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The paper extends the result of Harman and Pronzato [Stat. & Prob. Lett., 77:90-94, 2007], which corresponds to p = 0, to all strictly concave criteria in Kiefer's φ p -class. We show that, for any given design measure ξ, any support point x * of a φ p -optimal design is such that the directional derivative of φ p at ξ in the direction of the delta measure at x * is larger than some bound h p [ξ] which is easily computed: it requires the determination of the unique root of a simple univariate equation (polynomial when p is integer) in a given interval. The construction can be used to accelerate algorithms for φ p -optimal design and is illustrated on an example with A-optimal design.

Introduction and motivation

For X a compact subset of R m , denote by Ξ the set of design measures (i.e., probability measures) on X and by M(ξ) the information matrix

M(ξ) = X xx ⊤ ξ(dx) .
We suppose that there exists a nonsingular design on X (i.e., there exists a ξ ∈ Ξ such that M(ξ) is nonsingular) and we denote by Ξ + the set of such designs. We consider an optimal design problem on X defined by the maximization of a design criterion φ(ξ) = Φ[M(ξ)] with respect to ξ ∈ Ξ. One may refer to Pukelsheim (1993, Chap. 5) for a presentation of desirable properties that make a criterion Φ(•) appropriate to measure the information provided by ξ.

Here we shall focus our attention on design criteria that correspond to the φ p -class considered by [START_REF] Kiefer | General equivalence theory for optimum designs (approximate theory)[END_REF]. More precisely, we consider the positively homogeneous form of such criteria and, for any M ∈ M, the set of symmetric non-negative definite m × m matrices, we denote

Φ + p (M) = 1 m tr(M -p ) -1/p , (1) 
with the continuous extension Φ + p (M) = 0 when M is singular and p ≥ 0. A design measure ξ * p that maximizes φ p (ξ) = Φ + p [M(ξ)] will be said φ p -optimal. Note that when p = 0 the maximization of Φ + p (M) is equivalent to the minimization of [tr(M -p )] 1/p , and thus to the minimization of tr(M -p ) when p is positive. A classical example is A-optimal design, which corresponds to p = 1. Taking the limit of Φ + p (•) when p tends to zero, we obtain Φ + 0 (M) = [det(M)] 1/m , which corresponds to D-optimal design. The limit when p tends to infinity gives Φ ∞ (M) = λ min (M), the minimum eigenvalue of M, and corresponds to E-optimal design. Some basic properties of φ p -optimal designs are briefly recalled in Sect. 2.

Classical algorithms for optimal design usually apply to situations where X is a finite set.

The performance of the algorithm (in particular, its execution time for a given required precision on φ(•)) then heavily depends on the number k of elements in X . The case of D-optimal design has retained much attention, see, for instance, [START_REF] Ahipasaoglu | Linear convergence of a modified Frank-Wolfe algorithm for computing minimum volume enclosing ellipsoids[END_REF], [START_REF] Todd | On Khachiyan's algorithm for the computation of minimum volume enclosing ellipsoids[END_REF], [START_REF] Yu | Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs[END_REF] and [START_REF] Yu | D-optimal designs via a cocktail algorithm[END_REF]. [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF] show how any nonsingular design on X yields a simple inequality that must be satisfied by the support points of a D-optimal design ξ * 0 . Whatever the iterative method used for the construction of ξ * 0 , this delimitation of the support of ξ * 0 permits to reduce the cardinality of X along the iterations, with the inequality becoming more stringent when approaching the optimum, hence producing a significant acceleration of the algorithm. Put in other words, the delimitation of the support of an optimal design facilitates the optimization by focussing the search on the useful part of the design space X . The objective of the paper is to extend the results in [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF] to the φ p -class (1) of design criteria. The condition obtained does not tell what the optimum support is, but indicates where it cannot be.

The paper is organized as follows. Section 2 recalls the main properties of φ p -optimal design that are useful for the rest of the paper. The main result is derived in Sect. 3 and illustrative examples are given in Sect. 4. Finally, Sect. 5 concludes and indicates some possible extensions.

