A tight bound for the Delaunay triangulation of points on a polyhedron
Résumé
We show that the Delaunay triangulation of a set of $n$ points distributed nearly uniformly on a $p$-dimensional polyhedron (not necessarily convex) in $d$-dimensional Euclidean space is $O(n^{\frac{d-k+1}{p}})$, where $k = \lceil \frac{d+1}{p+1} \rceil$. This bound is tight in the worst case, and improves on the prior upper bound for most values of $p$.
Fichier principal
2012-dcg-size-delaunay.pdf (215.49 Ko)
Télécharger le fichier
vignette-hal-00784900.jpg (31.84 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Format | Figure, Image |
---|
Loading...