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Abstract

The conventional Unconstrained Binary Quadratic ProgrargrfUBQP) problem is known to be a unified modeling and soluti
framework for many combinatorial optimization problemshid paper extends the single-objective UBQP to the mukicibje
case (MUBQP) where multiple objectives are to be optimimedaneously. For the purpose of approximating the Pasetpwe
propose a hybrid metaheuristic which combines an elitistigionary multiobjective optimization algorithm and at&-of-the-art
single-objective tabu search procedure by using an admerescalarizing function. Finally, we define a formal mddejenerate
diverse mUBQP instances and show the interest of the prdmgggroach in obtaining competitive results on large-siziBQP
instances with two and three objectives.

Key words: Unconstrained binary quadratic programming, Multiobjgctombinatorial optimization, Hybrid Metaheuristic,
Evolutionary Multiobjective Optimization, Tabu searcltafarizing function

1. Introduction search [12, 13, 14, 15, 16], path-relinking [17], as wellas-¢e
lutionary and memetic algorithms [18, 19, 20, 21].
The conventional and single-objective unconstrainedrfina
quadratic programming (UBQP) problem is to maximize the
function:

In this paper, we extend this conventional single-objectiv
UBQP problem to the multiobjective case, denoted by mUBQP,
where multiple objectives are to be optimized simultangous
Such an extension naturally increases the expressive pafwer
na the UBQP and provides a convenient formulation to fit situa-
f(x) = xXQx= Z Z ij Xi X; (1) tions where the single-objective UBQP cannot accommodate.
=1 j=1 For instance, it is known that the UBQP can be used to recast
whereQ = (q;) is ann by n matrix of constant values and each of two following graph coloring problems: the vertek co
is a vector ofn binary (zero-one) variablesge., % € {0,1}, i ¢~ ©fing problem (which s to de_termlnethe chro_ma_tlc number (_)f
(1,....n. graph) [5] and the sum coloring problem (which is to detelmin
The UBQP is known to be a very general model able to reprelh€ chromatic sum of a graph) [22]. Still, UBQP is not conve-
sent a wide range of important problems, including thosefro Ni€nt to formulate the bi-objective coloring problem whieh
financial analysis [1], social psychology [2], computeresld 9uires to _determmealegal vertex coloring of a graph while-m
design [3] and cellular radio channel allocation [4]. More-Mizing simultaneously the number of colors used and the sum
over, a number of NP-hard problems can be transformed int8f c0lors. For this bi-objective coloring problem, the mUBQ
the UBQP, such as graph coloring problems, maxcut problenformulation can be employed in a straightforward way.

set packing problem, set partitioning problem, maximurmuei In addition of introducing the mUBQP problem, the paper
problem and so on [5, 6]. As a consequence, the UBQP ittargets two other goals. First, given that the single-dhjec
self is clearly a NP-hard problem [7]. During the past few UBQP is NP-hard, its generalized mUBQP formulation is also
decades, a large number of algorithms and approaches hagedificult problem to solve in the general case. For the pur-
been proposed for the single-objective UBQP in the litesatu pose of approximating the Pareto set of a given mUBQP in-
This includes several exact methods based on branch andbougance, heuristic approaches will be indispensable. Wollp
or branch and cut [8, 9, 10] as well as a number of heuristighe studies on memetic algorithms for the UBQP as well as
and metaheuristic methods like simulated annealing [Bblit  many other problems, we adopt as our solution approach the
memetic framework and propose a hybrid metaheuristic which
. combines an elitist evolutionary multiobjective optintina al-
“Corresponding author, Tek:33 3 59 35 86 30. gorithm with a state-of-the-art single-objective tabursbgro-
Email addressesarnaud.liefooghe@univ-1illel.fr . . .
(Arnaud Liefooghe)yere1@i3s.unice. fr (Sébastien Verel), cedure based on an achievement scalarizing function. e la
hao@info.univ-angers.fr (Jin-Kao Hao) goal of the paper is to define a formal and flexible model to




generate hard mUBQP instances and show the interest of ti#3. Properties

proposed solution approach in obtaining competitive tesar
large-size mUBQP instances with two and three objectives.

For many multiobjective combinatorial optimization prob-
lems, computing the Pareto set is infeasible for two main rea

The paper is organized as follows. In Section 2, our multi-gqns First, deciding if a candidate solution is Paretonoatis

objective formulation of the UBQP problem (mUBQP) is intro-

known to be NP-complete for numerous multiobjective combi-

duced, together with some properties and definitions. The hy,atorial optimization problems [23, 24]. This is also theea
brid metaheuristic (HM) proposed for the mUBQP and its maing,; tpe mUBQP problem since its single-objective counterpa

ingredients are presented in Section 3, including the szalg
evaluation function, the tabu search procedure, the liziditon
phase and the variation operators. An experimental agadysi

is known to be NP-hard [7]. Second, the number of Pareto opti-
mal solutions typically grows exponentially with the siZelte
roblem instance [24]. In that sense, most multiobjectm<

our HM algorithm is conducted in Section 4 on a large set ofyinatorial optimization problems are said toib&ractable In
mUBQP instances of fierent structure and size. Conclusionspe following, we show that the mUBQP problem is intractable

and further research are discussed in the last section.

