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1 Introduction

Overview. The Delaunay triangulation of a set of points is a fundamental geometric

data structure, used in surface reconstruction, mesh generation, molecular modeling,

geographic information systems, and many other areas of science and engineering. It

is well-known [12] that the complexity of the Delaunay triangulation of n points in di-

mension d is O(n⌈ d
2
⌉) and that this bound is achieved by distributions of points along

one-dimensional curves such as the moment curve. But points distributed uniformly

in R
d, for instance inside a d-dimensional ball, have Delaunay triangulations of com-

plexity O(n); the constant factor is exponential in the dimension, but the dependence

on the number of points is linear. We are interested in filling in the picture in between

these two extremes, that is, when the points are distributed on a manifold of dimension

2 ≤ p ≤ d− 1. In this paper we consider the easy case of a p-dimensional polyhedron

P .

Main result. We consider a fixed p-dimensional polyhedron P in d-dimensional Eu-

clidean space R
d. Our point set S is a sparse ε-sample from P . Sparse ε-sampling

requires the sampling to be neither too sparse nor too dense. Our sampling model also

contains the restriction that every face of P must be ε-sampled, not just those of the

highest dimension. This kind of sampling is used in low dimensions for mesh genera-

tion, eg. [4].

We consider the complexity of the Delaunay triangulation of S, as ε → 0, while P

remains fixed, so that n = |S| goes to infinity. The main result in this paper is that the

number of simplices of all dimensions is O(n
d−k+1

p ) where k = ⌈d+1
p+1⌉. The hidden
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constant factor depends, among other things, on the geometry of P , which is constant

since P is fixed. This bound is tight in the worst case. In an earlier abstract [1], we

had an upper bound of O(n(d−1)/p) (with a simpler proof), which is weaker for the

smaller values of 1 < p ≤ d−1
2 , and matches the bound in this paper for larger values

d−1
2 < p ≤ d.

Prior work. The complexity of the Delaunay triangulation of a set of points on a

two-manifold in R
3 has received considerable attention, since such point sets arise in

practice, and their Delaunay triangulations are found nearly always to have linear size.

Golin and Na [8] proved that the Delaunay triangulation of a set of points distributed

uniformly at random on the surface of a fixed convex polytope in R
3 has expected size

O(n). They later [7] established an O(n lg6 n) upper bound for the case in which the

points are distributed uniformly at random on the surface of a non-convex polyhedron.

Attali and Boissonnat considered the problem using a sparse ε-sampling model

similar to the one we use here, rather than a random distribution. For such a set of

points distributed on a polygonal surface P , they showed that the size of the Delaunay

triangulation is O(n) [2]. In a subsequent paper with Lieutier [3] they considered

“generic” smooth surfaces, and showed an upper bound of O(n lg n). A “generic”

surface is one for which every ball with interior empty of surface points has at most a

constant number of surface points on its boundary.

The genericity assumption is important. Erickson considered more general point

distributions, which he characterized by the spread: the ratio of the largest inter-point

distance to the smallest. The spread of a sparse ε-sample of n points from a two-
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dimensional manifold is O(
√
n). Erickson proved that the Delaunay triangulation of

a set of points in R
3 with spread ∆ is O(∆3). Perhaps even more interestingly, he

showed that this bound is tight for ∆ =
√
n, by giving an example of a sparse ε-

sample of points from a cylinder that has a Delaunay triangulation of size Ω(n3/2) [6].

This surface is not generic and has a degenerate medial axis.

To the best of our knowledge, our earlier abstract [1] is the only prior result for

d > 3.

Outline of the proof. We begin with a simple lower bound, which illustrates the

importance of the quantity k = ⌈d+1
p+1⌉ and motivates the upper bound.

At the coarsest level, the proof of the upper bound is similar to that of [1]: we map

Delaunay simplices to the medial axis in such a way that each medial point can only

correspond to a constant number of Delaunay simplices, and then we use a packing

argument on the medial axis. But the tight bound seems to require us to consider some

additional phenomena which occur in higher dimensions, but not in the familiar settings

of dimensions two and three. The most important of these is the observation that when

k = ⌈d+1
p+1⌉ > 2, the vertices of any Delaunay simplex, which must span R

d, have to

be drawn from k > 2 faces of P . This allows us to relate Delaunay simplices to only

the lower-dimensional parts of the medial axis, generated by k or more faces of P -

the k-medial axis. This idea is embodied in Corollary 6. Because the k-medial axis is

lower-dimensional, we can pack it with fewer balls, giving the tighter bound.

The mapping process, described in Section 6, takes a Delaunay ball Σ to a point z

associated with the k-medial axis. We show in Section 7 that all of the original sample
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points inducing Σ lie near at least one of the projections of z onto the flats spanned by

the faces of P ; we say z covers the sample points. This covering allows us to bound

the number of Delaunay simplices by the size of the packing on the medial axis.

