
HAL Id: hal-00801793
https://hal.science/hal-00801793v1

Submitted on 18 Mar 2013 (v1), last revised 15 Nov 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Metaheuristic for Multiobjective
Unconstrained Binary Quadratic Programming

Arnaud Liefooghe, Sébastien Verel, Jin-Kao Hao

To cite this version:
Arnaud Liefooghe, Sébastien Verel, Jin-Kao Hao. A Hybrid Metaheuristic for Multiobjective Uncon-
strained Binary Quadratic Programming. 2013. �hal-00801793v1�

https://hal.science/hal-00801793v1
https://hal.archives-ouvertes.fr


A Hybrid Metaheuristic for Multiobjective Unconstrained Binary Quadratic Programming
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Abstract

The conventional Unconstrained Binary Quadratic Programming (UBQP) problem is known to be a unified modeling and solution
framework for many combinatorial optimization problems. This paper extends the single-objective UBQP to the multiobjective
case (mUBQP) where multiple objectives are to be optimized simultaneously. For the purpose of approximating the Paretoset, we
propose a hybrid metaheuristic which combines an elitist evolutionary multiobjective optimization algorithm and a state-of-the-art
single-objective tabu search procedure by using an achievement scalarizing function. Finally, we define a formal modelto generate
diverse mUBQP instances and show the interest of the proposed approach in obtaining competitive results on large-size mUBQP
instances with two and three objectives.
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1. Introduction

The conventional and single-objective unconstrained binary
quadratic programming (UBQP) problem is to maximize the
function:

f (x) = x′Qx=
n
∑

i=1

n
∑

j=1

qi j xi x j (1)

whereQ = (qi j ) is ann by n matrix of constant values andx
is a vector ofn binary (zero-one) variables,i.e., xi ∈ {0, 1}, i ∈
{1, . . . , n}.

The UBQP is known to be a very general model able to repre-
sent a wide range of important problems, including those from
financial analysis [1], social psychology [2], computer aided
design [3] and cellular radio channel allocation [4]. More-
over, a number of NP-hard problems can be transformed into
the UBQP, such as graph coloring problems, maxcut problem,
set packing problem, set partitioning problem, maximum clique
problem and so on [5, 6]. As a consequence, the UBQP it-
self is clearly a NP-hard problem [7]. During the past few
decades, a large number of algorithms and approaches have
been proposed for the single-objective UBQP in the literature.
This includes several exact methods based on branch and bound
or branch and cut [8, 9, 10] as well as a number of heuristic
and metaheuristic methods like simulated annealing [11], tabu
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search [12, 13, 14, 15, 16], path-relinking [17], as well as evo-
lutionary and memetic algorithms [18, 19, 20, 21].

In this paper, we extend this conventional single-objective
UBQP problem to the multiobjective case, denoted by mUBQP,
where multiple objectives are to be optimized simultaneously.
Such an extension naturally increases the expressive powerof
the UBQP and provides a convenient formulation to fit situa-
tions where the single-objective UBQP cannot accommodate.
For instance, it is known that the UBQP can be used to recast
each of two following graph coloring problems: the vertex col-
oring problem (which is to determine the chromatic number ofa
graph) [5] and the sum coloring problem (which is to determine
the chromatic sum of a graph) [22]. Still, UBQP is not conve-
nient to formulate the bi-objective coloring problem whichre-
quires to determine a legal vertex coloring of a graph while min-
imizing simultaneously the number of colors used and the sum
of colors. For this bi-objective coloring problem, the mUBQP
formulation can be employed in a straightforward way.

In addition of introducing the mUBQP problem, the paper
targets two other goals. First, given that the single-objective
UBQP is NP-hard, its generalized mUBQP formulation is also
a difficult problem to solve in the general case. For the pur-
pose of approximating the Pareto set of a given mUBQP in-
stance, heuristic approaches will be indispensable. Following
the studies on memetic algorithms for the UBQP as well as
many other problems, we adopt as our solution approach the
memetic framework and propose a hybrid metaheuristic which
combines an elitist evolutionary multiobjective optimization al-
gorithm with a state-of-the-art single-objective tabu search pro-
cedure based on an achievement scalarizing function. The last
goal of the paper is to define a formal and flexible model to
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generate hard mUBQP instances and show the interest of the
proposed solution approach in obtaining competitive results on
large-size mUBQP instances with two and three objectives.

The paper is organized as follows. In Section 2, our multi-
objective formulation of the UBQP problem (mUBQP) is intro-
duced, together with some properties and definitions. The hy-
brid metaheuristic (HM) proposed for the mUBQP and its main
ingredients are presented in Section 3, including the scalarizing
evaluation function, the tabu search procedure, the initialization
phase and the variation operators. An experimental analysis of
our HM algorithm is conducted in Section 4 on a large set of
mUBQP instances of different structure and size. Conclusions
and further research are discussed in the last section.

2. Multiobjective Unconstrained Binary Quadratic Pro-
gramming

This section first introduces the multiobjective unconstrained
binary quadratic programming problem. Some definitions re-
lated to multiobjective combinatorial optimization are then re-
called, followed by problem complexity-related properties and
a link with similar problem formulations. At last, the construc-
tion of problem instances, together with an experimental study
on the objective values correlation and the cardinality of the
Pareto set, are presented.

