A tight bound for the Delaunay triangulation of points on a polyhedron - Archive ouverte HAL
Article Dans Une Revue Discrete and Computational Geometry Année : 2012

A tight bound for the Delaunay triangulation of points on a polyhedron

Résumé

We show that the Delaunay triangulation of a set of $n$ points distributed nearly uniformly on a $p$-dimensional polyhedron (not necessarily convex) in $d$-dimensional Euclidean space is $O(n^{\frac{d-k+1}{p}})$, where $k = \lceil \frac{d+1}{p+1} \rceil$. This bound is tight in the worst case, and improves on the prior upper bound for most values of $p$.
Fichier principal
Vignette du fichier
2012-dcg-size-delaunay.pdf (215.49 Ko) Télécharger le fichier
Vignette du fichier
vignette-hal-00784900.jpg (31.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Loading...

Dates et versions

hal-00784900 , version 1 (04-02-2013)

Identifiants

Citer

Nina Amenta, Dominique Attali, Olivier Devillers. A tight bound for the Delaunay triangulation of points on a polyhedron. Discrete and Computational Geometry, 2012, 48 (1), pp.19-38. ⟨10.1007/s00454-012-9415-7⟩. ⟨hal-00784900⟩
624 Consultations
280 Téléchargements

Altmetric

Partager

More