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1 Introduction

The modeling of complex structures obtained by assembling simpler elements with very different geo-
metric and/or material characteristics is attracting the interest of engineers and applied mathemati-
cians since it is a source of a variety of problems of practical importance. Many papers have been
published in the last two-three decades to apply rigorous asymptotic methods in order to obtain a
rational simplification of the modeling of complex structures obtained by joining elements of different
dimensions and/or materials with highly contrasted properties. The first modeling of junctions between
elements of different dimensions is due to [10,19]. The influence of a thin layer of highly contrasted
rigidity inserted between two elastic material has been studied in various situations, see for instance
[23,6,7,24,16]. In every situation the authors obtain a limit problem whose solution can be "easily"
computed since a "material surface" substitutes the thin layer. This material surface carries a suitable
surface energy density obtained through the limiting process from the global volume energy of the
thin layer. Approaches based on the Γ -convergence of energy functionals (introduced by De Giorgi in
1975, [11], for a very general class of functionals) have also been used to derive, from the original three
dimensional problems, a variational limit problem taking into account the magnitude orders of both
thickness and material coefficients, see for instance [1,14,20,16,5].

Let us recall that the displacement-traction problem of three-dimensional linearized hyper-elasticity
can be formulated as two different minimization problems, depending on whether the displacement vec-
tor field, or the stress tensor field is the unknown. If the unknown is the displacement vector field the
minimization problem constitutes the modern version of the classical principle of minimum potential
energy (for a historical perspective, see Gurtin [18] or Benvenuto [4]) also known as the primal formula-
tion. If the unknown is the stress tensor field the minimization problem constitutes the modern version
of the classical principle of minimum complementary energy (for a historical perspective, see again
Gurtin [18] or Benvenuto [4]) also known as the dual formulation. Under some well-known positivity
and regularity assumption on the elasticity tensor C or on the corresponding compliance elasticity
tensor A each problem has a unique solution; moreover it is usually proved, see e. g. [12], that the
stress σ = Cu associated with the primal solution u is also a solution (and hence the solution) of
the dual problem. More difficult is to prove directly, as it is done in section 2, that there exists a
displacement vector field u associated with Aσ where σ is the solution of the dual problem. Then this
displacement vector field is also a solution (and hence the solution) of the primal problem. To this aim
one verifies that the symmetric tensor field Aσ satisfies a weak form of the Saint Venant compatibility
equations, also known as the Donati theorem ( see [18] sect. 18, [15] and, for a brief history of this
result, section 7 in [8]).

All the previously quoted papers on the modeling of complex structures use the displacement vector
field as the unknown for both the original and the limit problems and Γ -convergence is applied to the
potential energy. The aim of this paper is to apply, in the framework of linear elasticity, a type of
Γ -convergence (more precisely the so-called Mosco-convergence introduced by Mosco in 1969, [21], for
convex functionals), to the complementary energy of a three layers elastic system where a thin and
strong material is inserted between two elastic materials and to compare this limit problem with the
limit problem obtained for the same situation with the primal formulation in [5]. Let us remark that
in [3] an analogous situation is considered for a scalar case. However the method is different since
it uses in an essential way a mixed formulation through a suitable lagrangian and a priori uses the
convergence of the solutions of the primal problem. In a future paper we will use our direct approach
to non-linear problems where only the complementary energy is given explicitly, e.g. for Norton-Hoff
type materials.

After the presentation of the problem we apply in section 3 the usual rescaling procedure to the
complementary energy formulation and in the following section we prove the Mosco convergence of
the family of rescaled complementary energies to a suitable limit energy. At last in section 5 using an
ad hoc Donati’s theorem we prove the existence of a displacement vector field u associated with the
minimum σ of the Mosco-limit functional, and that u is the solution of the Γ -limit problem obtained
in [5].
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The conventions of sum over repeated indexes and of comma representing derivative will be employed. Furthermore,

M
3
sym

denotes the space of symmetric 3× 3 matrices, Latin indexes range in {1, 2, 3} and Greek indexes range in {1, 2}.

2 A preliminary classical result in linear elasticity

Let us consider a three-dimensional Euclidian space identified with R
3 and such that the three vectors

ei form an orthonormal basis. Let Ω be a non-empty open subset of R
3 with Lipschitz continuous

boundary Γ , whose outer normal is denoted by n. We assume that ΓF and Γ0 are disjoint, relatively
open subsets of Γ , that Γ = ΓF

∪
Γ0 and H2(Γ0) > 0.

We look for the equilibrium of a linearly hyperelastic body occupying the open set Ω, submitted
to a system of volume force f , to a surface density of forces F on ΓF and to a fixed displacement u0

on Γ0. The solution of such equilibrium problem can be classically, see e. g. [18], characterized as the
stress field σ realizing the minimum of the complementary energy :

Ψ(τ ) :=
1

2

∫

Ω

Aτ : τ dx −

∫

Γ0

τ · n · u0 dH
2(Γ )

on the space of the statically admissible stresses Σad :=
{
τ ; Div τ + f = 0 in Ω, τn = F on ΓF

}
,

where A is the compliance fourth-order tensor, satisfying the usual symmetry, regularity, boundedness
and positivity assumptions.