2.1. Problem Formulation
The multiobjective unconstrained binary quadratic program-

ming (mUBQP) problem can be stated as follows.

max fk(x) =
n
∑

i=1

n
∑

j=1

qk
i j xi x j k ∈ {1, . . . ,m} (2)

subject toxi ∈ {0, 1} i ∈ {1, . . . , n}

where f = ( f1, f2, . . . , fm) is an objective vector function with
m≥ 2,n is the problem size, and we havemmatricesQk = (qk

i j )
of sizen by n with constant values,k ∈ {1, . . . ,m}. The decision
spaceX is defined on binary strings of sizen.

2.2. Definitions
Let X = {0, 1}n be the set of feasible solutions in thedecision

spaceof Problem (2). We denote byZ ⊆ IRm the feasible region
in theobjective space, i.e.,the image of feasible solutions when
using the vector maximizing functionf . The Pareto dominance
relation is defined as follows. A solutionx ∈ X is dominated
by a solutionx′ ∈ X (denoted byx ≺ x′) if fk(x) ≤ fk(x′) for
all k ∈ {1, . . . ,m}, and∃k ∈ {1, . . . ,m} such thatfk(x) < fk(x′).
If neitherx ⊀ x′ nor x′ ⊀ x holds, then both aremutually non-
dominated. A solution x ∈ X is said to bePareto optimal(or
efficient, non-dominated) if there does not exist any other so-
lution x′ ∈ X such thatx′ dominatesx. The set of all Pareto
optimal solutions is called thePareto set, denoted byXPS, and
its mapping in the objective space is called thePareto front.
One of the most challenging issue in multiobjective combina-
torial optimization is to identify a minimal complete Pareto set,
i.e., one Pareto optimal solution mapping to each point from
the Pareto front. Note that such a set may not be unique, since
multiple solutions can map to the same non-dominated vector.

2.3. Properties

For many multiobjective combinatorial optimization prob-
lems, computing the Pareto set is infeasible for two main rea-
sons. First, deciding if a candidate solution is Pareto optimal is
known to be NP-complete for numerous multiobjective combi-
natorial optimization problems [23, 24]. This is also the case
for the mUBQP problem since its single-objective counterpart
is known to be NP-hard [7]. Second, the number of Pareto opti-
mal solutions typically grows exponentially with the size of the
problem instance [24]. In that sense, most multiobjective com-
binatorial optimization problems are said to beintractable. In
the following, we show that the mUBQP problem is intractable.

Proposition 1. The multiobjective unconstrained binary
quadratic programming problem (2) is intractable, even for
m= 2.

Proof. Consider the following bi-objective mUBQP instance.

q1
i j =

{

2n(i−1)− i(i−1)
2 + j−1 if i ≥ j

0 if i < j
i, j ∈ {1, . . . , n}

Let q2
i j = −q1

i j for all i, j ∈ {1, . . . , n}. As illustrated in Figure 1
for n = 3, it is obvious to see that all solutions are mutually non-
dominated. Therefore, all feasible solutions are Pareto optimal,
and|XPS| = |X| = 2n.

To cope with NP-hard and intractable multiobjective com-
binatorial optimization problems, researchers have been inter-
ested in developing approximate algorithms. As a consequence,
the goal is often to identify a goodPareto set approxima-
tion, having both good convergence and distribution properties
[25, 26]. To this end, metaheuristics in general, and evolution-
ary algorithms in particular, have received a growing interest
since the late eighties [27].

2.4. Links with Existing Problem Formulations

In its single-objective form, the UBQP problem is of high in-
terest in practice, since many existing combinatorial optimiza-
tion problems can be formalized in terms of UBQP. This def-
inition includes linear assignment, knapsack, set covering, set
partitioning, set packing, graph coloring, maxcut, and maxi-
mum clique problems, just to mention a few [5, 6]. As a con-
sequence, multiobjective versions of these problems can poten-
tially be defined in terms of mUBQP. However, to the best of
our knowledge, the UBQP problem has never been explicitly
defined in the multiobjective formulation given in Eq. (2).

Existing multiobjective formulations of classical combinato-
rial optimization problems with binary variables include multi-
objective linear assignment problems, multiobjective knapsack
problems, or multiobjective set covering and partitioningprob-
lems [24, 28, 29]. Nevertheless, the objective functions ofsuch
formulations are linear, and not quadratic as in mUBQP. Still,
they often contain additional constraints; typically the unimod-
ularity of the constraint matrix for linear assignment, or the ca-
pacity constraint for knapsack. This means that existing binary
multiobjective combinatorial optimization problems can be for-
malized in terms of mUBQP by adapting and generalizing the
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Figure 1: Enumeration of all feasible solutions for the mUBQP problem instance considered in the proof of Proposition 1:The input data of theQ1-matrix (left),
the enumeration of feasible solutions (middle), and their representation in the objective space (right). The problem size isn = 3.

techniques from [5] to the multiobjective case, whereas theop-
posite does not hold in general due to the quadratic nature of
mUBQP.

2.5. Problem Instances

mUBQP problem instances could be designed in multiple
ways. For instance, each objective function could be inde-
pendent, or could be defined as well-known problem objective
functions like in knapsack, linear assignment, set partitioning,
and so on.