2. Multiobjective Unconstrained Binary Quadratic Pro-
gramming

This section first introduces the multiobjective uncoriated

binary quadratic programming problem. Some definitions re-

lated to multiobjective combinatorial optimization aretthre-
called, followed by problem complexity-related propestand
a link with similar problem formulations. At last, the const-
tion of problem instances, together with an experimental\st
on the objective values correlation and the cardinalityhef t
Pareto set, are presented.

2.1. Problem Formulation
The multiobjective unconstrained binary quadratic pragra
ming (MUBQP) problem can be stated as follows.

n n
max fi(X) = Z Z af %X

i=1 j=1
subject tox; € {0, 1}

kef{l,...,m}

)

ief{l,....n}

wheref = (f, f2,..., fy) IS an objective vector function with
m> 2, nis the problem size, and we hawvematricesQ* = (qf))
of sizen by nwith constant value% € {1, ..., m}. The decision
spaceX is defined on binary strings of size

2.2. Definitions

Let X = {0, 1}" be the set of feasible solutions in tlecision
spaceof Problem (2). We denote % C R™ the feasible region
in theobjective space.e.,the image of feasible solutions when
using the vector maximizing functioh The Pareto dominance
relation is defined as follows. A solutione X is dominated
by a solutionx’ € X (denoted byx < X) if fx(X) < fi(X) for
allk e {1,...,m}, and3k € {1,..., m} such thatfi(x) < fx(X).
If neitherx £ X’ norx’ £ x holds, then both arsutually non-
dominated A solutionx € X is said to bePareto optimal(or

Proposition 1. The multiobjective unconstrained binary
quadratic programming problem (2) is intractable, even for
m= 2.

Proof. Consider the following bi-objective mUBQP instance.
on(i-1)- G2+ j-1

qilj={0

Letq] = —qj foralli, j € {1,...,n}. Asillustrated in Figure 1
forn = 3, itis obvious to see that all solutions are mutually non-
dominated. Therefore, all feasible solutions are Paretiona,
and|Xp5| =X = 2", O

if i > ]

iti < j i,je{l,...,n}

To cope with NP-hard and intractable multiobjective com-
binatorial optimization problems, researchers have betar-i
ested in developing approximate algorithms. As a consemgjen
the goal is often to identify a gooBareto set approxima-
tion, having both good convergence and distribution properties
[25, 26]. To this end, metaheuristics in general, and eiaidt
ary algorithms in particular, have received a growing ieser
since the late eighties [27].

2.4. Links with Existing Problem Formulations

In its single-objective form, the UBQP problem is of high in-
terest in practice, since many existing combinatorialrojza-
tion problems can be formalized in terms of UBQP. This def-
inition includes linear assignment, knapsack, set cogeset
partitioning, set packing, graph coloring, maxcut, and imax
mum clique problems, just to mention a few [5, 6]. As a con-
sequence, multiobjective versions of these problems cmpo
tially be defined in terms of mUBQP. However, to the best of
our knowledge, the UBQP problem has never been explicitly
defined in the multiobjective formulation given in Eg. (2).

Existing multiobjective formulations of classical comaio-
rial optimization problems with binary variables includelii

efficient, non-dominated) if there does not exist any other soebjective linear assignment problems, multiobjectivepgsak

lution X' € X such thatx’ dominatesx. The set of all Pareto
optimal solutions is called theareto setdenoted byXps, and
its mapping in the objective space is called tPereto front

problems, or multiobjective set covering and partitiongmgb-
lems [24, 28, 29]. Nevertheless, the objective functionsuzh
formulations are linear, and not quadratic as in mUBQPI, Stil

One of the most challenging issue in multiobjective combinathey often contain additional constraints; typically thrémod-

torial optimization is to identify a minimal complete Parset,

ularity of the constraint matrix for linear assignment, loe ta-

i.e., one Pareto optimal solution mapping to each point frompacity constraint for knapsack. This means that existingutyi
the Pareto front. Note that such a set may not be unique, sincaultiobjective combinatorial optimization problems camnfbr-
multiple solutions can map to the same non-dominated vectormalized in terms of mMUBQP by adapting and generalizing the
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Figure 1: Enumeration of all feasible solutions for the mUBgroblem instance considered in the proof of Propositiofitfe input data of th&@'-matrix (left),
the enumeration of feasible solutions (middle), and thregresentation in the objective space (right). The problemisn = 3.

techniques from [5] to the multiobjective case, whereaofire  (iii) the number of objective functions, and {v) the objec-
posite does not hold in general due to the quadratic nature dive correlation cofficientp. We make the mUBQP problem

mUBQP. instances investigated in the paper as well as an instameg-ge
ator available at the following URILittp: //mocobench.sf.
2.5. Problem Instances net/.

