A Hybrid Metaheuristic for Multiobjective Unconstrained Binary Quadratic Programming - Archive ouverte HAL
Rapport Année : 2013

A Hybrid Metaheuristic for Multiobjective Unconstrained Binary Quadratic Programming

Résumé

The conventional Unconstrained Binary Quadratic Programming (UBQP) problem is known to be a unified modeling and solution framework for many combinatorial optimization problems. This paper extends the single-objective UBQP to the multiobjective case (mUBQP) where multiple objectives are to be optimized simultaneously. For the purpose of approximating the Pareto set, we propose a hybrid metaheuristic which combines an elitist evolutionary multiobjective optimization algorithm and a state-of-the-art single-objective tabu search procedure by using an achievement scalarizing function. Finally, we define a formal model to generate diverse mUBQP instances and show the interest of the proposed approach in obtaining competitive results on large-size mUBQP instances with two and three objectives.
Fichier principal
Vignette du fichier
hybrid-mubqp.pdf (1.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00801793 , version 1 (18-03-2013)
hal-00801793 , version 2 (03-06-2013)
hal-00801793 , version 3 (15-11-2013)

Identifiants

  • HAL Id : hal-00801793 , version 1

Citer

Arnaud Liefooghe, Sébastien Verel, Jin-Kao Hao. A Hybrid Metaheuristic for Multiobjective Unconstrained Binary Quadratic Programming. 2013. ⟨hal-00801793v1⟩

Collections

LIFL
724 Consultations
754 Téléchargements

Partager

More