To motivate some of the complications in the mapping, let us sketch a simpler

version which produces a point on the k-medial axis but not necessarily one which

covers the sample points. We say that a ball is hollow if its interior does not intersect

the polyhedron P . We begin with the center z of Σ, and the largest hollow ball B

centered at z; B is tangent to at least one face of P . We choose a hyperplane H

containing all of the faces to which B is tangent. Fixing the intersection B ∩ H , we

move z in a straight line away from H , increasing its radius as necessary, until B

becomes tangent to another face of P . We iterate, stopping when we run out of degrees

of freedom; the final z must lie on the k-medial axis.

But notice that as z moves, the part of B on one side of H grows, while the other

part shrinks. The difficulty is that B might shrink away from some of the original

sample points inducing Σ, and as B recedes the projections of z onto faces of P may

move away as well. In our earlier abstract [1], we started with a single tangent point

and used only one iteration (going only to the 2-medial axis), so that the shrinking part

was entirely within distance ε of the first point of tangency. But during the additional

iterations required for the tight bound the multiple points of tangency can be far apart

from each other, and the shrinking part of B can be quite large.

To get around this problem, we define in Section 4 a new structure related to the

medial axis, the annular k-medial axis. An annulus in R
d is the symmetric difference

between two concentric balls. An annulus is tangent to the boundary of P when either
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the inner bounding sphere or the outer bounding sphere of the annulus is tangent to

the boundary of P . It is hollow when the inner bounding sphere is the boundary of a

hollow ball. Just as the medial axis consists of the centers of hollow balls tangent to the

boundary of P at more than one point, the annular medial axis consists of the centers

of hollow annuli tangent to the boundary of P at more than one point.

At the beginning of the mapping process, we start with a hollow annulus with same

center z as Σ, which encloses Σ and is tangent to P in at least one point. In each step of

the iterative process, now, we move z until either the inner sphere or the outer sphere

of the annulus becomes tangent to a new face. This prevents the spheres bounding

the annulus from shrinking away from the faces of P containing the sample points

inducing the original Delaunay ball Σ. This new mapping procedure produces a point

z on the annular k-medial axis.

The annular k-medial axis is typically unbounded, so to apply a packing argument

we need to define (in Section 5) a bounded subset of it, the trimmed annular k-medial

axis. By definition, this object has dimension at most d − k + 1 and we prove that its

(d − k + 1)-dimensional volume is bounded from above by a constant that does not

depend on ε. It follows that we can construct an ε-sample M of the trimmed annular

k-medial axis with m = O(ε−(d−k+1)) points.

The mapping process in Section 6 produces a point z on trimmed annular k-medial

axis. We define the cover of z in Section 7 as

⋃

x∈Π(z)

B(x, r),

where Π(z) is the set of all orthogonal projections of z onto the flats spanned by faces

of P , and B(x, r) is the ball centered at x with radius r. We then assign z to the nearest
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sample z′ ∈ M , and argue that the cover of a point z′ ∈ M , with r = 5dε, contains

only a constant number of points in S. Since each z′ is charged for a constant number

of Delaunay simplices. It follows that the size of the Delaunay triangulation is bounded

from above by the size of M , which is m = O(ε−(d−k+1)). Since our point set S is

a sparse ε-sample from a p-dimensional polyhedron, its cardinality is n = Ω(ε−p).

Eliminating ε gives the O(n
d−k+1

p ) upper bound.

We carefully structure the arguments so that we can avoid making any non-degeneracy

assumptions on either P or the vertex set S of the Delaunay triangulation. This means

that parts of the annular k-medial axis of a degenerate polyhedron may have dimension

greater than d − k + 1 (which is what one expects in the generic case). Nonetheless

we can show that any simplex of the Delaunay triangulation is mapped to a part of

the annular k-medial axis which does have dimension at most d − k + 1, by map-

ping the simplex to an annulus tangent to at least k independent faces (Definition 4).

Lemma 5 shows that k independent faces generate a piece of the correct dimension, and

Lemma 14 shows that a simplex can be mapped to an annulus tangent to k independent

faces.

2 Statement of Theorem

To formally state the theorem, we must first define the sampling condition.
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2.1 Sampling

Let P ⊆ R denote our input polyhedron, not necessarily convex or connected 1. We

assume that P itself spans Rd, since otherwise we can consider the Delaunay triangu-

lation in the subspace which is spanned by P . The flat spanned at a point x is the flat

(affine subspace) H of largest dimension passing through x, such that the intersection

of a neighborhood of x with H is contained in P .

An i-face F of P is a maximal collection of points sharing the same spanning i-

flat. Notice that under this definition, faces are relatively open, faces are not necessarily

connected, and every point x ∈ P belongs to a unique face that we denote by Fx. The

0-faces are the vertices of P .