mUBQP problem instances could be designed in multiple
ways. For instance, each objective function could be inde- o
pendent, or could be defined as well-known problem objectivé-6- Cardinality of the Pareto Set
functions like in knapsack, linear assignment, set partitig,
and so on. In this section, we analyze the impact of the mUBQP prob-
In this work, we propose to define correlated mUBQP problem instance features (in particulds,m andp) on the number
lem instances as follows. Each objective function is define®f Pareto optimal solutions. The Pareto set cardinalitygpla
by means of a matriQ¥, k € {1,...,m}. Based on the single- an important role on the problem complexity (in terms of in-
objective UBQP instances available in the OR-lib [30], marik  tractability), and then on the behavior and the performarice
matrix integer values are randomly generated according to olution approaches. Indeed, the higher the number of ®aret
uniform distribution in 100, +100]. As in the single-objective optimal solutions, the more computational resources redui
case, the density gives the proportion of non-null numbers in to identify a minimal complete Pareto set.

the matrix. In order to define matrices of a given dendjtwe We setn = 18 in order to enumerate the decision space ex-
setq}‘. = 0forallk € {1,...,m} at the same time, following a haustively. The measures reported are the average valees ov
Bernoulli distribution of parametet. 30 different and independent mUBQP instances of same struc-

Moreover, we define a correlation between the data containere. Figure 3 gives the proportion of Pareto optimal sohai
in themmatricesQ¥, k € {1,...,m}. The positive (respectively The matrix densityd has a low influence on the results. How-
negative) data correlation decreases (respectivelyases the ever, the number of objective functiomsand the objective cor-
degree of conflict between the objective function valuest Forelationp both modifies the proportion of Pareto optimal solu-
the sake of simplicity, we here consider the same correlatiotions to several orders of magnitude. Indeed, this proporti
between all pairs of objective functions, given by a cotieta  decreases from 1 for p = —0.9 to 10°° for p = +0.9 for two-
codficientp > m‘—_ll The generation of correlated data follows and three-objective mUBQP problem instances. As well, for a
the procedure givenin [31], based on a multivariate uniftasmn ~ negative objective correlatign = —0.2, this proportion goes
of dimensionm. In order to validate the behavior of the objec- from 10 up to 10!, whereas it goes from 1B up to 103
tive correlation cofficient experimentally, we conduct an em- for a positive objective correlation = +0.9, form = 2 and
pirical study fom = 18 in order to enumerate the decision spacem = 5, respectively. Figure 4 shows three examples of mMUBQP
exhaustively. Figure 2 reports the average value of therSpeaproblem instances represented in a two-objective space@nwWh
man correlation cdécient over 30 dierent and independent the objective correlation is negative, the objective fiort are

instances for dierent parameter combinationg; m, andd. in conflict, and the Pareto set is large (left). When the objec
The correlation co@cientp clearly allows to tune the objective tive correlation is null, the objective space can be embeédtue
correlation very precisely. a multidimensional ball (middle). At last, when the objeeti

To summarize, the four parameters used to define a mUBQ®E&orrelation is positive, there exists few solutions in tlzedfo
instance arei) the problem sizen, (ii) the matrix densityd, set (right).



Objective correlation

Figure 2: Correlation between the objective function valaecording to the correlation déieientp. The average value of the Spearman correlatiorfficient is
reported. The decision space is enumerated exhaustively 018 on a set of 30 independent random instances. The numbéjeaftives ism = 2 (left) and

m = 3 (right).
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Figure 4: Representation of feasible solutions of a mUBQ@lem instance in a two-objective space. The problem sime=id8, the Q-matrix density id = 0.8,
the number of objective functions s = 2, and the objective correlation is= —0.9 (left), p = 0.0 (middle) ando = 0.9 (right). Green points are the objective
vectors of random solutions (10% of the decision space,sire) red points corresponds to non-dominated objectiviorgec

3. A Hybrid Metaheuristic for mUBQP Algorithm 1 Pseudo-code of our hybrid metaheuristic (HM)
for mUBQP
The hybrid metaheuristic proposed for the mUBQP prob- |nput: matrix Q (dimensiormx n x n)

lem is based on a memetic algorithm framework [32], which Qutput: Pareto set approximatiok
is known to be an féective approach for discrete optimiza- S _ .
tion [33]. Our approach uses one of the best performingeingl 1: initialize the archiveA /* see Section 3.4/

objective local search algorithm as one of its main compo- 2: repeat
nents [12, 13]. 3:  randomly select two individuals, x; from A