In this work, we propose to define correlated mUBQP prob-
lem instances as follows. Each objective function is defined
by means of a matrixQk, k ∈ {1, . . . ,m}. Based on the single-
objective UBQP instances available in the OR-lib [30], non-null
matrix integer values are randomly generated according to a
uniform distribution in [−100,+100]. As in the single-objective
case, the densityd gives the proportion of non-null numbers in
the matrix. In order to define matrices of a given densityd, we
setqk

i j = 0 for all k ∈ {1, . . . ,m} at the same time, following a
Bernoulli distribution of parameterd.

Moreover, we define a correlation between the data contained
in them matricesQk, k ∈ {1, . . . ,m}. The positive (respectively
negative) data correlation decreases (respectively increases) the
degree of conflict between the objective function values. For
the sake of simplicity, we here consider the same correlation
between all pairs of objective functions, given by a correlation
coefficientρ ≥ −1

m−1. The generation of correlated data follows
the procedure given in [31], based on a multivariate uniformlaw
of dimensionm. In order to validate the behavior of the objec-
tive correlation coefficient experimentally, we conduct an em-
pirical study forn = 18 in order to enumerate the decision space
exhaustively. Figure 2 reports the average value of the Spear-
man correlation coefficient over 30 different and independent
instances for different parameter combinations:ρ, m, andd.
The correlation coefficientρ clearly allows to tune the objective
correlation very precisely.

To summarize, the four parameters used to define a mUBQP
instance are (i) the problem sizen, (ii ) the matrix densityd,

(iii ) the number of objective functionsm, and (iv) the objec-
tive correlation coefficient ρ. We make the mUBQP problem
instances investigated in the paper as well as an instance gener-
ator available at the following URL:http://mocobench.sf.
net/.

2.6. Cardinality of the Pareto Set

In this section, we analyze the impact of the mUBQP prob-
lem instance features (in particular,d, m andρ) on the number
of Pareto optimal solutions. The Pareto set cardinality plays
an important role on the problem complexity (in terms of in-
tractability), and then on the behavior and the performanceof
solution approaches. Indeed, the higher the number of Pareto
optimal solutions, the more computational resources required
to identify a minimal complete Pareto set.

We setn = 18 in order to enumerate the decision space ex-
haustively. The measures reported are the average values over
30 different and independent mUBQP instances of same struc-
ture. Figure 3 gives the proportion of Pareto optimal solutions.
The matrix densityd has a low influence on the results. How-
ever, the number of objective functionsmand the objective cor-
relationρ both modifies the proportion of Pareto optimal solu-
tions to several orders of magnitude. Indeed, this proportion
decreases from 10−4 for ρ = −0.9 to 10−5 for ρ = +0.9 for two-
and three-objective mUBQP problem instances. As well, for a
negative objective correlationρ = −0.2, this proportion goes
from 10−4 up to 10−1, whereas it goes from 10−5 up to 10−3

for a positive objective correlationρ = +0.9, for m = 2 and
m= 5, respectively. Figure 4 shows three examples of mUBQP
problem instances represented in a two-objective space. When
the objective correlation is negative, the objective functions are
in conflict, and the Pareto set is large (left). When the objec-
tive correlation is null, the objective space can be embedded in
a multidimensional ball (middle). At last, when the objective
correlation is positive, there exists few solutions in the Pareto
set (right).
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Figure 2: Correlation between the objective function values according to the correlation coefficientρ. The average value of the Spearman correlation coefficient is
reported. The decision space is enumerated exhaustively for n = 18 on a set of 30 independent random instances. The number of objectives ism = 2 (left) and
m= 3 (right).
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(ρ = −0.9) (ρ = 0.0) (ρ = 0.9)

Figure 4: Representation of feasible solutions of a mUBQP problem instance in a two-objective space. The problem size isn = 18, the Q-matrix density isd = 0.8,
the number of objective functions ism = 2, and the objective correlation isρ = −0.9 (left), ρ = 0.0 (middle) andρ = 0.9 (right). Green points are the objective
vectors of random solutions (10% of the decision space size), and red points corresponds to non-dominated objective vectors.

3. A Hybrid Metaheuristic for mUBQP

The hybrid metaheuristic proposed for the mUBQP prob-
lem is based on a memetic algorithm framework [32], which
is known to be an effective approach for discrete optimiza-
tion [33]. Our approach uses one of the best performing single-
objective local search algorithm as one of its main compo-
nents [12, 13].

3.1. General Principles

Memetic algorithms constitute a whole class of hybrid meta-
heuristics combining an evolutionary algorithm and a local
search algorithm. In particular, this class includes genetic and
tabu search hybrid approaches [34]. We focus on multiobjective
memetic algorithms [35] whose goal is to find an approxima-
tion of the whole Pareto set (not only a subpart of it). A simple
elitist multiobjective population-based evolutionary algorithm
operates as the main metaheuristic, whereas an advanced single
solution-based local search is used as an improvement operator
in place of the mutation step. Keeping the explorationvs. ex-
ploitation trade-off in mind, the idea behind such an approach is
that the evolutionary algorithm will offer more facilities for di-
versification, while the local search algorithm will provide more
capabilities for intensification.