We say that a set of points S ⊆ P is a λ-sparse ε-sample of P if and only if it

satisfies the following two conditions:

Density: Every point x in P is at distance ε or less to a point in S lying on the closure

of Fx. In other words,

∀x ∈ P, ∃s ∈ S ∩ cl(Fx), ‖x− s‖ ≤ ε;

Sparsity: Every closed d-ball with radius 5dε contains at most λ points of S.

The density condition implies that all faces, of all dimensions, are nearly uniformly

sampled, not just the faces with maximal dimension. We treat λ as a constant. As ε goes

to zero, the number n of points in a λ-sparse ε-sample of a p-dimensional polyhedron

is related to ε by n = Θ(ε−p), i.e. n tends to infinity (to see this, consider any packing

1More formally, a p-dimensional polyhedron can be defined as the underlying space of any geometric

simplicial complex of dimension p.
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of every face of P by balls of radius ε, and then extend this packing to a covering by

increasing the radius of each ball to 2ε).

2.2 Main Theorem

We are now ready to state our main result:

Theorem 1 Let S be a λ-sparse ε-sample of a p-dimensional polyhedron P in R
d,

with n = |S|. In the worst case, the Delaunay triangulation of S has size Θ(n
d−k+1

p )

where k = ⌈d+1
p+1⌉.

3 The lower bound

We begin with the lower bound, which is comparatively simple and conveys the intu-

ition as to why Θ(n
d−k+1

p ) is the correct bound.

Proof of Lower Bound for Theorem 1: We first construct a polyhedron P , and then

examine the complexity of the Delaunay triangulation of a λ-sparse ε-sample on P .

We select a set of d+1 affinely independent points, and partition them into groups

Q1, . . . , Qk so that groups Q1 . . . Qk−1 contain p + 1 points each, and Qk contains

between 1 and p+ 1 points. Thus it must be that k = ⌈d+1
p+1⌉.

Let Ci be the convex hull of Qi, and let ci be the dimension of Ci. For all 1 ≤ i <

k, this dimension ci = p, and ck ≤ p. We let the polyhedron P =
⋃k

i=1 Ci; note that

P indeed has dimension p. Also note that each Ci spans a subspace independent of the

other Cj .

Now let us consider a λ-sparse ε-sample of P ; let us call this point set S. Now
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consider choosing one sample point from each of the Ci, for 1 ≤ i ≤ k, producing a set

X . The point set X is linearly independent, since the Ci span independent subspaces,

so the convex hull of X is a (k − 1)-simplex σ.

Also, for any X that we can construct this way by picking one sample point si on

each Ci,, there is a unique (d − 1)-sphere Σ tangent to P at the si ∈ X . To see this,

notice that being tangent to Ci at si is roughly speaking equivalent to passing through

ci + 1 coincident points; and

k∑

i=1

(ci + 1) = d+ 1. (1)

Σ encloses no sample point of S in its interior, since it is tangent to each of the Ci at a

single point. Thus σ must be a Delaunay simplex.

Since Ci contains Ω(ε−ci) points of S, the number of distinct Delaunay (k − 1)-

simplices that we can construct is at least

Ω(ε−c1 × · · · × ε−ck) = Ω(ε−(d−k+1)) = Ω(n
d−k+1

p ).

and this is a lower bound on the overall complexity of the Delaunay triangulation.

4 The annular medial axis

The annular medial axis AM is the key geometric object in our proof of the upper

bound. The annular medial axis is formed by tangent annuli rather than tangent spheres.

Setting k = ⌈d+1
p+1⌉, we are particularly interested in AMk, the part of the annular

medial axis generated by at least k faces of P . If the faces of P were in general position,

it would be fairly simple to establish that AMk had dimension at most d − k + 1
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everywhere, but when P is degenerate this is not the case; see Figure 2. Instead, we

identify the subset of AMk which is guaranteed to have dimension at most d− k + 1.

4.1 Definitions

It is clear what it means for a sphere to be tangent in the interior of an open face F

of P ; let us introduce a definition which also handles the boundaries. We denote the

closure of F by cl(F ) and write Aff(F ) for the affine space spanned by F . We say that

a (d− 1)-sphere Σ is tangent to F at point x if both cl(F ) and Aff(F ) intersect Σ in a

unique point x. Since faces are relatively open, this means that x might be a limit point

of F , so that Σ ∩ F = ∅. Note also that a sphere can be tangent to several faces at x,

only one of which is the face Fx containing x (the one of smallest dimension).

An annulus with center z, inner radius r and outer radius R is the set of points x

whose distance to the center satisfies r ≤ ‖x − z‖ ≤ R. The boundary of an annulus

consists of two (d − 1)-spheres and we call the smaller one the inner sphere and the

larger one the outer sphere. We say that an annulus A is tangent to F at x if one

of the two spheres bounding A is tangent to F at x (see Figure 1, or Figure 6 for a

more intricate example). Point x is called a tangency point of A. An annulus is hollow

if its inner sphere bounds a d-ball whose interior does not intersect P ; notice that P

might intersect the annulus itself. The width of an annulus is the difference between

the outer and inner radii R − r. We define the penetration of an annulus to be the

maximum radius of the intersection of the annulus with a flat, such that the open ball

bounded by the inner sphere remains empty; see Figure 1. Specifically, the penetration

is
√
R2 − r2. We are mostly concerned with annuli of penetration ε; such an annulus
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has width ε2

R+r .