The technical parts of the proofs are given in appendix.

Some basic properties of φ p -optimal designs

The criteria Φ + p (•) defined by (1) satisfy Φ + p (I m ) = 1 for I m the m-dimensional identity matrix and Φ + p (aM) = a Φ + p (M) for any a > 0 and any M ∈ M. Note that, from Caratheodory's theorem, a finitely-supported optimal design always exists, with m(m + 1)/2 support points at most. We also have the following properties.

Lemma 1 For any p ∈ (-1, ∞), the criterion Φ + p (•) satisfies the following:

(i) Φ + p (•) is strictly concave on the set M + of symmetric positive definite m × m matrices; it is strictly isotonic (it preserves Löwner ordering) on M for p ∈ (-1, 0); that is, Φ + p (M 2 ) > Φ + p (M 1 ) for all M 1 and M 2 in M such that M 2 -M 1 ∈ M and M 2 = M 1 ; it is strictly isotonic on M + for p ∈ [0, ∞).
(ii) Any φ p -optimal design ξ * p is nonsingular.

(iii) The optimal matrix M * = M * [p] is unique.

Part (i) is proved in Pukelsheim (1993, Chap. 6). For p ≥ 0, (ii) follows from the observation that Φ + p (M) = 0 when M is singular while there exists a nonsingular M(ξ) with Φ + p [M(ξ)] > 0; for p ∈ (-1, 0), the statement is proved in (Pukelsheim, 1993, Sect. 7.13) through the use of polar information functions. Part (iii) is a direct consequence of (i) and (ii): since an optimal design matrix M * is nonsingular, the strict concavity of Φ + p (•) at M * implies that M * is unique. Note that this does not imply that the optimal design measure ξ * p maximizing φ p (ξ) is unique.

We shall only consider values of p in (-1, ∞) and, from Lemma 1-(ii), we can thus restrict our attention to matrices M in M + . Φ + p (•) is differentiable at any M ∈ M + , with gradient (p+1) .

∇Φ + p (M) = 1 m [Φ + p (M)] p+1 M -(p+1) = Φ + p (M) tr(M -p ) M -
The directional derivative F φp (ξ; ν) = lim α→0 + (1/α){φ p [(1 -α)ξ + αν] -φ p (ξ)} is well defined and finite for any ξ ∈ Ξ + and any ν ∈ Ξ, with

F φp (ξ; ν) = tr{[M(ν) -M(ξ)]∇Φ + p [M(ξ)]} = φ p (ξ) X x ⊤ M -(p+1) (ξ)x ν(dx) tr[M -p (ξ)] -1 .
We shall denote by F φp (ξ, x) = F φp (ξ; δ x ) the directional derivative of φ p (•) at ξ in the direction of the delta measure at x,

F φp (ξ, x) = φ p (ξ) x ⊤ M -(p+1) (ξ)x tr[M -p (ξ)] -1 . (2) 
The following theorem, which relies on the concavity and differentiability of Φ + p (•), is a classical result in optimal design theory, see, e.g., [START_REF] Kiefer | General equivalence theory for optimum designs (approximate theory)[END_REF] and Pukelsheim (1993, Chap. 7).

Theorem 1 (Equivalence Theorem) For any p ∈ (-1, ∞), the following statements are equivalent:

(i) ξ * p is φ p -optimal. (ii) x ⊤ M -(p+1) (ξ * p )x ≤ tr[M -p (ξ * p )] for all x ∈ X . (iii) ξ * p minimizes max x∈X F φp (ξ, x) with respect to ξ ∈ Ξ + .
Moreover, the inequality of (ii) holds with equality for every support point x = x * of ξ * p .