In order to recast this result in a functional framework let us recall that in the well-known ap-
proach of Lions-Magenes it has been proved, see e. g. [17], that when τ ∈ H(Div;Ω) := {τ ∈

L2
(
Ω;M3

sym

)
;Div τ ∈ L2

(
Ω;R3

)
} then τn ∈ H− 1

2 (Γ ;R3) and moreover the following Green’s for-
mula holds for all u ∈ H1(Ω;R3) and τ ∈ H(Div;Ω):

∫

Ω

τ : e(u) dx+

∫

Ω

Div τ u dx = ⟨τn ,u⟩Γ (1)

where ⟨. , .⟩Γ denotes the duality between H− 1
2 (Γ ;R3) and H

1
2 (Γ ;R3) and, as usual, e(u) = (eij(u))

with eij(u) :=
1
2 (∂iuj + ∂jui) .

Let us assume that f ∈ L2(Ω;R3) and that there exists F̃ ∈ H− 1
2 (Γ ;R3) such that F̃ |ΓF

= F (this

happens, for instance, when F ∈ L2(ΓF ;R
3) and then F̃ ∈ L2(Γ ;R3) ⊂ H− 1

2 (Γ ;R3) is any extension

to all Γ ) and let V :=
{
v ∈ H1(Ω;R3) ; v|Γ0

= 0
}
. Let us also assume that u0 ∈ H

1
2 (Γ ;R3) and

supp(u0) ⊆ Γ0. We then define Σad in the following weak form:

Σad :=
{
τ ∈ L2(Ω;M3

sym);

∫

Ω

τ : e(v) dx−

∫

Ω

fv dx− ⟨F̃ ,v⟩Γ = 0 for all v ∈ V
}
. (2)

Let us explicitly remark that if τ ∈ Σad then Div τ + f = 0 in Ω and hence τ ∈ H(Div;Ω),

τn ∈ H− 1
2 (Γ ;R3) and (1) holds true. Within this functional framework the complementary energy

becomes:

Ψ(τ ) :=
1

2

∫

Ω

Aτ : τ dx− ⟨τn ,u0⟩Γ .

Hence the stress field σ ∈ Σad solution of the equilibrium problem realizes the minimum on Σad of
Ψ(τ ). If, as usual in convex analysis, see e.g. [13], χΣad

denotes the characteristic function of Σad, then
in an equivalent way the stress field σ ∈ Σad realizes the minimum of

J(τ ) :=
1

2

∫

Ω

Aτ : τ dx− ⟨τn ,u0⟩Γ + χΣad
(τ ) (3)
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on L2(Ω;M3
sym). It is easy to verify that such a minimum σ exists and is unique. This means that for

all τ ∈ Σad one has : ∫

Ω

Aσ: (τ − σ) dx = ⟨(τ − σ)n ,u0⟩Γ (4)

It remains to prove that there exists u ∈ H1(Ω;R3) verifying Aσ = e(u) and realizing, on the set of
admissible displacements Uad := {v ∈ H1(Ω;R3);v|Γ = u0}, the minimum of the potential energy:

Φ(v) :=
1

2

∫

Ω

Ce(v): e(v) dx−

∫

Ω

fv dx− ⟨F̃ ,v⟩Γ (5)

where C := A−1 is the elasticity tensor field. This is a consequence of the following variant of the
Donati theorem:

Proposition 1 Let M := {η ∈ L2(Ω;M3
sym);

∫
Ω
η: e(v) dx = 0 for all v ∈ V } and let M

⊥ := {e ∈
L2(Ω;M3

sym);
∫
Ω
e:η dx = 0 ∀η in M}. Then:

M
⊥ = {e ∈ L2(Ω;M3

sym); ∃v ∈ V such that e = e(v)}.

Proof Let be X := {e ∈ L2(Ω;M3
sym); ∃v ∈ V such that e = e(v)}. From the Green formula (1) it

follows immediately that X ⊂ M
⊥ since for all τ ∈ M one has:

∫

Ω

τ : e dx = 0.

Since H2(Γ0) > 0 it follows that X is a closed subspace of L2(Ω;M3
sym). Indeed if en = e(vn) is a

converging sequence in L2(Ω;M3
sym) then, thanks to the Poincaré and the Korn inequalities vn is a

converging sequence of V whose limit is v ∈ V . Hence en = e(vn) converges to e := e(v) ∈ X. In order
to conclude it is sufficient to remark that X

⊥ ⊂ M since then by virtue of a classical result one has:

M
⊥ ⊂ (X⊥)⊥ = X. ⊓⊔

Thanks to the classical trace theorem, there exists ũ0 ∈ H1(Ω;R3) such that ũ0|Γ = u0. Since
τ ,σ ∈ Σad by using the Green formula (1) it follows:

⟨(τ − σ)n ,u0⟩Γ =

∫

Ω

e(ũ0): (τ − σ) dx.