Definition 2 The annular k-medial axis AMk of P is the set of points z ∈ R
d for

which the largest hollow annulus of penetration ε centered at z is tangent to at least k

faces of P .

We write A(z, ε) for the largest hollow annulus of penetration ε centered at z.

Figure 1 pictures an example of the annular 2-medial axis in R
2. Observe that this is

a superset of the medial axis, even for ε = 0: the medial axis of the polyhedron is the

set of points z ∈ R
d for which A(z, 0) touches the polyhedron in two points or more,

while the annular 2-medial axis with ε = 0 is the set of points z for which A(z, 0) is

tangent to two faces of P or more (possibly at the same point).

εε

A(z, ε)

z

Figure 1: A rectangle and its annular 2-medial axis, composed of 16 half-lines, 7 segments and

8 pieces of hyperbolas. The annulus A(z, ε) is tangent to the rectangle at the two hollow dots.

4.2 Dimension and degeneracy

To describe the annular medial axis, we use the language of stratifications [9, 10].
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Given a subset X ⊆ R
d, a stratification of X is a filtration

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xj = X

by subspaces such that the set difference Xi \Xi−1 is an open i-dimensional manifold

(possibly not connected), called the i-dimensional stratum Si of X . For example, the

Voronoi diagram of a point set in R
2 admits a stratification into its cells, edges and

vertices. Semi-algebraic sets admit a stratification, and since the annular k-medial

axes of polyhedra are piecewise semi-algebraic, they also admit a stratification. In this

section, we give conditions under which a point z ∈ AMk belongs to a stratum of

dimension d− k + 1 or less.

If the faces of P were in general position, this would be easy: any z belonging to

the stratum of dimension d−k+1 would be the center of an annulus tangent to k faces.

But in degenerate situations an annulus tangent to k faces might belong to a stratum of

dimension greater than d−k+1, as illustrated in Figure 2. So we need to make a more

careful argument.

Recall that AMk is defined as the set of points for which A(z, ε) is tangent to at

least k faces. Let us concentrate instead in this section on the subset Ck, defined as the

set of points z such that annulus A(z, ε) is tangent to exactly k faces of P . When does

Ck form a (d− k + 1)-dimensional stratum?

We start by writing down some equations that determine Ck locally around z. Since

A(z, ε) is tangent to exactly k faces F1, . . . , Fk, there exists δ > 0 such that every

face of the polyhedron not in {F1, . . . , Fk} is at distance at least δ to the boundary

of A(z, ε). Using a compactness argument as in [11], it follows that for a point y

close enough to z, the only faces that might possibly be tangent to annulus A(y, ε) are
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Figure 2: The box is P , and we take ε = 0. The set C4
⊂ AM

4, consisting of the centers of

annuli tangent to four faces is the segment connecting the hollow dots. It has dimension one,

rather than dimension zero as we would expect in the absence of degeneracy.

F1, . . . , Fk. We set ei = −ε2 if Fi is tangent to the outer sphere of A(z, ε) and ei = 0

if Fi is tangent to the inner sphere of A(z, ε). Since any annulus A(y, ε) with y ∈ Ck

in the neighborhood of z is tangent to both Fi and Fk, Ck thus obeys the following

k − 1 equations:

gi(y) = d(y, Fi)
2 − d(y, Fk)

2 + ei − ek = 0,

for 0 < i < k. The equations expressing the fact that A(y, ε) is tangent to any other pair

Fi, Fj are redundant. Each gi(y) is a polynomial of degree two, so every neighborhood

in Ck is a subset of the intersection of k − 1 quadrics. In general, k − 1 hypersurfaces

meet at point z in a (d − k + 1)-manifold, but this might not hold in the presence of

degeneracies.
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Lemma 3 Suppose z ∈ Ck is the center of an annulus A(z, ε) tangent to the polyhe-

dron at k affinely independent points x1, . . . , xk. Then the neighborhood of z in Ck is

a (d− k + 1)-manifold. Furthermore, the tangent space to Ck at z is the set of vectors

orthogonal to the affine space spanned by x1, . . . , xk.

PROOF. In a small neighborhood of z, Ck coincides with the zero-set of the functions

gi(y). Let Fi = Fxi
be the face to which xi belongs. One can check that the gradient

of gi(y) is 2(xk − xi). Since the xi are affinely independent for 1 ≤ i ≤ k, we

have that the Jacobian of the map g = (g1(y), . . . , gk−1(y)) has rank k − 1, so the

implicit function theorem implies that its zero-set g−1(0) is a (d− k+1)-dimensional

manifold in a neighborhood of z. Furthermore, the tangent space of g−1(0) at z is the

null space of the derivative Dg(z), which is the set of vectors orthogonal to the affine

space spanned by x1, . . . , xk.