4: X« recombiney;, x;) /* see Section 3.5/

5. X* « tabusearchg) /* see Section 3.3/

6: A« non-dominated solutions fromA\U {x*})
Memetic algorithms constitute a whole class of hybrid meta- 7: until a stopping condition is satisfied

heuristics combining an evolutionary algorithm and a local

search algorithm. In particular, this class includes gersetd

tabu search hybrid approaches [34]. We focus on multiobgct s further improved by means of a tabu search algorithm (Sec-
memetic algorithms [35] whose goal is to find an approximation 3.3). The evaluation function used by tabu search isdas
tion of the whole Pareto set (not only a subpart of it). A sienpl on an scalarizing technique of the initial objective funotizal-
elitist multiobjective population-based evolutionarg@iithm  yes (Section 3.2). The corresponding achievement scalgriz
operates as the main metaheuristic, whereas an advangél sinfunction is defined in such a way that the tabu search proeedur
solution-based local search is used as an improvementtoperafocyses its search within the objective space area encloged
in place of the mutation step. Keeping the exploratienex-  the positions of parent solutions. Another crucial compne
ploitation trade-& in mind, the idea behind such an approach isof our HM algorithm appears at the initial phase (Sectior),3.4
that the evolutionary algorithm willféer more facilities for di-  \yhere a computationaffert is made in order to identify close-
versification, while the local search algorithm will proeithore  t5_gptimal solutions located at the extreme regions of tije@
capabilities for intensification. tive space. The algorithm is iterated until a user-givepjsing

An outline of our hybrid metaheuristic (HM) is given in condition is satisfied. The main components of our HM algo-
Algorithm 1. The search space under consideration iS COMyithm are detailed below.

posed of all binary vectors of sizg i.e., the decision space
X =1{0, 1}". The size of the search space is then equaltd Be
evaluation function is the canonical objective functiownegi in
Eq. (2). An unboundedrchive or population, of mutually non- The tabu search procedure, that will be presented later in
dominated solutions found so far is maintained with respeect the paper, is known to be very well-performing for solving
the Pareto dominance relation defined in Section 2.2. Inrothesingle-objective UBQP instances offigirent structures and
words, throughout the search process, solutions are disdar sizes [12, 13, 14, 15, 16]. Of course, given that it manipu-
as soon as they are detected to be dominated by at least olages a single solution only, a scalarization of the mudtipbjec-
other solution from the archive. Equivalent solutions dema tive functions is required due to the multiobjective natofréhe
eliminated. At each iteration, two parents are selectedm@t r mUBQP. The goal here is to temporarily transform the mUBQP
dom from the archive and then recombined to produce a singlproblem into a single-objective one so that the tabu sedrch a
offspring solution (Section 3.5). The newly generated satutio gorithm can be used in a straightforward way. Many general-
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3.1. General Principles

3.2. Achievement Scalarizing Function



purpose scalarizing functions have been proposed for ofdlti are located on the convex hull of the Pareto front. On the con-
jective optimization [36], generally with the aim of incarp trary, the achievement scalarizing function potentialligvas to
rating preference information coming from a decision-make identify both supported and non-supported Pareto optimal s
Here, the matter is somehowfiirent since we are interested lutions [36]. Successful integrations of the achievemealss-
in approximating the whole Pareto set. Hence, the paraseteizing function into evolutionary multiobjective optimitian al-
required by the scalarizing function under consideratiedy-  gorithms can be found in [40, 41, 42].
namically set according to the current state of the search pr
cess. This will be discussed in Section 3.5. 3.3. Tabu Search

In multiobjective memetic algorithms, the most popular
scalarizing function is the weighted-sum aggregation £33,
where a weighting cd&cient vector represents the relative im-

Zg\r/fns(i:ri Olzc?tachth(?gj(;cuvri;iﬂcggre]é I:](;\;vz\l/l(e)\r,,v dtisliod'teeritifyra to extend it to the multiobjective case, we consider theaahi
plCTLy, PP ment scalarizing function, so that the initial objectivectos

number of Pareto optimal solutions, whose correspondimng no . . .
: o values are transformed into a single scalar value. Notioe; h
dominated objective vectors are located on the convex Hull o

. . ever, that the nature of the evaluation function considaréue
the Pareto front [24, 36]. Another example is tiehievement ' i :
. T . o . aper has a dfierent structure than the classical evaluation func-
scalarizing function proposed by Wierzbicki [38]. This tech- bap

nique is particularly well-suited to work with referenceis. tion of single-objective UBQP. We describe the main prifesp

L . of the tabu search below.
A reference point gives desirable or acceptable valuesdion e . . .
o . o . The neighborhood structure is based on the 1-flip operator.
objective function. These objective values are calsgira-

tion levelsand the resulting objective vector is callededer- Two feasible solutions are neighbors if theyrelf exactly on

: ; ) . . : ne variable. In other wor iven neighbor can reach
ence pointand can be defined either in the feasible or in the0 e variable other words, a given neighbor can be reached

infeasible region of the objective space. One of the famitie by changing the vaIU(_a of a blna_ry variable tq Its cpmplement
. . . from the current solution. The size of the 1-flip neighborthoo
achievement scalarizing functions can be stated as follbeis

