Variational convergences of dual energy functionals for elastic materials with a ε thin strong inclusion - Archive ouverte HAL
Article Dans Une Revue Journal of Elasticity Année : 2012

Variational convergences of dual energy functionals for elastic materials with a ε thin strong inclusion

Résumé

We give a new derivation, based on the complementary energy formulation, of a simplified model for a multi-structure made up of two anisotropic hyper-elastic bodies connected by a thin strong material layer. The model is obtained by identifying the Mosco limit of the stored complementary energy functional when the thickness is of order ε and the stiffness of order 1/ε where ε is a positive real adimensional parameter. In order to prove the existence of the displacement associated with the stress we use a suitable weak version of the Saint-Venant compatibility condition also known as Donati's theorem.
Fichier principal
Vignette du fichier
travail_A-LPGF6.pdf (180.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00790717 , version 1 (16-03-2014)

Identifiants

Citer

Anne-Laure Bessoud, Giuseppe Geymonat, Francoise Krasucki, Gérard Michaille. Variational convergences of dual energy functionals for elastic materials with a ε thin strong inclusion. Journal of Elasticity, 2012, 109, pp.51-65. ⟨10.1007/s10659-011-9368-8⟩. ⟨hal-00790717⟩
453 Consultations
269 Téléchargements

Altmetric

Partager

More