While the assumption that the tangency points of A(z, ε) are independent is suffi-

cient to show that z belongs to the stratum of dimension at most d−k+1, this condition

is not necessary. Again, this is a phenomenon that occurs only in high dimension. As

an example of an annulus A(z, ε) for which the tangency points are not independent

but the dimension of the stratum containing z remains small, let’s consider the follow-

ing example in R
6. The polyhedron P consists of segments of four lines, represented

parametrically by (0, 0, s, 0, 0, 0), (1, 0, 0, t, 0, 0), (0, 1, 0, 0, u, 0), and (1, 1, 0, 0, 0, v),

with −1 ≤ s, t, u, v ≤ 1. Let us take ε = 0, and consider the part of C4 consisting

of points z with A(z, ε) tangent to the interiors of all four line segments. This is a

three-dimensional manifold, as one would expect, and at most points z in this portion
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of AM3 the four points of tangency span a three-dimensional subspace. But the point

z = (1/2, 1/2, 0, 0, 0, 0) also belongs to this part of C4 and its points of tangency all

lie in a common 2-flat. Nonetheless z is a regular point of Ck, and Ck has dimension

three in the neighborhood of z. This example illustrates why we need to consider not

just the local points of tangency in the neighborhood of z but also the tangent faces.

Definition 4 We say that k faces F1, . . . , Fk are independent if none of them is con-

tained in the affine space spanned by the union of the others, that is for 1 ≤ i ≤ k,

Fi 6⊆ Aff(F1 ∪ · · · ∪ F̂i ∪ · · · ∪ Fk),

where the symbol ̂ over Fi indicates that it is omitted in the union.

For example, the four segments in R
6 which we just considered are independent.

Lemma 5 Suppose that A(z, ε) is tangent to exactly k faces. If those k faces are

independent, then Ck is a manifold of dimension at most d− k + 1 in a neighborhood

of z.

PROOF. Recall that Ck is the set of points z ∈ R
d such that A(z, ε) is tangent to

exactly k faces of P . We partition Ck into k pieces (some of which might be empty),

as follows. We write Si for the set of points y ∈ Ck whose tangency points span a

space of dimension i. Thus we have Ck =
⋃

i Si, for 0 ≤ i ≤ k − 1. All we need to

prove is that in the neighborhood of any z ∈ Si, Si has dimension at most d − k + 1,

for all 0 ≤ i ≤ k − 1. By Lemma 3, we already know that Sk−1 is a (d − k + 1)-

dimensional manifold, so let us consider i < k − 1. The idea of this proof is to define

Si, in the neighborhood of z, as the intersection of a family of surfaces, and to compute

the dimension of the intersection.

16



A(y, 0)

y Fj

Xj

x2(y) = xj(y)

F2

F1

x1(y)

S
′

Hj

Figure 3: Notation for the proof of Lemma 5. A(y, 0) is tangent to F1, F2 and Fj .

Let F1, . . . , Fk be the k faces tangent to A(z, ε). Using the same compactness argu-

ment as before, there exists a small neighborhood U of z in R
d such that for every point

in w ∈ Si ∩ U , the only faces possibly tangent to the annulus A(w) are F1, . . . , Fk.

For y ∈ Si∩U , let xi(y) be the orthogonal projection of y onto Aff(Fi) (see Figure

3). We can always reduce the size of U such that the tangency points x1(y), . . . , xk(y)

span an affine space of dimension i; without loss of generality, let us assume that the

first i tangency points x1(y), . . . , xi(y) are affinely independent. The first surface we

construct is the locus of annulus centers tangent just to the faces F1, . . . , Fi. Specif-

ically, let P ′ = cl(F1) ∪ · · · ∪ cl(Fi) and write S ′ for the set of points which are the

center of a hollow annulus (with respect to P ′) of penetration ε tangent to the i faces

F1, . . . , Fi. By Lemma 3, S ′ is a (d− i+1)-manifold in a neighborhood of y. Clearly

Si ⊆ S ′.

Now, for each of the other Fj , we construct another surface containing y. For

17



i < j ≤ k, the point xj(y) is an affine combination of x1(y), . . . , xi(y) and therefore

belongs to

Xj = Aff(F1 ∪ · · · ∪ F̂j ∪ · · ·Fk−1).

Since Fj ∩Xj contains the tangency point xj(y), it is not empty. We define Hj as the

set of points w ∈ R
d such that the nearest point to w on Aff(Fj) lies in Aff(Fj ∩Xj),

that is, the set of points that, like y, fall into Aff(Fj ∩Xj) when projected to Aff(Fj).