Hence (4) implies that for all τ ∈ Σad one has :

∫

Ω

Aσ: (τ − σ) dx =

∫

Ω

e(ũ0): (τ − σ) dx. (6)

From (2) it follows that (τ − σ) ∈ M and so Proposition 1 implies that there exists w ∈ V such that
Aσ− e(ũ0) = e(w). Let us now remark that u := ũ0 +w ∈ H1(Ω;R3) is an admissible displacement
field since u|Γ = u0. Also σ = A−1e(u) = Ce(u) ∈ Σad means that:

∫

Ω

Ce(u): e(v) dx−

∫

Ω

fv dx− ⟨F̃ ,v⟩Γ = 0 for all v ∈ V. (7)

This is equivalent to say that u ∈ H1(Ω;R3) realizes the minimum of the potential energy Φ(v) on
the set of admissible displacements Uad.

Remark 1 Obviously one can consider other type of boundary conditions (e.g. a combination of some
components of the stress vector and of the displacement).
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3 Problem statement

Let us consider a three-dimensional Euclidian space identified by R
3 and such that the three vectors

ei form an orthonormal basis. Let Ω− and Ω+ be two disjoint domains with Lipschitz continuous
boundaries ∂Ω+ and ∂Ω−, whose outer normal is denoted by n. Let S = {∂Ω+ ∩ ∂Ω−}

◦
̸= ∅ be

the interior of the common part of the boundaries which is assumed to be projectable onto the plane

{x3 = 0} and such that H2(S) > 0. Let Γ±

0 ⊂ ∂Ω±\S be relatively open and such that Γ±

0

∩
S = ∅

and H2(Γ±

0 ) > 0 ; let also Γ±

F ⊂ ∂Ω±\S be relatively open such that Γ±

0

∩
Γ±

F = ∅ and S
∩
Γ±

F = ∅.

We assume at last that ∂Ω± = Γ±

F

∪
Γ±

0

∪
S.

We consider a multimaterial obtained by the insertion between the materials occupying Ω− and
Ω+ of a third material. For this, Ω+ (resp. Ω−) is moved in the e3 (resp. −e3) direction of an
amount equal to the half-thickness εh

2 of the third material where ε is a small dimensionless parameter

and h is a global characteristic length (for example the diameter of Ω−
∪
Ω+). Then we set Ω±

ε :=
{x± εh

2 e3,x ∈ Ω±}, S±
ε := {x± εh

2 e3,x ∈ S}, Γ±

0,ε := {x± εh
2 e3,x ∈ Γ±

0 } , Γ±

F,ε := {x± εh
2 e3,x ∈ Γ±

F }

and Bε := {x + εze3,
−h
2 < z < h

2 ,x ∈ S}. At last Ωε = Ω+
ε ∪ Ω−

ε ∪ Bε ∪ S
+
ε ∪ S−

ε will denote the
physical reference configuration of the assembly (see figure 1 left).

We suppose that the materials are linearly hyperelastic. With the notations of the previous section

we suppose that a displacement u0,ε ∈ H
1
2 (∂Ωε;R

3) is given with supp(u0,ε) ⊆ (Γ+
0,ε

∪
Γ−

0,ε) and

that the structure is submitted on ΓF,ε := Γ+
F,ε

∪
Γ−

F,ε to surface loads F ε such that there exists

F̃ ε ∈ H− 1
2 (∂Ωε;R

3) with F̃ |ΓF,ε
= F ε. Moreover since the external boundary Πε := {x+ εze3,−

h
2 <

z < h
2 ,x ∈ ∂S} of Bε is traction-free supp(F̃ ε)∩ (Πε) = ∅. The structure is also submitted in Ω+

ε ∪Ω−
ε

to applied body forces f±
ε

.

Fig. 1 Left: the physical configuration (Ωϵ), Right: the limit configuration (Ω), Below: the rescaled configuration
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In this situation the complementary energy density, ψε(xε, τ ε), associated with a stress tensor field
τ ε : Ωε 7→ M

3
sym, is defined by

ψε(xε, τ ε) =





1
2A

+τ ε : τ ε in Ω+
ε

1
2A

−τ ε : τ ε in Ω−
ε

ε 12A
sτ ε : τ ε in Bε

and A+(xε), A−(xε), As(xε) are the hyperelastic fourth-order tensors satisfying the usual symmetry,
boundedness and positivity assumptions. Let us explicitly point out that the "adimensional" coefficient
ε in the complementary energy density of the thin layer Bε expresses the "welding" character of our
model.

Using the notations analogous with those of the previous section, the elastic energy associated with
a statically admissible stress field τ ε is given by the functional

Ψε(τ
ε) :=

∫

Ωε

ψε(xε, τ ε)dx

and the space of the statically admissible stresses is, in the weak form:

Σε
ad =

{
τ ε ∈ L2(Ωε;M

3
sym);

∫

Ωε

τ ε: e(v) dx−

∫

Ωε

fεv dx− ⟨F̃ ε ,v⟩∂Ωε
= 0 for all v ∈ V ε

}

with V ε :=
{
v ∈ H1(Ωε;R

3) with v|Γ0,ε
= 0

}
. Let us explicitly remark that when τ ε ∈ Σε

ad then

Div τ ε ∈ L2(Ωε;R
3) and so τ εn ∈ H− 1

2 (∂Ωε;R
3) and the analogous of (1) holds true in Ωε.