FT o : structure is linear with the problem size As in the single-
us recall that the maximization of the objective functions a N oo .
here assumed. objective UBQP, each mUBQP objective function can be eval-

uated incrementally. We follow the fast incremental evabra

The following tabu search algorithm, used as a subroutine
of our HM, is reported to be one of the best-performing ap-
proaches for the single-objective UBQP problem [13]. Inesrd

_ procedure presented in [43] to calculate the move gain of a
TEa9( = max {/lk(z{‘ - fk(x))} ®) given neighboring solution. For a given objective functitive
m whole set of neighbors can be evaluated in linear time. As a
+ EZ /lk(i - fk(X)) consequence, the objective values of all neighboring iswlst
k=1 are evaluated i@(m - n) in the multiobjective case. Once the

whereo is a mapping function fronX to R, x € X is a feasi- objective values of a given neighboring solution have béen (
ble solution,Z € R™ is a reference point vectat, € R™ is a crementally) evaluated, we compute its scalar fitness wailiine

weighting codficient vector, and is an arbitrary small positive "€SPect 0 Eq. (3).

number (O< € < 1). Notice that we keep theparameter con- _ AS @ short-term memory, we maintain the tabu list as follows.
stant throughout the search process. The following achiené Rewsmng solutions is avoided within a certain pumbengfa-
scalarizing optimization problem can be formalized. tions, called the tabu tenure. Ttebu tenureof a given variable
x; is denoted byenurdi). Hence, variable; will notbe flipped
min - o 1.6(X) (4) again for a number ofenurdi) iterations. Following [20], we
subjectto  xe X set the tabu tenure of a given varialj@after it has been flipped
as follows.

Interestingly, two properties are ensured [39]: ‘ i) = tt 4(10) 5)
enurdi) = tt+ran

(i) if x* = argminex oz 1.¢(X), thenx* is a Pareto optimal

solution: wherett is a user-given parameter arahd(10) gives a random

integer value between 1 and 10. From the set of neighboring so
(i) if x* is a Pareto optimal solution, then there exists a funclutions produced by all non-tabu moves, we select the orte wit
tion (s 1.9 Such thatx* is a (global) optimum of Prob- the best (smallest) fitness value according to Eq. (3). ldidee
lem (4). us recall at this point that the aim of the tabu search algorit
is to find a good approximate solution for Problem (4), for a
This makes the achievement function very attractive coegbar given definition ofZ andA. However, notice that all neighbor-
to simpler forms of scalarizing functions. Indeed, as restic ing solutions are always evaluated, and that a tabu move can
earlier, only a subset of Pareto optimal solutions, knowsugs  still be selected if it produces a better solution than the cu
ported solutions [24], can be found within a weighted-sum agrent global best. This is called an aspiration criterionabu
gregation function, since the second propeiiyig not satisfied. search. The stopping condition of the tabu search algorishm
Those solutions are known as supported Pareto optimal solumet when no improvement has been performed within a given
tions, and their corresponding non-dominated objectivéors  number of movesa. The parameter is called themprovement



cutgf. For more details on the tabu search algorithm for the A A
single-objective UBQP, the reader is referred to [13, 20]. f g

3.4. Initial Phase

The goal of the initial phase is to identify good-quality so-
lutions with respect to each objective function of the mUBQP
i.e.,solutions mapping to the extreme points of the Pareto front
in the objective space. This set of solutions initializesgbarch
process in order to ensure that our HM provides a good cover-
ing of the Pareto front. To this end, we define the following
achievement scalarizing function parameter setting. Wehse
reference poin’ = {Z"...,Z3*} such thatZ"* is higher
than any possibléy-value. This (unfeasible) objective vec-
tor can be seen as a rough approximation of the utopia point

\

[24, 36]. Now, let us consider a particular objective func- fi
tionk € {1,...,m}. We setily = 1, and4, = 0 for all
lefd,...,m\ {k}. Figure 5: Graphical representation of the improvement @iraa two-objective

. . . space, where; andx; are the parent solutions,is the dfspring solution and
The tabu search aIgorlthm, seeded with a random solution, Ig is the solution improved by means of the tabu search proegtivough the

then considered with the corresponding achievement szalar achievement scalarizing evaluation function defined byréfierence point’
ing function as an evaluation function. Those initial sming  and the weighting cagcient vector..

have a high impact on the performance of our HM, particularly

in terms of diversification. As a consequence, we perfgrm
independent restarts of the tabu segpeh objective function
in order to increase the chance of getting very high-perfiogm
solutions in all extreme regions of the Pareto front. Thicpss
is iterated for every objective function of the mUBQP prable
instance under consideration.

4. Experimental Analysis

This section presents an experimental analysis of the pro-
posed approach on a broad range of mMUBQP problem instances.