3 A necessary condition for support points of φ p -optimal designs p+1) x for the support points of an optimal design Take any p ∈ (-1, ∞) and any ξ ∈ Ξ + . We shall omit the dependence in ξ when there is no ambiguity and simply write M = M(ξ), φ p = φ p (ξ). We shall also denote

3.1 A lower bound on x ⊤ M -(
t = t(ξ, p) = tr[M -p ] , t * = t * (p) = tr(M -p * ) ,
with M * the optimal matrix satisfying φ

* p = Φ + p (M * ) = max ν∈Ξ Φ + p [M(ν)]. Define ǫ = ǫ(ξ, p) = max x∈X {x ⊤ M -(p+1) x} -t . (3) 
The concavity of

Φ + p (•) implies that φ p ≤ φ * p ≤ φ p + F φp (ξ; ξ * p ) ≤ φ p (ξ) + max x∈X F φp (ξ, x) , with ξ *
p denoting a φ p -optimal design measure; that is,

φ p ≤ φ * p ≤ φ p (1 + ǫ/t) , (4) see 
(2). Since x ⊤ M -(p+1) x ≤ t + ǫ for all x ∈ X , see (3), we have tr[M * M -(p+1) ] ≤ t + ǫ . (5) 
On the other hand, the optimality of

ξ * p implies (see Th. 1-(ii)) tr[MM -(p+1) * ] ≤ t * . (6) Moreover, any support point x * of ξ * p satisfies x ⊤ * M -(p+1) *
x * = t * . We use a construction similar to that in [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF] and define

H = H(ξ, p) = M -(p+1)/2 M p+1 * M -(p+1)/2 . Then we can write x ⊤ * M -(p+1) x * = x ⊤ * M -(p+1)/2 H -1/2 HH -1/2 M -(p+1)/2 x * ≥ λ 1 x ⊤ * M -(p+1) * x * = λ 1 t * , with λ 1 = λ 1 (ξ, ξ * p , p) = λ min (H)
, the minimum eigenvalue of H. Notice that λ 1 > 0. λ 1 depends on M * which is unknown. Below we shall construct a lower bound λ 1 on λ 1 and thus obtain a necessary condition for support points x * of ξ * p , in the form:

x ⊤ * M -(p+1) x * ≥ λ 1 t * . (7) 
When p = 0 (D-optimal design), we have t = t * = m, and this necessary condition is simply

x ⊤ * M -1 x * ≥ λ 1 m (p = 0) ; (8) 
it corresponds to the case treated in [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF]. When p = 0, t * is usually unknown and we shall use

x ⊤ * M -(p+1) x * ≥ λ 1 t(1 + ǫ/t) -p for p > 0 , (9) 
x

⊤ * M -(p+1) x * ≥ λ 1 t for -1 < p < 0 , (10) 
see ( 4) and the definitions of t, t * , φ p , φ * p . Next section is devoted to the construction of the lower bound λ 1 , using the inequalities ( 5) and (6).

Construction of the lower bound λ 1

The inequality (5) can be rewritten as tr(H 1/(p+1) M -p ) ≤ t + ǫ and ( 6) can be rewritten as 

= λ min (M -p ) ≤ b i ≤ λ max (M -p ) , i = 1, . . . , m , (11) 
as a consequence of Poincaré's separation Theorem, see, e.g., Magnus and Neudecker (1999, p. 211). We then obtain that ( 5) and ( 6) are respectively equivalent to p+1) x * ≥ t is the tightest we can obtain, see . In the following we shall suppose that m ≥ 2.

m i=1 b i λ 1/(p+1) i ≤ t + ǫ , m i=1 b i /λ i ≤ t * . ( 12 
) Remark 1 Inequality (12) implies that λ 1 ≥ b 1 /t * ≥ b 1 /t * . When plugged in (7), it gives x ⊤ * M -(p+1) x * ≥ b 1 . Although this bound is rather loose for m ≥ 2, it cannot be improved when m = 1. Indeed, m = 1 implies b 1 = b 1 = t and the inequality x ⊤ * M -(
Denote ω i = λ 1/(p+1) i for i = 1, . . . , m ≥ 2. The determination of λ 1 amounts to the solution of the following optimization problem: minimize ω 1 with respect to ω = (ω 1 , . . . , ω m ) ⊤ under the constraints 0