Hence we can define the complementary energy for all τ ε ∈ L2(Ωε;M
3
sym) as:

Jε(τ
ε) := Ψε(τ

ε)− ⟨τ εn ,u0,ε⟩∂Ωε
+ χΣε

ad
(τ ε) (8)

where ⟨. , .⟩∂Ωε
denotes the duality between H− 1

2 (∂Ωε;R
3) and H

1
2 (∂Ωε;R

3). It is easy to verify that
there exists a unique σε ∈ L2(Ωε;M

3
sym) realizing the minimum of Jε on L2(Ωε;M

3
sym).

As mentioned in the introduction, our aim is to study the behavior of σε := argmin Jε(τ
ε) when

ε tends to zero and to identify the variational problem whose solution is a suitable limit of σε. Our
strategy consists in computing a suitable variational limit of the sequence (Jε)ε>0. In order to make ap-
parent the dependance on ε of the problem, we define, following the approach of Ciarlet and Destuyn-
der [9], an equivalent problem in the fixed domain Ω (see figure 1 right). For this purpose, we set
πε : x = (x1, x2, x3) = (x̂, x3) ∈ Ω → xε = (xε1, x

ε
2, x

ε
3) ∈ Ωε defined by





πε(x1, x2, x3) = (x1, x2, x3 −
h
2 (1− ε)) ∈ Ω+

ε , for x ∈ Ω+
tr

πε(x1, x2, x3) = (x1, x2, εx3) ∈ Bε, for x ∈ B

πε(x1, x2, x3) = (x1, x2, x3 +
h
2 (1− ε)) ∈ Ω−

ε , for x ∈ Ω−
tr

(9)

with Ω±
tr = {x ± h

2e3,x ∈ Ω±}, B = {x + ze3,−
h
2 < z < h

2 ,x ∈ S}, S± = {x ± h
2e3,x ∈ S},

Π = {x + ze3,−
h
2 < z < h

2 ,x ∈ ∂S} Let us explicitly remark that since S+ and S− are obtained
by a fixed translation in the direction e3 from S, the Sobolev spaces defined on S+ , S− and S are
isomorphic. In order to simplify the notations, we identify Ω+

tr with Ω+ and Ω−
tr with Ω− and denote

by Γ0, resp. ΓF , the transformed of Γ0,ε, resp. ΓF,ε. At last, we set Ω = Ω+ ∪Ω− ∪B ∪ S+ ∪ S− and
we identify τ with a triple (τ+, τ−, τ s) ∈ L2(Ω+;M3

sym)× L2(Ω−;M3
sym)× L2(B;M3

sym).

The external loads, the elastic properties of the bodies and the stress tensor field in Ω± are defined
without rescaling by:

τ±(ε,x) := τ ε,±(xε) = τ ε,± ◦ πε(x); . . . (10)
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and the stress tensor field in B is defined with rescaling:

τ s(ε,x) := τ ε,s(xε) = ετ ε,s ◦ πε(x). (11)

Let us explicitly remark that thanks to the previous assumptions and with natural notations

⟨τ εn ,u0,ε⟩∂Ωε
= ⟨τn ,u0⟩∂Ω , ⟨F̃ ε ,v⟩∂Ωε

= ⟨F̃ ,v⟩∂Ω . (12)

Let us also recall the usual relations for any differentiable function φε defined in Bε:

∂

∂xεα
(φε(xε)) =

∂

∂xα
(φ(x)),

∂

∂xε3
(φε(xε)) =

1

ε

∂

∂x3
(φ(x)),

and ∫

Bε

φε(xε)dxε = ε

∫

B

φε ◦ πε(x)dx ≡ ε

∫

B

φ(x)dx.

After this change of coordinates and the rescalings (10),(11), (12), the functional Ψε becomes

Ψ(τ ) = Ψ(τ+, τ−, τ s) =

1

2

∫

Ω+

A+τ+ : τ+ dx+
1

2

∫

Ω−

A−τ− : τ− dx+
1

2

∫

B

Asτ s : τ s dx
(13)

and the weak form of the space of the statically admissible stresses is :

Σad(ε) : =
{
τ = (τ+, τ−, τ s) ∈ L2(Ω+;M3

sym)× L2(Ω−;M3
sym)× L2(B;M3

sym);

for all v = (v+,v−,vs) ∈ V :∫

Ω+

τ+: e(v+) dx+

∫

Ω−

τ−: e(v−) dx+

∫

B

{τsαβeαβ(v
s) + τsα3v

s
3,α}dx

+
1

ε

∫

B

{τsα3v
s
α,3 + τ s33v

s
3,3}dx−

∫

Ω

fv dx− ⟨F̃ ,v⟩∂Ω = 0
}

(14)

where:

V :=
{
v = (v+,v−,vs) ∈ H1(Ω+;R3)×H1(Ω−;R3)×H1(B;R3);

v+|S+ = vs|S+ , v−|S− = vs|S− , v|Γ0
= 0

}
.