4.1. Experimental Design

3.5. Variation Operator In the following, we conduct an experimental study on the

At each iteration of our HM algorithm, a singlefspring  influence of the problem sizey), the number of objectivesn),
solution is created by a recombination operator. First, ewe s and the objective correlatiop) of the mUBQP problem on
lect two mutually non-dominated parent solutions at randonthe performance of the HM algorithm proposed in the pa-
from the current archive, x; € A such thats # x;. Then, Per. In particular, we investigate the following parameset-
an dfspring solution is created with uniform crossover. Com-ting: n € {100Q200Q 300040005000, m € {2,3}, and
mon variables between both parents are thus assigned to the€ {-0.5,-0.2,0.0,+0.2,+0.5}. The density of the matrix is
offspring solution, while the remaining ones are assigned a€t tod = 0.8. One instance, generated at random, is consid-
random. The fispring solution is further improved by means eredper parameter combination. This leads to a total of 50
of the tabu search procedure presented in Section 3.3. Her@[oblem instances.
we aim at obtaining a new solution in an unexplored region of We compare the performance of our algorithm against a
the Pareto front by defining the parameters of the achievemegteady-state evolutionary algorithm that follows the satnec-
scalarizing function properly. The procedure attemptsrtd §  ture as the HM, but where the tabu search is replaced by a ran-
non-dominated point that “fills the gap” between the objecti dom mutation. This allows us to appreciate the impact of the
vectors associated with andx;. The region of the objective tabu search and scalarizing procedure on the performartie of
space where the tabu search algorithm operates is then-delifaroposed approach. The same initialization phase is applie
ited by the position of parent solutions, given by the foilogy ~ Then, at each iteration, arffspring solution is created by uni-

definition of the achievement scalarizing function. form crossover and an independent bit-flip operator is adpli
i.e., each variable is randomly flipped with a probabilitynl
Z = max f(x;), f(xj)} ke{l,...,m} (6)  We refer to this algorithm as SS-EA, for steady-state eiahdt

1 ary algorithm. We also compare the results of the algorittans

A = m ke{l....m (") abaseline algorithm, the well-known NSGA-I11 [44]. NSGA-II

maintains a population of constant size, initialized atdan,
This procedure allows our HM to improve, at each iteration, aand produces the same number @6pring solutions at every
particular part of the Pareto front, dynamically choserhwé- iteration. Selection for reproduction and replacementisell
spect to the pair of parent solutions under selection. Tleeadv  on dominance-depth ranking first, and on crowding distamce a
variation procedure is illustrated in Figure 5. second-level. A binary tournament is used for selectiow, an



Table 1: Parameter setting used in the paper for the expetainanalysis.

Description | Parameter| Value(s)
Instances
Problem size n {100Q 200Q 300Q 400Q 5000
Matrix density d 0.8
Number of objectives m (2,3}
Objective correlation o {-0.5,-0.2,0.0, +0.2, +0.5}

Algorithms

Crossover rate 1.0
Mutation rate (SS-EA, NSGA-II) 1.0/n
Population size (NSGA-II) 100
Tabu tenure tt n/150
Tabu improvement cutd a 5n
Number of restarts (initialization)| y 5
e-parameter (achievement scalarizing functign) e 108

Stopping condition (CPU time

(n-m-10-%) minutes

an elitist strategy is used for replacement. The same ovesso problem instance. LeZ? be the set of objective vectors from
and mutation operators as for SS-EA are considered. In othall the Pareto set approximations we obtained during all our
words, the main dierences between SS-EA and NSGA-II are: experiments. Note tha&?' may contain both dominated and
(i) SS-EA uses an unbounded population whereas NSGA-Ihon-dominated objective vectors, since a given approxanat

maintains a fixed-size populatiorij)(selection for reproduc-

may contain points dominating the ones of another approxi-

tion is performed at random within SS-EA whereas it is basednation, andvice versa We definez™ = (Z"™, ..., Z3") and
on dominance-depth and crowding distance within NSGA-I1, 2" = (2" ..., z3®), wherez]" (respectivelyZ'®*) denotes
and i) the archive is initialized as detailed in Section 3.4 forthe lower (respectively upper) bound of tki objective for all
SS-EA whereas the NSGA-II initial population is generated athe points contained i, Vk € {1,...,m}. In order to give a
random. However, notice that an external unbounded archiveoughly equal range to the objective functions, values are n
has been added to the canonical NSGA-II in order to prevermnalized between 1 and 2 with respect®’ andz™. Then,

the loss of non-dominated solutions.

we compute a reference sét containing the non-dominated

All the algorithms stop aftem(- m- 10-3) minutes of CPU  points ofZ2". In order to measure the quality of Pareto front