≤ ω 1 ≤ ω 2 ≤ • • • ≤ ω m , m i=1 b i ω i ≤ t + ǫ and m i=1 b i /ω p+1 i ≤ t * . This is a convex problem, with Lagrangian L(ω, µ 1 , µ 2 ) = ω 1 + µ 1 m i=1 b i ω i -t -ǫ + µ 2 m i=1 b i /ω p+1 i -t * .
Its stationarity with respect to ω indicates that the optimal solution satisfies ω i = ω 2 for all i ≥ 2. Since m i=1 b i = tr(M -p ) = t, from the Kuhn-Tucker conditions we obtain

b 1 ω 1 + (t -b 1 )ω 2 = t + ǫ , b 1 /ω p+1 1 + (t -b 1 )/ω p+1 2 = t * ,
or equivalently

α ω 1 + (1 -α)ω 2 = 1 + β , (13) 
α/ω p+1 1 + (1 -α)/ω p+1 2 = γ * , (14) 
where α = b 1 /t, β = ǫ/t ≥ 0 and γ * = t * /t.

When p = 0 (D-optimal design), then α = 1/m, γ * = 1 and ( 13), ( 14) can be directly solved for ω 1 , ω 2 , yielding λ 1 = ω 1 to be used in (8), see [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF]. However, when p = 0, α depends on M * and γ * depends on t * and are thus usually unknown. We must then determine the lowest value of ω 1 ≤ ω 2 satisfying (13), ( 14) given the information available on α and γ * ; that is, respectively, (11) which gives 1 > α ≥ b 1 /t = λ min (M -p )/tr(M -p ), and (4) which implies that γ * satisfies

γ * ∈ [(1 + β) -p , 1] if p ≥ 0 , (15) 
γ * ∈ [1, (1 + β) -p ] if p ≤ 0 . (16) 
The solution to this problem is given in appendix and yields the main result of the paper.

Theorem 2 For any p ∈ (-1, ∞) and any design ξ ∈ Ξ + , any point x * ∈ X such that

x ⊤ * M -(p+1) (ξ)x * < C(ξ, p) = ω p+1 1 B(t, ǫ) (17) 
cannot be support point of a φ p -optimal design measure ξ * p , where we denoted t = tr[M -p (ξ)], ǫ = max x∈X x ⊤ M -(p+1) (ξ)x -t, B(t, ǫ) = t min{1, (1 + ǫ/t) -p }, and where ω 1 is the unique solution for θ in the interval ((α/γ) 1/(p+1) , (1/γ) 1/(p+1) ] of the equation

F (θ; α, ǫ, t, γ, p) = α θ p+1 + (1 -α) p+2 (1 + ǫ/t -αθ) p+1 -γ = 0 ( 18 
)
with α = λ min [M -p (ξ)]/tr[M -p (ξ)] and γ = max{1, (1 + ǫ/t) -p }.

In the special case when t * = tr[M -p (ξ * p )] is known (thus, in particular if p = 0), one can take B(t, ǫ) = t * and γ = γ * = t * /t in (17) and (18). Denote δ = max x∈X F φp (ξ, x). The theorem indicates that any support point x * of a φ poptimal design measure satisfies the inequality ), δ] ≤ 0 and all points x such that F φp (ξ, x) ≥ 0 are potential support points of ξ * p . When δ tends to zero, then ǫ → 0 and h p [M(ξ), δ] → 0, see the proof of Th. 2, in accordance with the last statement of the Equivalence Theorem.

F φp (ξ, x * ) ≥ h p [M(ξ), δ] , where h p [M(ξ), δ] = φ p (ξ) [ω p+1 1 B(t, ǫ)/t -1] with ǫ = δt/φ p (ξ), see (2). Notice that ω p+1 1 B(t, ǫ) ≤ t, so that h p [M(ξ

Remark 2

1. When p is integer, F (θ; α, ǫ, t, γ, p) = 0 is a polynomial equation in θ of degree 2(p + 1).

2. Suppose p > 0 with t * unknown and ǫ → ∞; then, B(t, ǫ) → 0, so that C(ξ, p) → 0 and the condition (17) brings no information on the support of ξ * p . The same is true when p < 0 with t * unknown and ǫ → ∞: γ → ∞, so that ω 1 → 0 and again C(ξ, p) → 0.