At last the functional Jε(τ
ε) defined from L2(Ω+;M3

sym)×L2(Ω−;M3
sym)×L2(B;M3

sym) in R∪{+∞}
becomes

J(ε; τ ) = J(ε; τ+, τ−, τ s) = Ψ(τ+, τ−, τ s)− ⟨τn ,u0⟩∂Ω + χΣad(ε)
(τ+, τ−, τ s).

Let us stress that J(ε; τ ) is convex, lower semicontinuous and proper. For further use we explicitly

remark that F̃ ∈ H− 1
2 (∂Ω;R3) fulfills the condition supp(F̃ ) ∩ (Π) = ∅. At last, in order to avoid

inessential technicalities, in the following we assume that S is indeed contained in the plane x3 = 0.
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4 Mosco-convergence

4.1 Preliminaries

The so-called Mosco-convergence was introduced by U.Mosco [21] in 1969 as a useful tool to study the
asymptotic behavior of convex functionals.

Definition 1 Let X be a reflexive Banach space, Fn, F : X −→ R ∪ {+∞} convex, lower semicontin-
uous and proper functionals. The sequence (Fn)n∈N Mosco-converges to F if and only if:

i) for all u ∈ X and all sequence (un)n∈N weakly converging to u one has:

lim inf
n→+∞

Fn(un) ≥ F (u) ;

ii) for all u ∈ X there exists a sequence (un)n∈N strongly converging to u in X, such that

lim sup
n→+∞

Fn(un) ≤ F (u).

An essential property of Mosco-convergence is that the Young-Fenchel transformation is, for the Mosco-
convergence, sequentially bicontinuous from the set Γ (X) of convex, lower semicontinuous and proper
functionals F : X → R ∪ {+∞} onto the set Γ (X∗) of convex, lower semicontinuous and proper func-
tionals F : X∗ → R∪{+∞}, [22]. The proof of this result and of several others interesting properties of
Mosco-convergence are given in Chapter 3 of Attouch [2]. Some years later, De Giorgi has introduced
the fundamental concept of Γ -convergence for a very general class of functionals, [11]. As stated in
Chapter 3 of Attouch [2], Mosco-convergence of a sequence of functionals defined on a space X is
equivalent to Γ -convergence when X is equipped with its strong and weak topology.

4.2 Mosco-limit of J(ε; τ )

Let us consider the convex, lower semicontinuous and proper functional J : L2(Ω+;M3
sym)×L2(Ω−;M3

sym)×
L2(B;M3

sym) −→ R ∪ {+∞} given by

J(τ ) = J(τ+, τ−, τ s) := Ψ(τ+, τ−, τ s)− ⟨τn ,u0⟩∂Ω + χΣad
(τ+, τ−, τ s) (15)

with

Σad :=
{
τ = (τ+, τ−, τ s) ∈ L2(Ω+;M3

sym)× L2(Ω−;M3
sym)× L2(B;M3

sym);

τsi3 = 0, and for all v = (v+,v−,vs) ∈ V0∫

Ω+

τ+: e(v+) dx+

∫

Ω−

τ−: e(v−) dx+

∫

B

τsαβeαβ(v
s)dx

−

∫

Ω

fv dx− ⟨F̃ ,v⟩∂Ω = 0
}

(16)

and

V0 := {v ∈ V, vsi,3 = 0}.

Let us remark that when τ ∈ Σad then

Ψ(τ ) = Ψ(τ+, τ−, τ s) =

1

2

∫

Ω+

A+τ+ : τ+ dx+
1

2

∫

Ω−

A−τ− : τ− dx+
1

2

∫

B

As
αβγδτ

s
γδτ

s
αβ dx.

(17)
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Moreover, since v ∈ V0 implies v+|S+ = vs|S+ = vs|S− = v−|S− , it follows also that when τ ∈ Σad

one has:

{(τ+e3)|S+eα − (τ−e3)|S−eα)} = τ+α3|S+ − τ−α3|S− = −

∫ 1/2

−1/2

τsαβ,βdx3 (18)

for α = 1, 2 and

τ+33|S+ = (τ+e3)|S+e3 = (τ−e3)|S−e3 = τ−33|S− (19)

where the equalities have to be understood in H− 1
2 (S) ≈ H− 1

2 (S+) ≈ H− 1
2 (S−).

Theorem 1 Let us equip the space L2(Ω+;M3
sym) × L2(Ω−;M3

sym) × L2(B;M3
sym) with the stan-

dard strong and weak product topologies. Under the previous assumptions, the sequence of functionals
(J(ε))ε>0 Mosco-converges to J .

The proof consists in establishing Proposition 2 and Proposition 3 below.