time,i.e.,from 2 minutegperrun for smaller instances up to 15 approximations, we use both the Pareto dominance relation e
minutes for large-size instances. Since neighboring wwist tended to sets, as well as thetdience hypervolume indica-
are evaluated incrementally within HM during the tabu skarc tor (I};) [25]. They are illustrated in Figure 6 and Figure 7, re-
phases, a maximum number of evaluations cannot be used sgectively. The Pareto dominance relation over sets caebe d
a stopping condition. Following [20], the tabu tenure canst fined as follows. A given Pareto front approximatiéhis dom-
is set tott = n/150, and the improvement cdfdo o = 5n. inated by another approximatiat, if for all objective vector
During the initialization phase, the number of random mésta z' € Al, there exists an objective vector e A? such thatz is
per objective function is set tg = 5. At last, thee-parameter dominated by?. The I,-indicator value of a given approxima-
of the achievement scalarizing function is sette 108, The  tion A gives the portion of the objective space that is dominated
population size of NSGA-Il is set to 100 solutions. A summaryby Z* and not byA, Z = (0.9,...,0.9) being the reference
of all the parameters used in the paper is givenin Table 1. point. Note that }-values are to be minimized. The experi-
HM, SS-EA and NSGA-II have been implemented within mental results report average-values as well as a Wilcoxon
the ParadisEO software framework [45, 46]. All the algo-signed rank statistical test with@value of Q05. Notice that
rithms have been executed under comparable conditions artdis procedure has been achieved using the performansasse
share the same base components for a fair comparison betweent tools provided in PISA [26].
them. The experiments have been conducted on an Intel Core
2 quad-core processor.dd GHZ, 4GB RAM) running under
Ubuntu 1004. All codes were compiled withg+ 4.4.3 using
the-03 compilation option.

4.3. Computational Results and Discussion

Computational results are presented in Table 2. Let us start
with an example. The left part of the first line corresponds to
4.2. Performance Assessment the following mUBQP problem instance: = 1000,p = 0.5

A set of 30 runsper instance has been performed for eachandm = 2. The average|-value obtained by HM, NSGA-II
algorithm. In order to evaluate the quality of the approxima and SS-EA over the 30 executions i®42, 0325 and (085,
tions found for each instance, we follow the performance asrespectively. According to the;lindicator, the ranking de-
sessment protocol given in [26]. Such a way of comparing mulduced from the statistical test is as follows:HIM, (ii) SS-EA,
tiple stochastic multiobjective optimizers is a commorgticee ~ and (i) NSGA-II. The Pareto set approximations obtained by
in the specialized literature. Let us consider a given mUBQMNSGA-II are reported to be statistically outperformed bg th
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Figure 6: lllustration of the Pareto dominance relationrd®areto front approx-  Figure 7: lllustration of the hypervolumeftirence quality indicator (l). The
imations: () the approximation«) dominates the approximatior), (i) the reference set is represented by boxes, the Pareto front approximation by
approximations ) and @) are incomparable, andi( the approximationsx) bullets ¢) and the reference poigt by a crossx). The shaded area represents
and ) are incomparable. the hypervolume dierence }, (e, ).

ones from HM in terms of Pareto dominance. Similarly, SS-inyolves an arbitrary number of UBQP objective functions to
EA is outperformed by HM in terms of hypervolume indicator- he maximized simultaneously over the same decision space of
values. binary strings of size. In the single-objective case, the UBQP
First, compared against NSGA-II, our HM algorithm clearly proplem is one of the most challenging problem from combina-
performs better. Indeed, the Pareto set approximationd®yn  toria| optimization, and is known to enable the formulatigra
NSGA-Ilis always dominated by the one obtained by HM. Thatjgyge number of practical applications in many areas. Thie mu
is, every solution found by NSGA-Il is dominated by at leasttjopjective UBQP problem introduced in this paper will aio
one solution found by HM for all the runs over all the instasice more practical applications to be formulated and solved.
we experimented. The only cases where this does not happengecond, multiobjective UBQP problem instances, together
is form = 3 andp = -0.5 as well as the following instance: it an instance generator, have been made available at the
n =1000,m = 3 andp = -0.2. Still, HM outperforms NSGA-  {o|iowing URL: http: //mocobench. st .net. These problem
Ilin terms of hypervolume for the corresponding instances.  jnstances are characterized by a problem size, a matrixtgens
With respect to SS-EA, the hypervolume indicator is alwaysy nymper of objective functions, and a correlationftoient
required to diferentiate approximation sets. For all the in- peqyveen the objective values. In particular, the objeative
stances witm < 3000, HM is reported to give better _resglts, relation can be tuned very precisely, allowing one to stumy t
except form = 3 andp = —-0.5. However, for large-size in-  jnact of this feature on the size of the Pareto front, and the
stancesi{ > 4000), HM seems to have more troubles in finding 5, the performance of solution approaches. These instanees
a better approximation set than SS-EA in some cases, partiCysefy| for performance assessment and comparison of new al-
larly when the objective functions are in conflict. Indeed/H (tzlorithms for the general MUBQP problem.

performs bet'_[er than SS-EA on nine out of the twenty larges Third, we have presented an hybrid evolutionary-tabu $earc
Instances while the reverse holds for elght cases. F(_)r Tuth p algorithm for the multiobjective UBQP. The proposed appfloa
lem instances, the number of nor_1-dom|nated solutlons.can .b(?ntegratesastate-of—the-arttabu search algorithm fosiigle-
come very Iarge: such that there 'S probably a-Iack of diversi objective UBQP, together with Pareto-based evolutiongry o
for the HM algorithm compared to its non-hybrid counterpart timization principles. Based on the achievement scalagizi