Suppose now that t

* is known. Then, C(ξ, p) = t * ω p+1 1 ∈ (λ min [M -p (ξ)], tr[M -p (ξ)]] and ω p+1 1 → α/γ * = λ min [M -p (ξ)]/t * as ǫ → ∞, see (18), so that C(ξ, p) → b 1 = λ min [M -p (ξ)]
and we recover the same bound as in Remark 1. Harman and Pronzato (2007, Th. 3), one can show that the bound (17) with B(t, ǫ) = t * and γ = t * /t gives the tightest necessary condition for support points: for any m ≥ 2, any ǫ, ǫ ′ > 0, one can exhibit an example with a design space X , a design measure ξ such that max x∈X {x ⊤ M -(p+1) x} -t = ǫ, and an optimal design ξ * p with support point x * such that x ⊤ * M -(p+1) x * < ω p+1 1 t * + ǫ ′ (with M and M * diagonal and H having eigenvalues

Using a construction similar to that in

λ 1 < λ 2 = • • • = λ m ).

Examples

Example 1. Consider the linear regression model with

x = x(s) = (1, s, s 2 ) ⊤ , s ∈ [-1, 1]
(m = 3). For any p ∈ (-1, ∞), the φ p -optimal design on [-1, 1] is unique and is supported at the three points {-1, 0, 1}. For symmetry reasons, it corresponds to

ξ τ = τ δ -1 + (1 -2τ ) δ 0 + τ δ 1
for some particular τ * = τ * (p), with τ * (-1/2) = 0.45, τ * (0) = 1/3 (D-optimal design), τ * (1) = 1/4 (A-optimal design) and, in the limit p → ∞, τ * (∞) = 0.2 (E-optimal design), see Fig. To illustrate the impact of not knowing t * on the construction of ω p+1 1 through the solution of ( 18), we take p = 1 and compute the bound C(ξ τ , p) for the cases γ = 1 (t * unknown) and 1 shows that, close to the optimum τ * (1) = 1/4, the value obtained for t * unknown (solid line) is not much worse, i.e., smaller, than the value for t * known (dashed line). Note that considering different designs ξ τ with τ = τ * (p) is equivalent to considering different ǫ given by (3), with ǫ being approximately linear in |τ -τ * (p)| for the range of values of τ considered.

γ = t * /t (t * known) for different designs ξ τ , τ ∈ [τ * (1) -1/16, τ * (1) + 1/16]. Figure
The marginal deterioration of the bound (17) due to the ignorance of t * when ǫ is small enough is further illustrated by Fig. 2. Here, we set ǫ at some fixed value (the values ǫ = 0.1 and ǫ = 0.5 are considered), and for values of p in the range [-1/2, 1] we compute τ (p, ǫ)

such that max s∈[-1,1] x ⊤ (s)M -(p+1) (ξ τ )x(s) = tr[M -p (ξ τ )] + ǫ.
The values of τ * (p) and τ (p, ǫ), ǫ = 0.1, 0.5, are shown in Fig. 2-left, in solid and dashed lines respectively. Then, for each p and associated design ξ τ (p,ǫ) we compute the bound C(ξ τ (p,ǫ) , p) of ( 17) in the two situations t * unknown and t * known; see the plots in Fig. 2-right. Note that the bound for t * unknown (solid line) remains near the bound for t * known (dashed line) when ǫ = 0.1; the situation deteriorates for larger ǫ (curves with crosses) but the two bounds get close as p approaches 0 and exactly coincide at p = 0 (since then t = t * = m).

Example 2. Take now the complete product-type interaction model x(s) = x(s 1 ) ⊗ x(s 2 ), s = (s 1 , s 2 ), with ⊗ denoting tensor product and x(s

i ) = (1, s i , s 2 i ) ⊤ , s i ∈ [-1, 1], for i = 1, 2 (m = 9
). The D-optimal (respectively A-optimal) design for this problem is the cross product of two D-optimal designs (resp. A-optimal designs) for one single factor, i.e., it corresponds to 17) for the two cases t * unknown (solid lines) and t * known (dashed lines) for ǫ = 0.1 and ǫ = 0.5.