Proposition 2 For all τ = (τ+, τ−, τ s) ∈ L2(Ω+;M3
sym) × L2(Ω−;M3

sym) × L2(B;M3
sym) and all

sequence (τ ε)ε>0 weakly converging to τ in L2(Ω+;M3
sym)×L2(Ω−;M3

sym)×L2(B;M3
sym) the following

inequality holds:

J(τ ) ≤ lim inf
ε→0

J(ε; τ ε). (20)

Proof Clearly one may assume that lim infε→0 J(ε; τ ε) < +∞. Therefore for a non relabeled subse-
quence one has τ ε ∈ Σad(ε). Since Ψ is convex one has only to prove that τ ∈ Σad. Let us remark at
first that for all v ∈ V0:

∫

Ω+

τ ε+: e(v+) dx+

∫

Ω−

τ ε−: e(v−) dx+

∫

B

{τ εsαβeαβ(v
s) + τ εsα3v

s
3,α}dx

−

∫

Ω

fv dx− ⟨F̃ ,v⟩∂Ω = 0

(21)

and passing to the limit:

∫

Ω+

τ+: e(v+) dx+

∫

Ω−

τ−: e(v−) dx+

∫

B

{τsαβeαβ(v
s) + τ sα3v

s
3, α}dx

−

∫

Ω

fv dx− ⟨F̃ ,v⟩∂Ω = 0.

By multiplying equation (14) by ε and passing to the limit we find for all v ∈ V :

∫

B

{τ sα3v
s
α,3 + τs33v

s
3,3}dx = 0. (22)

In order to conclude we have to prove that τsi3 = 0. From (22) it follows that τsi3,3 = 0 and so τsi3 is

constant with respect to x3. By choosing v ∈ V such that v+i |S+ = vsi |S+ = 0 and v−i |S− = vsi |S− is

arbitrary in H
1
2 (S−) and vj = 0 for i ̸= j we get τsi3 = 0. Hence τ ∈ Σad. ⊓⊔

In order to conclude the proof of Theorem 1 for every element τ ∈ Σad we have to construct a so-called
recovery sequence (τ ε)ε>0 ⊂ Σad(ε) strongly converging to τ in L2(Ω+;M3

sym) × L2(Ω−;M3
sym) ×

L2(B;M3
sym). This is the object of Proposition 3. The following preliminary result will be useful in the

proof of Proposition 3.

Lemma 1 Let τ ∈ Σad. There exists a sequence (τ η)η>0 in L2(Ω+;M3
sym)×L2(Ω−;M3

sym)×L2(B;M3
sym)

strongly converging to τ and whose elements satisfy τηsi3 = 0, (18), (19) and moreover are such that

(τ±i3 |S±)η ⊂ C∞(S±;R3) and (τ ηs)η ⊂ C∞(B \ (S+ ∪ S−);M3
sym).
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Proof Since τ ∈ Σad then the trace theorem implies that τ±n± ∈ H− 1
2 (∂Ω±;R3) where n± is the

outer normal to ∂Ω±. Thanks to the assumptions on Ω and on F the restrictions (τ±e3)|S± , can be

extended by zero in a neighborhood S̃± of S± contained in the plane x3 = ±h
2 and these extensions

belong to H− 1
2 (S̃±;R3). Let also extend τ s by zero to B̃ = {x+ z

2e3,−h < z < h,x ∈ S̃}. One can then
make a tangential regularization of such extensions with a sequence of mollifiers depending only on x̂. In
this way one constructs sequences (g±η)η ⊂ C∞(S±;R3) converging to (τ±e3)|S± in H− 1

2 (S±;R3) and

(τ ηs)η ⊂ C∞(B̂s;M3
sym) converging to τ s in L2(B;M3

sym) where B̂s := B\(S+∪S−) = {x+ze3,−
h
2 <

z < h
2 ,x ∈ S}. These sequences satisfy τηsi3 = 0 and the conditions (18), (19). In order to conclude

the proof of the lemma we have to construct a suitable lifting τ±η of g±η. This will be done solving
some auxiliary elasticity problems with suitable boundary conditions of mixed type. For every η let us
consider in Ω± a mixed elasticity problem with an elasticity tensor C (for simplicity with components
Cijkl = 1

2 (δikδjl + δilδjk) ) where the source terms correspond to f , F and to g±η and the zero

Dirichlet data is imposed on Γ±

0 . These problems have a unique solution u
±η ∈ H1(Ω±;R3). Let

τ±η := Ce(u±η) ∈ L2(Ω±;M3
sym). The continuous dependence on the data implies the convergence

of τ±η to τ± in L2(Ω±;M3
sym). For further use let us point out that the weak formulation of these

elasticity problems implies that:

∫

Ω+

τ η+: e(v+) dx+

∫

Ω−

τ η−: e(v−) dx−

∫

Ω

fv dx− ⟨F̃ ,v⟩∂Ω

−

∫

S+

g+η v+ dx̂+

∫

S−

g−η v− dx̂ = 0

(23)

for all (v+,v−) ∈ H1(Ω+;R3)×H1(Ω−;R3) such that v±|Γ±

0

= 0. ⊓⊔

Proposition 3 For all τ = (τ+, τ−, τ s) ∈ L2(Ω+;M3
sym)×L2(Ω−;M3

sym)×L2(B;M3
sym) there exists

a sequence (τ ε)ε>0 strongly converging to τ in L2(Ω+;M3
sym) × L2(Ω−;M3

sym) × L2(B;M3
sym) such

that

lim
ε→0

J(ε; τ ε) = J(τ ). (24)