_Qverall, we can conclude that the HM algorlthm 9IVeS SI9°fnction, our algorithm is able to generate both supportetl a
nificantly better results on most mUBQP problem instances. lunsupported solutions, with the aim of finding a well-comeet

clearly outperforms the state-of-the?a_rt NSGA-Il algamiton o4 \velldiversified Pareto set approximation. We have guow
the whole set ofmsﬁances,whereas itis outperformed bi&S- that this hybrid metaheuristic obtains significantly bette-
on only ten out of fifty mUBQP instances. sults than two conventional evolutionary multiobjectivatio
mization techniques for large-size multiobjective UBQBIpr
5. Conclusions lem instances of dlierent structure and size.
A better understanding of the main problem characteristics
The contributions of the paper are three-fold. First, the unwould allow us to improve the design of heuristic search al-
constrained binary quadratic programming (UBQP) problengorithms by incorporating a deeper problem knowledge. To
has been extended to the multiobjective case (mMUBQP) whicthis end, we plan to study the correlation between the main

9



Table 2: Comparison of the proposed HM against NSGA-Il andEBSThe symbol &’ (resp. ‘<) means that HM significantly outperforms (resp. is sigrifity
outperformed by) the algorithm under consideration wipeet to the set-based Pareto dominance relation. The $yrilfeesp. '<’) means that HM significantly
outperforms (resp. is significantly outperformed by) trgoathm under consideration with respect to thffefence hypervolume indicator;(l. The symbol &'
means that no algorithm outperforms the other in terms oétBatominance norl-values. The averagg,ivalue is reported in brackets for HM, NSGA-Il and

SS-EA, respectively (lower is better).

m=2 m=3
n e NSGA-II SS-EA NSGA-II SS-EA

1000 -0.5 (0.042) > (0.325) > (0.085) (0.104) > (0.273) > (0.113)
-0.2 (0052) > (0.336) > (0.094) (0.120) > (0410) = (0339)

0.0 (0037) > (0.336) > (0.109) (0.127) > (0449) = (0.405)

+0.2 (0.037) > (0.348) > (0.120) (0.096) > (0.471) > (0.420)

+0.5 (0.032) > (0.385) > (0.132) (0.092) > (0.508) > (0.409)

2000 -05 (0.099) > (0416) > (0176) (0.140) > (0.248) < (0.080)
-0.2 (0112) > (0473) > (0.188) (0.221) > (0434) = (0335)

0.0 (0070) > (0520) = ©177) (0.208) > (0518) > (0427)

+0.2 (0.097) > (0.587) > (0.215) (0.193) > (0577) > (0.477)

+0.5 (0.054) > (0.757) > (0.229) (0.171) > (0.738) > (0.556)

3000 -05 (0.136) > (0471) > (0153) (0.159) > (0.239) < (0071)
-0.2 (0.125) > (0566) > (0.192) (0.262) > (0.417) > (0.288)

0.0 (0.111) > (0.640) > (0.223) (0.321) > (0.529) > (0.394)

+0.2 0177) > (0.728) > (0.303) (0.282) > (0.639) > (0.470)

+0.5 (0.131) > (0.931) > (0.341) (0.254) > (0.845) > (0572)

4000 -0.5 (0.216) > (0.497) < (0.178) (0.188) > (0.235) < (0.051)
-0.2 (0.195) > (0.607) > (0.238) (0311) > (0.405) < (0.267)

0.0 (0157) > (0.687) > (0.233) (0.325) > (0441) < (0.280)

+0.2 (0.147) > (0.813) > (0271) (0.349) > (0.647) > (0.450)

+0.5 (0.089) > (1.001) > (0.263) (0.299) > (0.860) > (0568)

5000 -0.5 (0.267) > (0500) < (0.153) (0.201) > (0.231) < (0.056)
-0.2 (0.250) > (0.624) = (0.204) (0.283) > (0319) < (0156)

0.0 (0219) > (©.725) = (0.235) (0.305) > (0403) < (0238)

+0.2 (0.192) > (0.802) > (0.253) (0.359) > (0576) = (0.393)

+0.5 (0.125) > (1.023) > (0.236) (0.359) > (0.859) > (0.518)

problem features and the algorithm performance through fit-[4]
ness landscapes analysis in multiobjective combinatopal
timization [31, 47]. At last, we hope that the challenge pro-
posed by multiobjective UBQP will gain the attention of athe
researchers. In particular, a stronger link is requiredvben
multiobjective UBQP formulations and existing academic or
real-world applications, including the multi-objectivanants

of assignment, covering, partitioning, packing and quidra
knapsack problems. This would enable the identification of [8]
a Pareto front approximation for many problems from multi-
objective combinatorial optimization under a unified maaig| 9
even to enhance the performance of exact approaches by allow
ing a fast computation of a lower bound set.
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