Hj is an affine space, orthogonal to Fj , of dimension d− dimFj + dim(Fj ∩Xj).

So all y ∈ Ck in the neighborhood of z lie in S ′∩Hi+1∩Hi+2 · · ·∩Hk. Let us prove

that this intersection has dimension at most d−k+1. In Lemma 3, we observed that the

normal space to S ′ at y is spanned by the i− 1 vectors v2 = x1(y)− xi(y), . . . , vi =

xi−1(y) − xi(y). For i + 1 ≤ j ≤ k, we can always find a vector vj in the normal

space to Hj , by choosing vj in the tangent plane to Fj and orthogonal to Fj ∩ Xj .

Because the Fj are independent faces, the vectors v2, . . . , vk are linearly independent

and all belong to the normal space of the intersection S ′ ∩Hi+1 ∩Hi+2 ∩ · · · ∩Hk. It

follows that the intersection is a manifold of dimension at most d− k + 1, and that Si

is a stratified space of dimension at most d− k + 1.

We deduce immediately the following corollary:

Corollary 6 Let z ∈ AMk and suppose that A(z, ε) is tangent to j faces amongst

which k faces are independent. Then, z lies on a stratum of AMk with dimension at

most d− k + 1.
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5 Trimmed annular medial axis

We have established that the subset of AMk induced by independent faces has the

“right” dimension d − k + 1, which is necessary to our plan of counting Delaunay

simplices via a packing argument. It may, however, extend to infinity and hence have

infinite (d − k + 1)-dimensional volume. In this section we define a bounded (d −

k+1)-dimensional subset of AMk, which we call the trimmed annular k-medial axis

T AMk. We end this section by proving that the volume of T AMk is bounded by a

constant that does not depend on ε.

We need some definitions. We say that a hyperplane supports X ⊆ R
d if it has non-

empty intersection with the boundary of X and empty intersection with the interior of

X .

Definition 7 A point z ∈ AMk, and the corresponding annulus A(z, ε) are non-

essential if there exists a hyperplane supporting the convex hull of P and containing

all faces tangent to A(z, ε). Otherwise, the point z and the corresponding annulus

A(z, ε) are essential.

An annulus A(z, ε) may be essential because it is tangent to a face F not on the

boundary of the convex hull, and/or because the union of faces tangent to A(z, ε) spans

R
d; see Figure 4. Since we assume that P spans Rd (Section 2.1), the set of essential

points is non-empty.

Definition 8 The trimmed annular k-medial axis, T AMk, is the set of essential points

lying on the i-dimensional strata of the annular k-medial axis for i ≤ d− k + 1.
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F0

F1 F2F3

Figure 4: A polyhedron formed of four faces and its annular 2-medial axis, taking ε to be zero.

The set of essential points forms the closed piece of parabola consisting of points equidistant to

F0 and F3. The two endpoints are essential because the spheres centered at the endpoints are

also tangent to F3.

We begin our proof that T AMk is bounded and that this bound does not depend

on ε with two simple, and similar, technical lemmata.

Lemma 9 Let A be an annulus tangent to a hyperplane H at point x and whose inner

sphere does not enclose point q, with q and the center of A on the same side of H . Let

R and r be respectively the outer and inner radii of A. Suppose that there exist two

scalars D and h > 0 such that d(q,H) ≥ h, ‖x− q‖ ≤ D and R − r ≤ h
2 . Then, the

inner radius of A satisfies r ≤ D2

h .

PROOF. We first consider what happens when the inner sphere of A passes through q

and point x lies on the outer sphere of A (see Figure 5). Let y be the intersection of

the inner sphere of A with the segment connecting x to the center z of A. Let c be the

midpoint of the segment yq. Since the angle between the two vectors c − z and q − z
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Figure 5: Notation for the proof of Lemma 9.

is equal to the angle between the vector q − y and the hyperplane H , we have

‖q − y‖
2r

=
d(q,H)− (R− r)

‖q − y‖

The bound on r follows immediately.

For the case in which x lies on the inner sphere of A, apply the same argument,

assuming that r = R and x = y.

Lemma 10 Let A(z, ε) be tangent to two hyperplanes Hi, Hj , at points xi, xj such

that their normal vectors vi, vj , pointing towards z, have angle difference ∠(vi, vj) >

α. Let D be the diameter of P . Then the inner radius r of A is at most D
sinα/2 .

PROOF. If xi is tangent to the larger sphere of A(z, ε), we let yi be the intersection

point of segment xi, z with the inner sphere; similarly we define yj if xj is tangent

to the outer sphere. In any case, we consider the distance D′ between the two points

on the inner sphere, and note that D′ ≤ D. We have sinα/2 = D′/2, so that r =

d(y, z) ≤ D
2 sinα/2 .