Proof Let τ be a fixed element in L2(Ω+;M3
sym) × L2(Ω−;M3

sym) × L2(B;M3
sym). One can assume

that J(τ ) < ∞ otherwise there is nothing to prove and hence that τ ∈ Σad. Let then be (τ η)η>0

a sequence in L2(Ω+;M3
sym) × L2(Ω−;M3

sym) × L2(B;M3
sym) converging to τ constructed by using

Lemma 1 and hence such that:

τη±i3 |S± = gη±i . (25)

Let us now define τ εη = τ η + ετ̂ εη as follows:

(i) τ̂
εηs ∈ L2(B;M3

sym) is given by

τ̂εηsαβ = 0, (26)

τ̂εηsα3 = gη−α −

∫ x3

−1/2

τηsαβ,βdt {= gη+α +

∫ 1/2

x3

τηsαβ,βdt}, (27)

τ̂εηs33 = −gη−3 − ε

∫ x3

−1/2

τ̂εηsα3,αdt; (28)

(ii) τ̂
εη+ ∈ L2(Ω+;M3

sym) satisfies for all v+ ∈ H1(Ω+;R3) such that v|Γ+

0

= 0 :

∫

Ω+

τ̂
εη+

: e(v+) dx−

∫

S+

{

∫ 1/2

−1/2

τ̂εηsα3,αdx3}v
+
3 dx̂ = 0; (29)

(iii) τ̂
εη− = 0.
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Let us explicitly remark that τ̂
εη+ can be obtained solving a suitable mixed elasticity problem. From

the previous choices for every ε, η > 0 it follows that τ εη ∈ Σad(ε). Indeed (23), (29) and (26) imply
that for every v ∈ V

∫

Ω+

τ εη+: e(v+) dx+

∫

Ω−

τ εη−: e(v−) dx+

∫

B

{τ εηsαβ eαβ(v
s) + τ εηsα3 v

s
3,α}dx

+
1

ε

∫

B

{τεηsα3 v
s
α,3 + τεηs33 vs3,3}dx−

∫

Ω

fv dx− ⟨F̃ ,v⟩∂Ω

=

∫

S+

(gη+e3)|S+ v+ dx̂−

∫

S−

(gη−e3)|S− v− dx̂

+ ε{

∫

S+

{

∫ 1/2

−1/2

τ̂εηsα3,αdx3}v
+
3 dx̂}

+

∫

B

{τηsαβeαβ(v
s) + τ̂ εηsα3 v

s
α,3}dx+

∫

B

{ετ̂εηsα3 v
s
3,α + τ̂εηs33 vs3,3}dx

=

∫

B

{τηsαβeαβ(v
s) + τ̂εηsα3 v

s
α,3}dx+

∫

S+

gη+α v+α dx̂−

∫

S−

gη−α v−α dx̂

+ ε(

∫

S+

{

∫ 1/2

−1/2

τ̂ εηsα3,αdx3}v
+
3 dx̂) +

∫

S+

gη+3 v+3 dx̂−

∫

S−

gη−3 v−3 dx̂

+

∫

B

{ετ̂εηsα3 v
s
3,α + τ̂ εηs33 vs3,3}dx = 0,

(30)

since from (27) it follows that

∫

B

{τηsαβeαβ(v
s) + τ̂εηsα3 v

s
α,3}dx+

∫

S+

gη+α v+α dx̂−

∫

S−

gη−α v+α dx̂ = 0

and from (28) it follows that

+ ε

∫

S+

{

∫ 1/2

−1/2

τ̂εηsα3,αdx3}v
+
3 dx̂+

∫

S+

gη+3 v+3 dx̂−

∫

S−

gη−3 v−3 dx̂

+

∫

B

{ετ̂ εηsα3 v
s
3,α + τ̂ εηs33 vs3,3}dx = 0.

Since

lim
ε→0

J(ε; τ εη) = Ψ(τ η)

then

lim
η→0

lim
ε→0

J(ε; τ εη) = Ψ(τ ) = J(τ ).

From the construction of τ εη it follows that limη→0 limε→0 τ
εη = τ strongly in L2(Ω+;M3

sym) ×
L2(Ω−;M3

sym)×L2(B;M3
sym). Hence, thanks to a diagonalization lemma (see e.g. Attouch [2]), there

exists a map ε→ η(ε) such that η(ε) → 0 when ε→ 0 and such that

lim
ε→0

J(ε; τ εη(ε)) = J(τ ) and lim
ε→0

τ εη(ε) = τ .

⊓⊔
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5 A Donati-type theorem

Let us remark at first that the functional J(τ ) = J(τ+, τ−, τ s) has a minimum σ = (σ+,σ−,σs) ∈
Σad on L2(Ω+;M3

sym)× L2(Ω−;M3
sym)× L2(B;M3

sym); this means that

∫

Ω+

A+σ+ : (τ+ − σ+) dx+

∫

Ω−

A−σ− : (τ− − σ−) dx

+

∫

B

As
αβγδσ

s
γδ : (τsαβ − σs

αβ) dx = ⟨(τ − σ)n ,u0⟩∂Ω for all τ = (τ+, τ−, τ s) ∈ Σad.