An outline of our hybrid metaheuristic (HM) is given in
Algorithm 1. The search space under consideration is com-
posed of all binary vectors of sizen, i.e., the decision space
X = {0, 1}n. The size of the search space is then equal to 2n. The
evaluation function is the canonical objective function given in
Eq. (2). An unboundedarchive, or population, of mutually non-
dominated solutions found so far is maintained with respectto
the Pareto dominance relation defined in Section 2.2. In other
words, throughout the search process, solutions are discarded
as soon as they are detected to be dominated by at least one
other solution from the archive. Equivalent solutions are also
eliminated. At each iteration, two parents are selected at ran-
dom from the archive and then recombined to produce a single
offspring solution (Section 3.5). The newly generated solution

Algorithm 1 Pseudo-code of our hybrid metaheuristic (HM)
for mUBQP

Input: matrix Q (dimensionm× n× n)
Output: Pareto set approximationA

1: initialize the archiveA /* see Section 3.4 */
2: repeat
3: randomly select two individualsxi , x j from A
4: x← recombine(xi, x j) /* see Section 3.5 */
5: x⋆ ← tabusearch(x) /* see Section 3.3 */
6: A← non-dominated solutions from (A∪ {x⋆})
7: until a stopping condition is satisfied

is further improved by means of a tabu search algorithm (Sec-
tion 3.3). The evaluation function used by tabu search is based
on an scalarizing technique of the initial objective function val-
ues (Section 3.2). The corresponding achievement scalarizing
function is defined in such a way that the tabu search procedure
focuses its search within the objective space area enclosedby
the positions of parent solutions. Another crucial component
of our HM algorithm appears at the initial phase (Section 3.4),
where a computational effort is made in order to identify close-
to-optimal solutions located at the extreme regions of the objec-
tive space. The algorithm is iterated until a user-given stopping
condition is satisfied. The main components of our HM algo-
rithm are detailed below.

3.2. Achievement Scalarizing Function

The tabu search procedure, that will be presented later in
the paper, is known to be very well-performing for solving
single-objective UBQP instances of different structures and
sizes [12, 13, 14, 15, 16]. Of course, given that it manipu-
lates a single solution only, a scalarization of the multiple objec-
tive functions is required due to the multiobjective natureof the
mUBQP. The goal here is to temporarily transform the mUBQP
problem into a single-objective one so that the tabu search al-
gorithm can be used in a straightforward way. Many general-
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purpose scalarizing functions have been proposed for multiob-
jective optimization [36], generally with the aim of incorpo-
rating preference information coming from a decision-maker.
Here, the matter is somehow different since we are interested
in approximating the whole Pareto set. Hence, the parameters
required by the scalarizing function under consideration are dy-
namically set according to the current state of the search pro-
cess. This will be discussed in Section 3.5.

In multiobjective memetic algorithms, the most popular
scalarizing function is the weighted-sum aggregation [35,37],
where a weighting coefficient vector represents the relative im-
portance of each objective function. However, despite its rel-
ative simplicity, this approach does not allow to identify a
number of Pareto optimal solutions, whose corresponding non-
dominated objective vectors are located on the convex hull of
the Pareto front [24, 36]. Another example is theachievement
scalarizing function, proposed by Wierzbicki [38]. This tech-
nique is particularly well-suited to work with reference points.
A reference point gives desirable or acceptable values for each
objective function. These objective values are calledaspira-
tion levelsand the resulting objective vector is called arefer-
ence pointand can be defined either in the feasible or in the
infeasible region of the objective space. One of the families of
achievement scalarizing functions can be stated as follows. Let
us recall that the maximization of the objective functions are
here assumed.

σ(zr ,λ,ǫ)(x) = max
k∈{1,...,m}

{

λk

(

zr
k − fk(x)

)

}

(3)

+ ǫ

m
∑

k=1

λk

(

zr
k − fk(x)

)

whereσ is a mapping function fromX to IR, x ∈ X is a feasi-
ble solution,zr ∈ IRm is a reference point vector,λ ∈ IRm is a
weighting coefficient vector, andǫ is an arbitrary small positive
number (0< ǫ ≪ 1). Notice that we keep theǫ parameter con-
stant throughout the search process. The following achievement
scalarizing optimization problem can be formalized.

min σ(zr ,λ,ǫ)(x) (4)

subject to x ∈ X

Interestingly, two properties are ensured [39]:

(i) if x⋆ = arg minx∈X σ(zr ,λ,ǫ)(x), thenx⋆ is a Pareto optimal
solution;

(ii ) if x⋆ is a Pareto optimal solution, then there exists a func-
tion σ(zr ,λ,ǫ) such thatx⋆ is a (global) optimum of Prob-
lem (4).

This makes the achievement function very attractive compared
to simpler forms of scalarizing functions. Indeed, as noticed
earlier, only a subset of Pareto optimal solutions, known assup-
ported solutions [24], can be found within a weighted-sum ag-
gregation function, since the second property (ii ) is not satisfied.
Those solutions are known as supported Pareto optimal solu-
tions, and their corresponding non-dominated objective vectors

are located on the convex hull of the Pareto front. On the con-
trary, the achievement scalarizing function potentially allows to
identify both supported and non-supported Pareto optimal so-
lutions [36]. Successful integrations of the achievement scalar-
izing function into evolutionary multiobjective optimization al-
gorithms can be found in [40, 41, 42].

3.3. Tabu Search

The following tabu search algorithm, used as a subroutine
of our HM, is reported to be one of the best-performing ap-
proaches for the single-objective UBQP problem [13]. In order
to extend it to the multiobjective case, we consider the achieve-
ment scalarizing function, so that the initial objective vector
values are transformed into a single scalar value. Notice, how-
ever, that the nature of the evaluation function consideredin the
paper has a different structure than the classical evaluation func-
tion of single-objective UBQP. We describe the main principles
of the tabu search below.