21



We plan to show that the radius of any essential annulus can be bounded using

one or the other of these technical lemmata. Let F = {Fi}i∈I be the set of faces of

P tangent to A(z, ε). Each Fi is tangent to A(z, ε) at a point xi, and we define the

normal vi to A(z, ε) at xi to be the unit vector with direction of z − xi, i.e. vi =

(z − xi)/||z − xi||.

We will choose a constant α later; it will depend only on P and not on z or ε. If

there is a pair of normals vi, vj such that ∠(vi, vj) > α, we bound the radius of A(z, ε)

using Lemma 10, with D taken to be the diameter of P . So it only remains to bound

the size of an essential annulus, for which every pair of normals differs by at most α,

which is done in Lemma 12.

We begin by characterizing an annulus as essential or non-essential using only its

set F of tangent faces, irrespective of z and ε. Let Sd−1 = {v ∈ R
d | ‖v‖ = 1} be the

space of direction vectors in R
d. To each face Fi of the polyhedron P , we associate

the function δFi
: Sd−1 → R which maps every unit vector v ∈ S

d−1 to

δFi
(v) = max{〈q − x, v〉 | ∀x ∈ cl(Fi), ∀q ∈ P}.

Roughly speaking, δFi
(v) represents the distance between an extreme point in direction

v on P and an extreme point in direction −v on the closure of Fi. Notice that because

Fi ⊂ P , δFi
(v) ≥ 0 for all v, since zero is achieved for any x ∈ Fi by choosing q = x.

In addition, we have δFi
(v) = 0 exactly when every point x ∈ Fi is an extreme point

of P in direction v, that is, when there is a supporting plane of the convex hull of P

containing Fi. Finally, we observe that δFi
(v) is continuous, and, since it is defined on

the compact space S
d−1, it is uniformly continuous (by the Heine - Cantor Theorem).
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We now consider any set F = {Fi}i∈I of faces. Let

δF (v) = max
∑

i∈I

δFi
(v).

As the maximum of a set of continuous non-negative functions, this is again a contin-

uous non-negative function.

Observation 11 The annulus A(z, ε) with tangent face set F is non-essential if and

only if there exists a unit vector v such that δF (v) = 0.

PROOF. We have δF (v) = 0 if and only if δFi
(v) = 0 for all i. This happens when the

tangent plane to P in direction v contains all of the Fi ∈ F . This means, by definition,

that A(z, ε) is non-essential.

Thus, since A(z, ε) is essential, we must have δF (v) > 0 for all unit vectors v.

Since the map δF is continuous and defined on a compact set, it attains a global mini-

mum and this minimum is positive. We define

2h = min
F

min
v

δF (v),

where v ranges over all unit vectors and F ranges over all subsets of faces such that F

is not contained in a hyperplane supporting the convex hull of P . We have h > 0. We

use this constant, dependent on P , in the following theorem.

Lemma 12 There exists a constant α, dependent on the geometry of P but not on ε,

such that for any essential annulus A(z, ε) for which every pair vi, vj of its normal

vectors has angle distance ∠(vi, vj) < α, the distance d(z, P ) < D2

h , where D is the

diameter of P .
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PROOF. From the fact that A(z, ε) is essential, we can conclude that for any of the

Fi ∈ F , there is some vj such that δFi
(vj) > 2h. If δFi

(vi) > 2h, we are done, but

this is not guaranteed to be the case. So now we use the fact that the lemma assumes

that the directions of the vj are all similar. Since δFi
is uniformly continuous, we can

select an αFi
(again depending on F and not on z or ε), such that

∠(vi, vj) < αFi
=⇒ |δFi

(vi)− δFi
(vj)| < h.

We define α = minF αF over all faces F of the polyhedron.

With this choice of α, the fact that δFi
(vj) > 2h implies that δFi

(vi) > 2h−h = h.

This in turn implies that there exists a point q ∈ P such that d(q,Hi) ≥ h, where Hi is

the hyperplane containing Fi with normal vi. So we can apply Lemma 9 to bound the

inner radius of A(z, ε).

Combining Lemma 10 and Lemma 12, we conclude that the set of essential points is

bounded and at distance at most max
{

D
sinα/2 ,

D2

h

}
from P . Let B(P ) be the smallest

ball containing the set of essential points. The T AMk is a stratified set, of dimension

at most d − k + 1, in B(P ). Its i-dimensional stratum, for 1 ≤ i ≤ d − k + 1, is the

union of pieces of semi-algebraic sets, each of dimension i, formed by the intersection

of at least k polynomials, each of degree at most two. The number of such pieces is

bounded by a function of P (corresponding to the choices of at least k faces producing

the polynomials), that is independent of ε. Each piece is also trimmed by B(P ). The i-

dimensional volume of the intersection of a ball of radius R with an algebraic variety of

dimension i formed by m polynomials of bounded degree is bounded by a function of

i,m and R (see [5], Lemma 7.4). So the overall i-dimensional volume of the stratum
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is at most the sum of these trimmed varieties, and hence is itself bounded by some

function of the geometry of P , independent of ε.