2: Left: τ * (p) such that ξ τ * (p) = ξ * p is φp-optimal for p (solid line) and τ (p, ǫ) such that max s∈[-1,1] x ⊤ (s)M -(p+1) (ξ τ (p,ǫ) )x(s) = tr[M -p (ξ τ (p,ǫ) )] + ǫ (ǫ = 0.1 and ǫ = 0.5, dashed lines). Right: bound C(ξ τ (p,ǫ) , p) in (
The curves for ǫ = 0.5 are marked with crosses.

the cross product of two designs ξ τ with τ = 1/3 (resp. τ = 1/4), see Schwabe (1996, Chap. 4 and 5). The optimal values of φ p , p = 0, 1, are φ * 0 = 16 1/3 /9 ≃ 0.2800 and φ * 1 = 9/64 ≃ 0.1406. We consider the iterative construction of optimal designs through the recursion

w k+1 i = w k i [x ⊤ i M -(p+1) (ξ k )x i ] a N k i=1 [x ⊤ i M -(p+1) (ξ k )x i ] a , (19) 
where ξ k , the design measure at iteration k, allocates mass w k i at the point x i present in X at iteration k, i = 1, . . . , N k . The initial design space corresponds to a uniform grid for s, with s i varying from -1 to 1 by steps of 0.01 (201 values), i = 1, 2, which gives N 0 = 40 401. The initial design ξ 0 is the uniform measure on those N 0 points. We take a = 1 for D-optimal design (p = 0) and a = 1/2 for A-optimal design (p = 1), which ensures monotonic convergence to the optimum, see [START_REF] Titterington | Algorithms for computing D-optimal designs on a finite design space[END_REF] and [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] for D-optimal design and [START_REF] Torsney | A moment inequality and monotonicity of an algorithm[END_REF] for A-optimal design; see also Fig. 3-left. One may also refer to [START_REF] Silvey | An algorithm for optimal designs on a finite design space[END_REF] for a general class of multiplicative algorithms and to [START_REF] Dette | Improving updating rules in multiplicative algorithms for computing D-optimal designs[END_REF] for an improved updating rule yielding accelerated convergence. Due to the convergence of ξ k to the optimal design, ǫ k = ǫ(ξ k )

given by ( 3) is decreasing with k, see Fig. 3-right.

We use inequality (17) to reduce the cardinality N k of X when possible: any point that violates (17) cannot be a support point of the optimal measure and is removed from X . Here we simply set its mass to zero and rescale the weights of remaining point so that they sum to one, but more sophisticated reallocation rules can be used, see [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF]. N k thus decreases with k, rendering the iterations (19) simpler and simpler as k increases. Figure 4 shows the evolution of N k with k, both for D-optimal and A-optimal designs (in dashed and solid line respectively): cancelation of points is performed at every iteration for the continuous curves, every 10th iterations only for the staircase curves.

The decrease of N k is faster for D-optimal design than for A-optimal design, the bound C(ξ, p) in ( 17) being more pessimistic for the latter, see Fig. 2-right, and ǫ being larger, see Fig. 3-right. Note that the cancelation of points does not hamper the convergence of ( 19) since ( 17) is used a finite number of times only (obviously bounded by N 0 ) -the heuristic rule used to reallocate weights of points that are removed may, however, impact monotonicity, although this is not the case in the present example, see Fig. 3-left. Also, the effect of cancelation on the behaviors of φ(ξ k ) and ǫ k = ǫ(ξ k ) (Fig. 3) is negligible: the acceleration of the algorithm is only due to the reduction of the cardinality N k . Taking as reference t c = 1 the computing time for 1 000 iterations of the recursion (19) for D-optimal design with cancelation of points at each iteration, we get t c = 11.5 for D-optimal design without cancelation, and t c = 12.15, t c = 2.8, for A-optimal design, respectively without and with cancelation at each iteration. Cancelation need not be checked at each iteration though, and the computing times become t c = 0.87 and t c = 2.4 for D-and A-optimal designs respectively when the condition ( 17) is used each 10th iteration only (see the staircase curves on Fig. 4). Clearly, a suitable adaptation of the frequency of cancelation of points to the decrease of N k might provide further reductions in computing time.