The neighborhood structure is based on the 1-flip operator.
Two feasible solutions are neighbors if they differ exactly on
one variable. In other words, a given neighbor can be reached
by changing the value of a binary variable to its complement
from the current solution. The size of the 1-flip neighborhood
structure is linear with the problem sizen. As in the single-
objective UBQP, each mUBQP objective function can be eval-
uated incrementally. We follow the fast incremental evaluation
procedure presented in [43] to calculate the move gain of a
given neighboring solution. For a given objective function, the
whole set of neighbors can be evaluated in linear time. As a
consequence, the objective values of all neighboring solutions
are evaluated inO(m · n) in the multiobjective case. Once the
objective values of a given neighboring solution have been (in-
crementally) evaluated, we compute its scalar fitness valuewith
respect to Eq. (3).

As a short-term memory, we maintain the tabu list as follows.
Revisiting solutions is avoided within a certain number of itera-
tions, called the tabu tenure. Thetabu tenureof a given variable
xi is denoted bytenure(i). Hence, variablexi will notbe flipped
again for a number oftenure(i) iterations. Following [20], we
set the tabu tenure of a given variablexi after it has been flipped
as follows.

tenure(i) = tt + rand(10) (5)

wherett is a user-given parameter andrand(10) gives a random
integer value between 1 and 10. From the set of neighboring so-
lutions produced by all non-tabu moves, we select the one with
the best (smallest) fitness value according to Eq. (3). Indeed, let
us recall at this point that the aim of the tabu search algorithm
is to find a good approximate solution for Problem (4), for a
given definition ofzr andλ. However, notice that all neighbor-
ing solutions are always evaluated, and that a tabu move can
still be selected if it produces a better solution than the cur-
rent global best. This is called an aspiration criterion in tabu
search. The stopping condition of the tabu search algorithmis
met when no improvement has been performed within a given
number of movesα. The parameterα is called theimprovement
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cutoff. For more details on the tabu search algorithm for the
single-objective UBQP, the reader is referred to [13, 20].

3.4. Initial Phase

The goal of the initial phase is to identify good-quality so-
lutions with respect to each objective function of the mUBQP,
i.e.,solutions mapping to the extreme points of the Pareto front
in the objective space. This set of solutions initializes the search
process in order to ensure that our HM provides a good cover-
ing of the Pareto front. To this end, we define the following
achievement scalarizing function parameter setting. We set the
reference pointzr = {zmax

1 , . . . , z
max
m } such thatzmax

k is higher
than any possiblefk-value. This (unfeasible) objective vec-
tor can be seen as a rough approximation of the utopia point
[24, 36]. Now, let us consider a particular objective func-
tion k ∈ {1, . . . ,m}. We setλk = 1, andλl = 0 for all
l ∈ {1, . . . ,m} \ {k}.

The tabu search algorithm, seeded with a random solution, is
then considered with the corresponding achievement scalariz-
ing function as an evaluation function. Those initial solutions
have a high impact on the performance of our HM, particularly
in terms of diversification. As a consequence, we performγ
independent restarts of the tabu searchper objective function
in order to increase the chance of getting very high-performing
solutions in all extreme regions of the Pareto front. This process
is iterated for every objective function of the mUBQP problem
instance under consideration.

3.5. Variation Operator

At each iteration of our HM algorithm, a single offspring
solution is created by a recombination operator. First, we se-
lect two mutually non-dominated parent solutions at random
from the current archivexi , x j ∈ A such thatxi , x j . Then,
an offspring solution is created with uniform crossover. Com-
mon variables between both parents are thus assigned to the
offspring solution, while the remaining ones are assigned at
random. The offspring solution is further improved by means
of the tabu search procedure presented in Section 3.3. Here,
we aim at obtaining a new solution in an unexplored region of
the Pareto front by defining the parameters of the achievement
scalarizing function properly. The procedure attempts to find a
non-dominated point that “fills the gap” between the objective
vectors associated withxi andx j . The region of the objective
space where the tabu search algorithm operates is then delim-
ited by the position of parent solutions, given by the following
definition of the achievement scalarizing function.

zr
k = max{ fk(xi), fk(x j)} k ∈ {1, . . . ,m} (6)

λk =
1

| fk(xi) − fk(x j)|
k ∈ {1, . . . ,m} (7)

This procedure allows our HM to improve, at each iteration, a
particular part of the Pareto front, dynamically chosen with re-
spect to the pair of parent solutions under selection. The overall
variation procedure is illustrated in Figure 5.

Figure 5: Graphical representation of the improvement phase in a two-objective
space, wherexi andxj are the parent solutions,x is the offspring solution and
x⋆ is the solution improved by means of the tabu search procedure through the
achievement scalarizing evaluation function defined by thereference pointzr

and the weighting coefficient vectorλ.

4. Experimental Analysis

This section presents an experimental analysis of the pro-
posed approach on a broad range of mUBQP problem instances.

4.1. Experimental Design

In the following, we conduct an experimental study on the
influence of the problem size (n), the number of objectives (m),
and the objective correlation (ρ) of the mUBQP problem on
the performance of the HM algorithm proposed in the pa-
per. In particular, we investigate the following parameterset-
ting: n ∈ {1000, 2000, 3000,4000, 5000}, m ∈ {2, 3}, and
ρ ∈ {−0.5,−0.2, 0.0,+0.2,+0.5}. The density of the matrix is
set tod = 0.8. One instance, generated at random, is consid-
eredper parameter combination. This leads to a total of 50
problem instances.

