$L^p$-theory for the tangential Cauchy-Riemann equation
Résumé
We are interested in $L^p$-theory for the tangential Cauchy-Riemann operator in locally embeddable, $s$-concave, generic CR manifolds. We study the Dolbeault isomorphism and develop the Andreotti-Grauert theory in that setting. Using Serre duality, we solve the tangential Cauchy-Riemann equation with exact support and $L^p$-estimates.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...