(31)

Thanks to the classical trace theorem there exists ũ0 = (ũ+
0 , ũ

−

0 , ũ
s
0) ∈ H1(Ω;R3) with ũ

s
0 = 0 such

that ũ0|∂Ω = u0 and hence from the Green formula (1) it follows:

⟨(τ − σ)n ,u0⟩∂Ω =

∫

Ω

e(ũ0) : (τ − σ) dx. (32)

Let

M0 :=
{
η = (η+,η−, η̂s) ∈ L2(Ω+;M3

sym)× L2(Ω−;M3
sym)× L2(B;M2

sym);
∫

Ω+

η+: e(v+) dx+

∫

Ω−

η−: e(v−) dx+

∫

B

η̂sαβeαβ(v
s)dx = 0 for all v ∈ V0

}
.

Thanks to (32) one can write (31) for all η ∈ M0 as follows:
∫

Ω+

A+σ+ : η+ dx+

∫

Ω−

A−σ− : η− dx+

∫

B

As
αβγδσ

s
γδ η̂

s
αβ dx =

∫

Ω

e(ũ0) : η dx. (33)

This means that (A+σ+−e(ũ+
0 ),A

−σ−−e(ũ−

0 ), Â
sσ̂

s) ∈ M
⊥
0 where (Âs)αβ := As

αβγδ, (σ̂
s)γδ := σs

γδ

and the orthogonality is taken with respect to the scalar product in L2(Ω+;M3
sym)×L2(Ω−;M3

sym)×

L2(B;M2
sym). Hence we need to identify M

⊥
0 . This is a consequence of the following variant of the

Donati theorem.

Theorem 2 e = (e+, e−, ês) ∈ M
⊥
0 if and only if there exists v = (v+,v−,vs) ∈ V0 such that

e+ = e(v+), e− = e(v−) and (ês)αβ = eαβ(v
s).

Proof Let X0 be the subspace of L2(Ω+;M3
sym)× L2(Ω−;M3

sym)× L2(B;M2
sym) of e such that there

exists v = (v+,v−,vs) ∈ V0 satisfying e+ = e(v+), e− = e(v−) and (ês)αβ = eαβ(v
s). From

this definition it follows immediately that X0 ⊂ M
⊥
0 . We claim that X0 is a closed subspace. Indeed

if (en) = (e(v+
n ), e(v

−
n ), (eαβ(v

s
n))) is a sequence in X0 converging to 0 then the sequence (v+

n ),
resp. (v−

n ), converges in H1(Ω+;R3), resp. H1(Ω−;R3), to R+ , resp. R− with R+ and R− rigid
displacements. As far as it concerns the sequence (vs

n), whose elements are independent from x3, we
deduce only that the sequence converges to a displacement Rs = (a1 − b1x2, a2 − b2x1, a3(x1, x2)).
However the definition of V0 implies that R+ = R− = Rs = 0 and the claim is proved. In order to
conclude it is now enough to prove that

X
⊥
0 ⊂ M0 (34)

since then M
⊥
0 ⊂ (X⊥

0 )
⊥ = X0. For this let be τ = (τ+, τ−, τ̂ s) ∈ X

⊥
0 , i. e. such that

∫

Ω+

τ+: e(v+) dx+

∫

Ω−

τ−: e(v−) dx+

∫

B

τ̂sαβ eαβ(v
s) dx = 0 (35)

for all v ∈ V0. It is then obvious that τ ∈ M0 . ⊓⊔

Corollary 1 There exists u = (u+,u−,us) ∈ H1(Ω;R3) such that

(A+σ+,A−σ−, Â
s
σ̂s) = (e(u+), e(u−), (eαβ(u

s))). (36)
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Proof Theorem 2 implies that there exists w = (w+,w−,ws) ∈ V0 such that

(A+σ+ − e(ũ+
0 ),A

−σ− − e(ũ−

0 ), Â
sσ̂

s) = (e(w+), e(w−), (eαβ(w
s)))

hence setting u = w + ũ0, (36) is satisfied. ⊓⊔

Let us denote by C+ and C− the inverses (as linear operators in M
3
sym) of A+ and A− and by Ĉ

s

the operator inverse in M
2
sym of Â

s
. Then (15) implies that u realizes the minimum in (ũ0 + V0) ⊂

H1(Ω;R3) of the functional:

Φ(v) = Φ(v+,v−,vs) =
1

2

∫

Ω+

C+e(v+) : e(v+) dx+
1

2

∫

Ω−

C−e(v−) : e(v−) dx

+
1

2

∫

B

Ĉs
αβγδeγδ(v

s)eαβ(v
s) dx−

∫

Ω

fv dx− ⟨F ,v⟩Γ .

(37)

When ũ0 = 0 this functional coincides with that introduced in [5].
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