We compare the performance of our algorithm against a
steady-state evolutionary algorithm that follows the samestruc-
ture as the HM, but where the tabu search is replaced by a ran-
dom mutation. This allows us to appreciate the impact of the
tabu search and scalarizing procedure on the performance ofthe
proposed approach. The same initialization phase is applied.
Then, at each iteration, an offspring solution is created by uni-
form crossover and an independent bit-flip operator is applied,
i.e., each variable is randomly flipped with a probability 1/n.
We refer to this algorithm as SS-EA, for steady-state evolution-
ary algorithm. We also compare the results of the algorithmsto
a baseline algorithm, the well-known NSGA-II [44]. NSGA-II
maintains a population of constant size, initialized at random,
and produces the same number of offspring solutions at every
iteration. Selection for reproduction and replacement is based
on dominance-depth ranking first, and on crowding distance at
second-level. A binary tournament is used for selection, and
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Table 1: Parameter setting used in the paper for the experimental analysis.

Description Parameter Value(s)
Instances

Problem size n {1000, 2000, 3000, 4000, 5000}
Matrix density d 0.8

Number of objectives m {2,3}
Objective correlation ρ {−0.5,−0.2, 0.0,+0.2,+0.5}

Algorithms
Crossover rate 1.0

Mutation rate (SS-EA, NSGA-II) 1.0/n
Population size (NSGA-II) 100

Tabu tenure tt n/150
Tabu improvement cutoff α 5n

Number of restarts (initialization) γ 5
ǫ-parameter (achievement scalarizing function) ǫ 10−8

Stopping condition (CPU time) (n ·m · 10−3) minutes

an elitist strategy is used for replacement. The same crossover
and mutation operators as for SS-EA are considered. In other
words, the main differences between SS-EA and NSGA-II are:
(i) SS-EA uses an unbounded population whereas NSGA-II
maintains a fixed-size population, (ii ) selection for reproduc-
tion is performed at random within SS-EA whereas it is based
on dominance-depth and crowding distance within NSGA-II,
and (iii ) the archive is initialized as detailed in Section 3.4 for
SS-EA whereas the NSGA-II initial population is generated at
random. However, notice that an external unbounded archive
has been added to the canonical NSGA-II in order to prevent
the loss of non-dominated solutions.

All the algorithms stop after (n · m · 10−3) minutes of CPU
time, i.e., from 2 minutesper run for smaller instances up to 15
minutes for large-size instances. Since neighboring solutions
are evaluated incrementally within HM during the tabu search
phases, a maximum number of evaluations cannot be used as
a stopping condition. Following [20], the tabu tenure constant
is set tott = n/150, and the improvement cutoff to α = 5n.
During the initialization phase, the number of random restarts
per objective function is set toγ = 5. At last, theǫ-parameter
of the achievement scalarizing function is set toǫ = 10−8. The
population size of NSGA-II is set to 100 solutions. A summary
of all the parameters used in the paper is given in Table 1.

HM, SS-EA and NSGA-II have been implemented within
the ParadisEO software framework [45, 46]. All the algo-
rithms have been executed under comparable conditions and
share the same base components for a fair comparison between
them. The experiments have been conducted on an Intel Core
2 quad-core processor (2.40 GHZ, 4GB RAM) running under
Ubuntu 10.04. All codes were compiled with g++ 4.4.3 using
the-O3 compilation option.

4.2. Performance Assessment

A set of 30 runsper instance has been performed for each
algorithm. In order to evaluate the quality of the approxima-
tions found for each instance, we follow the performance as-
sessment protocol given in [26]. Such a way of comparing mul-
tiple stochastic multiobjective optimizers is a common practice
in the specialized literature. Let us consider a given mUBQP

problem instance. LetZall be the set of objective vectors from
all the Pareto set approximations we obtained during all our
experiments. Note thatZall may contain both dominated and
non-dominated objective vectors, since a given approximation
may contain points dominating the ones of another approxi-
mation, andvice versa. We definezmin = (zmin

1 , . . . , z
min
m ) and

zmax = (zmax
1 , . . . , z

max
m ), wherezmin

k (respectivelyzmax
k ) denotes

the lower (respectively upper) bound of thekth objective for all
the points contained inZall , ∀k ∈ {1, . . . ,m}. In order to give a
roughly equal range to the objective functions, values are nor-
malized between 1 and 2 with respect tozmin andzmax. Then,
we compute a reference setZ⋆ containing the non-dominated
points ofZall . In order to measure the quality of Pareto front
approximations, we use both the Pareto dominance relation ex-
tended to sets, as well as the difference hypervolume indica-
tor (I−H) [25]. They are illustrated in Figure 6 and Figure 7, re-
spectively. The Pareto dominance relation over sets can be de-
fined as follows. A given Pareto front approximationA1 is dom-
inated by another approximationA2, if for all objective vector
z1 ∈ A1, there exists an objective vectorz2 ∈ A2 such thatz1 is
dominated byz2. The I−H-indicator value of a given approxima-
tion A gives the portion of the objective space that is dominated
by Z⋆ and not byA, zI = (0.9, . . . , 0.9) being the reference
point. Note that I−H-values are to be minimized. The experi-
mental results report average I−

H-values as well as a Wilcoxon
signed rank statistical test with ap-value of 0.05. Notice that
this procedure has been achieved using the performance assess-
ment tools provided in PISA [26].

