A delimitation of the support of optimal designs for Kiefer's phi_p-class of criteria - Archive ouverte HAL
Article Dans Une Revue Statistics and Probability Letters Année : 2013

A delimitation of the support of optimal designs for Kiefer's phi_p-class of criteria

Résumé

The paper extends the result of Harman and Pronzato [Stat. \& Prob. Lett., 77:90--94, 2007], which corresponds to p=0, to all strictly concave criteria in Kiefer's phi_p-class. Let xi be any design on a compact set X C R^m with a nonsingular information matrix M(xi), and let delta be the maximum of the directional derivative F_phi_p(xi,x) over all x in X. We show that any support point x_* of a phi_p-optimal design satisfies the inequality F_phi_p(xi,x_*) >= h_p[M(xi),delta], where the bound h_p[Mb(xi),delta] is easily computed: it requires the determination of the unique root of a simple univariate equation (polynomial when p is integer) in a given interval. The construction can be used to accelerate algorithms for phi_p-optimal design and is illustrated on an example with A-optimal design.
Fichier principal
Vignette du fichier
Support_Phi_p-V3.pdf (204.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00802972 , version 1 (20-03-2013)
hal-00802972 , version 2 (10-09-2013)

Identifiants

Citer

Luc Pronzato. A delimitation of the support of optimal designs for Kiefer's phi_p-class of criteria. Statistics and Probability Letters, 2013, 83 (12), pp.2721-2728. ⟨10.1016/j.spl.2013.09.009⟩. ⟨hal-00802972v2⟩
285 Consultations
322 Téléchargements

Altmetric

Partager

More