Possible extensions and conclusions

Multivariate regression and Bayesian optimal design involve information matrices that can be expressed as M(ξ) = X M (x) ξ(dx) with M (x) ∈ M having rank larger than one (we suppose 10 17) to remove points from X ; for D-optimal design (dashed line)

and A-optimal design (solid line). The condition ( 17) is used every iteration for the continuous curves, every 10th iteration for the staircase curves.

that M (•) is measurable and that {M (x), x ∈ X } forms a compact subset of M). The results presented here can easily be extended to that situation, following the same lines as in [START_REF] Harman | Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices[END_REF] where the case p = 0 is considered.

The

E-optimality criterion φ E (ξ) = Φ E [M(ξ)] = λ min [M(ξ)] is not differentiable in general,
but Φ E (•) is differentiable at M when λ min (M) has multiplicity one, with gradient ∇φ E (M) = vv ⊤ where v denotes the eigenvector of unit length (unique up to a sign change) associated with λ min (M). Although φ E (ξ) corresponds to the limit of φ + p (ξ) as p tends to infinity, the results of Sect. 3 do not extend to this limiting situation, even in the differentiable case; E-optimality thus requires a special treatment and will be considered elsewhere.

The determination of a D-optimal design can be used for maximum-likelihood estimation in mixture models, see, e.g., [START_REF] Lindsay | The geometry of mixture likelihoods: a general theory[END_REF] and [START_REF] Mallet | A maximum likelihood estimation method for random coefficient regression models[END_REF], and for the construction of the minimum-volume ellipsoid containing a compact set, see, e.g., [START_REF] Sibson | Discussion on a paper by H.P. Wynn[END_REF], [START_REF] Khachiyan | On the complexity of approximating the maximal inscribed ellipsoid for a polytope[END_REF] and [START_REF] Khachiyan | Rounding of polytopes in the real number model of computation[END_REF]. More generally, for any q ∈ (-1, ∞) the determination of the ellipsoid E (A) = {z ∈ R m : z ⊤ Az ≤ 1}, A ∈ M, containing the k points x 1 , . . . , x k of R m and such that φ q (A) is maximum is equivalent to the determination of a φ p -optimal design on X = {x 1 , . . . , x k } with p = -q/(1+q) ∈ (-1, ∞), and the optimal matrix A * equals M -(p+1) * /t * ; see Pukelsheim (1993, Chap. 6). The delimitation of the support points of a φ p -optimal design can therefore also be used to accelerate the algorithmic construction of "φ q -optimal ellipsoids" containing compact sets. Note that, as illustrated in [START_REF] Pronzato | Removing non-optimal support points in D-optimum design algorithms[END_REF][START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF], a more substantial acceleration than in the optimal design example of Sect. 4 can be expected.

In Sect. 4, we considered the suppression of points that cannot be support points of an optimal design in a multiplicative algorithm. When X is not finite, or is finite but very large, it is advisable to use a vertex-direction or a vertex-exchange algorithm, see, e.g., [START_REF] Fedorov | Theory of Optimal Experiments[END_REF], [START_REF] Wu | Some algorithmic aspects of the theory of optimal designs[END_REF] and [START_REF] Böhning | A vertex-exchange-method in D-optimal design theory[END_REF]. This requires the determination at each iteration, say iteration k, of a point xk of X that maximizes F φp (ξ k , x) given by (2), at least approximately. Condition (17) of Theorem 2 can then be used to restrict the search for a suitable xk in a domain that shrinks as k increases. Further developments are required to construct algorithms making an efficient use of ( 17) for the inclusion of new support points.