4.3. Computational Results and Discussion

Computational results are presented in Table 2. Let us start
with an example. The left part of the first line corresponds to
the following mUBQP problem instance:n = 1000,ρ = −0.5
andm = 2. The average I−H-value obtained by HM, NSGA-II
and SS-EA over the 30 executions is 0.042, 0.325 and 0.085,
respectively. According to the I−H indicator, the ranking de-
duced from the statistical test is as follows: (i) HM, (ii ) SS-EA,
and (iii ) NSGA-II. The Pareto set approximations obtained by
NSGA-II are reported to be statistically outperformed by the
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f2

f1

Figure 6: Illustration of the Pareto dominance relation over Pareto front approx-
imations: (i) the approximation (•) dominates the approximation (×), (ii ) the
approximations (•) and (◦) are incomparable, and (iii ) the approximations (×)
and (◦) are incomparable.

ones from HM in terms of Pareto dominance. Similarly, SS-
EA is outperformed by HM in terms of hypervolume indicator-
values.

First, compared against NSGA-II, our HM algorithm clearly
performs better. Indeed, the Pareto set approximation found by
NSGA-II is always dominated by the one obtained by HM. That
is, every solution found by NSGA-II is dominated by at least
one solution found by HM for all the runs over all the instances
we experimented. The only cases where this does not happen
is for m = 3 andρ = −0.5 as well as the following instance:
n = 1000,m = 3 andρ = −0.2. Still, HM outperforms NSGA-
II in terms of hypervolume for the corresponding instances.

With respect to SS-EA, the hypervolume indicator is always
required to differentiate approximation sets. For all the in-
stances withn ≤ 3000, HM is reported to give better results,
except form = 3 andρ = −0.5. However, for large-size in-
stances (n ≥ 4000), HM seems to have more troubles in finding
a better approximation set than SS-EA in some cases, particu-
larly when the objective functions are in conflict. Indeed, HM
performs better than SS-EA on nine out of the twenty largest
instances while the reverse holds for eight cases. For such prob-
lem instances, the number of non-dominated solutions can be-
come very large, such that there is probably a lack of diversity
for the HM algorithm compared to its non-hybrid counterpart.

Overall, we can conclude that the HM algorithm gives sig-
nificantly better results on most mUBQP problem instances. It
clearly outperforms the state-of-the-art NSGA-II algorithm on
the whole set of instances, whereas it is outperformed by SS-EA
on only ten out of fifty mUBQP instances.

5. Conclusions

The contributions of the paper are three-fold. First, the un-
constrained binary quadratic programming (UBQP) problem
has been extended to the multiobjective case (mUBQP) which

f2

f1

Figure 7: Illustration of the hypervolume-difference quality indicator (I−H ). The
reference set is represented by boxes (�), the Pareto front approximation by
bullets (•) and the reference pointzI by a cross (×). The shaded area represents
the hypervolume difference I−H(•,�).

involves an arbitrary number of UBQP objective functions to
be maximized simultaneously over the same decision space of
binary strings of sizen. In the single-objective case, the UBQP
problem is one of the most challenging problem from combina-
torial optimization, and is known to enable the formulationof a
large number of practical applications in many areas. The mul-
tiobjective UBQP problem introduced in this paper will allow
more practical applications to be formulated and solved.

Second, multiobjective UBQP problem instances, together
with an instance generator, have been made available at the
following URL: http://mocobench.sf.net. These problem
instances are characterized by a problem size, a matrix density,
a number of objective functions, and a correlation coefficient
between the objective values. In particular, the objectivecor-
relation can be tuned very precisely, allowing one to study the
impact of this feature on the size of the Pareto front, and then
on the performance of solution approaches. These instancesare
useful for performance assessment and comparison of new al-
gorithms for the general mUBQP problem.

Third, we have presented an hybrid evolutionary-tabu search
algorithm for the multiobjective UBQP. The proposed approach
integrates a state-of-the-art tabu search algorithm for the single-
objective UBQP, together with Pareto-based evolutionary op-
timization principles. Based on the achievement scalarizing
function, our algorithm is able to generate both supported and
unsupported solutions, with the aim of finding a well-converged
and well-diversified Pareto set approximation. We have showed
that this hybrid metaheuristic obtains significantly better re-
sults than two conventional evolutionary multiobjective opti-
mization techniques for large-size multiobjective UBQP prob-
lem instances of different structure and size.

A better understanding of the main problem characteristics
would allow us to improve the design of heuristic search al-
gorithms by incorporating a deeper problem knowledge. To
this end, we plan to study the correlation between the main

9



Table 2: Comparison of the proposed HM against NSGA-II and SS-EA. The symbol ‘≻’ (resp. ‘≺’) means that HM significantly outperforms (resp. is significantly
outperformed by) the algorithm under consideration with respect to the set-based Pareto dominance relation. The symbol ‘�’ (resp. ‘�’) means that HM significantly
outperforms (resp. is significantly outperformed by) the algorithm under consideration with respect to the difference hypervolume indicator (I−H). The symbol ‘≡’
means that no algorithm outperforms the other in terms of Pareto dominance nor I−H-values. The average I−H-value is reported in brackets for HM, NSGA-II and
SS-EA, respectively (lower is better).

m= 2 m= 3
n ρ NSGA-II SS-EA NSGA-II SS-EA

1000 −0.5 (0.042) ≻ (0.325) � (0.085) (0.104) � (0.273) � (0.113)

