlying noise can be completely removed from the observations. We
gave theoretical bounds on the ratio between the number of images and outliers
to ensure a perfect reconstruction without regularization. We showed that some
conditions on the support of outliers allows for a robustness to more outliers.
This result takes the form of much better theoretical bounds derived using these
particular supports. Experiments show that fewer images are necessary to resist
outliers in practice.
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Fig. 2. Experimental outlier rejection (a) HR image used for all experiments (b) 10%
percentile of the PSNR (in dB) with respect to the number of outliers Nc and number
of images N − M

2

(a) (b) (c)

Fig. 3. L
1 SR interpolation outlier removal for M = 2 and N = 7 (a) Ideal HR image

(b) Reconstructed image (c) LR images (outliers on the last image)

(a) (b) (c)

Fig. 4. L
1 SR interpolation outlier removal for M = 2 and N = 8 (a) Ideal HR

image (b) Reconstructed image (c) LR images (outliers simulating saturated pixels
(red squares) on the last 4 ones)
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