The substitution of [ω * 1 (b 1 /t, γ * )] p+1 for λ 1 in (7) concludes the proof for the case when t * is known.

(iii) When t * is unknown, an upper bound can be substituted for t * in (12). Using (15), ( 16), this amounts at replacing γ * by the upper bound γ = max{1, (1 + ǫ/t) -p }. The necessary conditions ( 9), (10) with λ 1 = [ω * 1 (b 1 /t, γ)] p+1 then give (17).

  tr(H -1 M -p ) ≤ t * . Consider the spectral decomposition H = SΛS ⊤ , with SS ⊤ = S ⊤ S = I m and Λ the diagonal matrix whose diagonal elements are the eigenvalues λ i of H sorted by increasing values. Denote B = S ⊤ M -p S and b i = {B} ii its diagonal elements, i = 1, . . . , m. B has the same set of eigenvalues as M -p and 0 < b 1
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 1 Figure 1: Value of C(ξτ , p) for different designs ξτ , τ ∈ [3/16, 5/16] (p = 1, t * unknown in solid line, t * known in dashed line).
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  Figure 2: Left: τ * (p) such that ξ τ * (p) = ξ *

Figure 3 :

 3 Figure 3: φ(ξ k ) -left -and ǫ k = ǫ(ξ k ) given by (3) -right -as functions of k for the recursion (19);D-optimal design is in dashed line, A-optimal design is in solid line.

Figure 4 :

 4 Figure4: N k as a function of k when using (17) to remove points from X ; for D-optimal design (dashed line)
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Appendix

Proof of Th 2. The proof is in three parts. In (i) we show that for given α and γ * the equations ( 13), ( 14) with ω 1 ≤ ω 2 have a unique solution ω * 1 (α, γ * ) for ω 1 , with ω * 1 (α, γ * ) ∈ ((α/γ * ) 1/(p+1) , (1/γ * ) 1/(p+1) ]. Then in (ii) we show that this solution is non-decreasing in α, so that the required lowest bound is obtained for α = b 1 /t, see (11). Finally, in (iii) we consider the case when t * is unknown.

(i) Expressing ω 2 as a function of ω 1 using (13), we obtain ω 2 = f 1 (ω 1 ) = (1+β-αω 1 )/(1-α), i.e., a decreasing linear function of ω 1 with slope -α/(1 -α) and such that f 1 [(1 + β)/α] = 0. Doing the same with ( 14), we obtain ω 2 = f 2 (ω 1 ) with f 2 (•) decreasing and concave for ω 1 ∈ ((α/γ * ) 1/(p+1) , ∞), f 2 (θ) tending to infinity when θ approaches (α/γ * ) 1/(p+1) from above and lim θ→∞ f 2 (θ) = 1/α -1. Note that (15), ( 16) imply that (α/γ * ) 1/(p+1) < (1/γ * ) 1/(p+1) <

(1 + β)/α. Therefore, f 2 (θ) > f 1 (θ) for θ close enough to (α/γ * ) 1/(p+1) or large enough.

Denote f ′

2 (θ) = df 2 (θ)/dθ and consider

) when β > 0, i.e., when ǫ > 0, due to (15) and ( 16). Two solutions ω * 1,a , ω * 1,b thus exist for ( 13), ( 14), with ). The equations ( 13) and ( 14) with ω 1 ≤ ω 2 thus always have a unique solution ω * 1 (α, γ * ) and this solution belongs to the interval ((α/γ * ) 1/(p+1) , θ * ].

(ii) Applying the implicit function theorem to ( 13), ( 14) we obtain that the solution ω * 1 (α, γ * ) satisfies

where z = ω * 2 /ω * 1 ≥ 1. Denote f (z) = (p+1)(1-z)+z(z p+1 -1), its derivative is df (z)/dz = (p+ 2)(z p+1 -1) so that f (z) ≥ f (1) = 0. Since (11) gives α ≥ b 1 /t, one has ω * 1 (α, γ * ) ≥ ω * 1 (b 1 /t, γ * ).