−0.2 (0.052) ≻ (0.336) � (0.094) (0.120) � (0.410) � (0.339)

0.0 (0.037) ≻ (0.336) � (0.109) (0.127) ≻ (0.449) � (0.405)

+0.2 (0.037) ≻ (0.348) � (0.120) (0.096) ≻ (0.471) � (0.420)

+0.5 (0.032) ≻ (0.385) � (0.132) (0.092) ≻ (0.508) � (0.409)

2000 −0.5 (0.099) ≻ (0.416) � (0.176) (0.140) � (0.248) � (0.080)

−0.2 (0.112) ≻ (0.473) � (0.188) (0.221) ≻ (0.434) � (0.335)

0.0 (0.070) ≻ (0.520) � (0.177) (0.208) ≻ (0.518) � (0.427)

+0.2 (0.097) ≻ (0.587) � (0.215) (0.193) ≻ (0.577) � (0.477)

+0.5 (0.054) ≻ (0.757) � (0.229) (0.171) ≻ (0.738) � (0.556)

3000 −0.5 (0.136) ≻ (0.471) � (0.153) (0.159) � (0.239) � (0.071)

−0.2 (0.125) ≻ (0.566) � (0.192) (0.262) ≻ (0.417) � (0.288)

0.0 (0.111) ≻ (0.640) � (0.223) (0.321) ≻ (0.529) � (0.394)

+0.2 (0.177) ≻ (0.728) � (0.303) (0.282) ≻ (0.639) � (0.470)

+0.5 (0.131) ≻ (0.931) � (0.341) (0.254) ≻ (0.845) � (0.572)

4000 −0.5 (0.216) ≻ (0.497) � (0.178) (0.188) � (0.235) � (0.051)

−0.2 (0.195) ≻ (0.607) � (0.238) (0.311) ≻ (0.405) � (0.267)

0.0 (0.157) ≻ (0.687) � (0.233) (0.325) ≻ (0.441) � (0.280)

+0.2 (0.147) ≻ (0.813) � (0.271) (0.349) ≻ (0.647) � (0.450)

+0.5 (0.089) ≻ (1.001) � (0.263) (0.299) ≻ (0.860) � (0.568)

5000 −0.5 (0.267) ≻ (0.500) � (0.153) (0.201) � (0.231) � (0.056)

−0.2 (0.250) ≻ (0.624) ≡ (0.204) (0.283) ≻ (0.319) � (0.156)

0.0 (0.219) ≻ (0.725) ≡ (0.235) (0.305) ≻ (0.403) � (0.238)

+0.2 (0.192) ≻ (0.802) � (0.253) (0.359) ≻ (0.576) ≡ (0.393)

+0.5 (0.125) ≻ (1.023) � (0.236) (0.359) ≻ (0.859) � (0.518)

problem features and the algorithm performance through fit-
ness landscapes analysis in multiobjective combinatorialop-
timization [31, 47]. At last, we hope that the challenge pro-
posed by multiobjective UBQP will gain the attention of other
researchers. In particular, a stronger link is required between
multiobjective UBQP formulations and existing academic or
real-world applications, including the multi-objective variants
of assignment, covering, partitioning, packing and quadratic
knapsack problems. This would enable the identification of
a Pareto front approximation for many problems from multi-
objective combinatorial optimization under a unified modeling,
even to enhance the performance of exact approaches by allow-
ing a fast computation of a lower bound set.
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[16] Y. Wang, Z. Lü, F. Glover, J. Hao, Probabilistic GRASP-tabu search al-
gorithms for the UBQP problem, Computers & Operations Research (in
press). doi:10.1016/j.cor.2011.12.006.
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[40] M. Szczepański, A. Wierzbicki, Application of multiple criteria evolu-
tionary algorithms to vector optimisation, decision support and reference
point approaches, Journal of Telecommunications and Information Tech-
nology 3 (2003) 16–33.

[41] L. Thiele, K. Miettinen, P. J. Korhonen, J. Molina, A preference-based
evolutionary algorithm for multi-objective optimization, Evolutionary
Computation 17 (3) (2009) 411–436.

[42] J. R. Figueira, A. Liefooghe, E.-G. Talbi, A. P. Wierzbicki, A parallel mul-
tiple reference point approach for multi-objective optimization, European
Journal of Operational Research 205 (2010) 390–400.

[43] F. Glover, J.-K. Hao, Efficient evaluations for solving large 0-1 uncon-
strained quadratic optimisation problems, InternationalJournal of Meta-
heuristics 1 (2010) 3–10.

[44] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182–197.

[45] J. Humeau, A. Liefooghe, E.-G. Talbi, S. Verel, ParadisEO-MO: From
fitness landscape analysis to efficient local search algorithms, Research
Report RR-7871, INRIA (2012).

[46] A. Liefooghe, L. Jourdan, E.-G. Talbi, A software framework based on
a conceptual unified model for evolutionary multiobjectiveoptimization:
ParadisEO-MOEO, European Journal of Operational Research209 (2)
(2011) 104–112.

[47] S. Verel, A. Liefooghe, C. Dhaenens, Set-based multiobjective fitness
landscapes: a preliminary study, in: 13th conference on Genetic and Evo-
lutionary Computation Conference (GECCO 2011), ACM, Dublin, Ire-
land, 2011, pp. 769–776.

11