6 Mapping Delaunay spheres to T AMk

The goal of this section is to assign every Delaunay sphere Σ to some point z on the

trimmed annular k-medial axis. We begin with a quick geometric lemma.

Lemma 13 A Delaunay sphere Σ with center z1 is contained in the annulus A(z1, ε) .

PROOF. Let x be a point in P with minimum distance to z1 and let s be the sample

point in S ∩ cl(Fx) closest to x. The distance ‖x− s‖ ≤ ε and therefore s ∈ A(z1, ε).

Because Σ encloses no sample point, Σ ⊆ A(z1, ε).

It is the preceding simple lemma which requires the restrictive sampling require-

ment that the faces of all dimensions must be sampled; if Fx was a subface of some

larger-dimensional face F , and not itself sampled, a hollow annulus with center z1

could contain a large portion of Fx, extending far away from the projection x of z1

onto Fx and F . While we could find a sample s on F within distance ε of x, s would

be contained in an annulus of width ε, but not however in the annulus A(z1, ε) of

penetration ε (recall Section 4.1).

We use the following incremental construction to associate an annulus, called Expansion(Σ),

with each Delaunay sphere Σ; we will then prove that the center z of Expansion(Σ)

lies in T AMk, and that Σ ∩ P is contained in a set that we call the cover of z, the

definition of which depends on d, p and ε.

25



Recall that we assume that P spans Rd (Section 2.1), and that p is the dimension

of P . Initially, we let z1 be the center of Σ. The inner sphere B(z1, r) of the annulus

A(z1, ε) is tangent to P in at least one point x, contained in a face F1 = Fx. At each

step j of the construction we perturb the annulus to find another tangent face, and we

increase the dimension of the subspace spanned by {F1 . . . Fj} by at least one.

At an arbitrary step of the construction, we have a set {F1, . . . , Fj} of j faces tan-

gent to A(zj , ε). If the dimension of Aff({F1, . . . , Fj}) < d, we can find a hyperplane

H that contains their union
⋃j

i=1 Fi (possibly there are many such H; we can pick one

arbitrarily). Let L be the line orthogonal to H and containing the current zj . Consider

any annulus A(y, ε) centered on L in the neighborhood of zj . Since A(y, ε) also has

penetration ε, its intersection A(y, ε) ∩ H = A(zj , ε) ∩ H , and A(y, ε) remains tan-

gent to F1, . . . , Fj . Consider the y, nearest to zj , such that A(y, ε) is tangent to an

additional face Fj+1, not contained in H . Such a y must exist, since P spans Rd. We

set zj+1 = y.

When there is a set of faces F1, . . . , Fj tangent to A(zj , ε) that spans Rd, we stop.

Clearly this occurs after at most d steps. We associate Σ with the final annulus: define

Expansion(Σ) = A(zj , ε), for the final zj .

Lemma 14 For every Delaunay sphere Σ, the center z of the annulus Expansion(Σ)

belongs to the trimmed annular k-medial axis T AMk.

PROOF. Since we know that there is a set of faces {F1 . . . Fj} tangent to A(z, ε) =

Expansion(Σ) that span R
d, we know that they cannot all be contained in a hyperplane

supporting the convex hull, and this implies that z is essential. The crux of the proof is

showing that A(z, ε) is tangent to at least k independent faces. This will establish that
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z belongs to the (d− k + 1)-dimensional stratum of AMk, and hence to T AMk.

Initially, since any single face is independent, the set {F1} is independent. The di-

mension of Aff({F1 . . . Fj+1}) is at least one greater than the dimension of Aff({F1 . . . Fj}),

since Aff(F1 . . . Fj) ⊂ H , and Fj+1 is not contained in H . This also implies that at

each step Fj+1 is independent of F1 . . . Fj . However, it is possible that some Fi in

{F1 . . . Fj} may be spanned by some subset of {F1 . . . Fj+1}, for instance if Fi ⊆

Fj+1. Any such Fi can be removed, with Aff({F1 . . . Fj+1}−Fi) = Aff({F1 . . . Fj+1}).

Let F be the remaining set of independent faces.

We claim that at the end of the construction, there are at least k independent faces in

F , for k = ⌈d+1
p+1⌉. Consider adding each Fi to the F in turn. Each face has dimension

at most p, so that adding Fi increases the dimension of the union
⋃{F1 . . . Fi−1}

by at most p + 1 (adding to the subspace basis a vector from the previous subspace

Aff(F1 . . . Fi−1) to some point in Fi, and then a set of at most p vectors spanning Fi).

So the number of independent faces required to span all of d-dimensional space is at

least k = ⌈d+1
p+1⌉.

This establishes that the final A(z, ε) is tangent to at least k independent faces.

7 Covering Delaunay simplices

Now we would like to relate the intersection Expansion(Σ) ∩ P back to the original

Delaunay sphere Σ. We do this by defining the cover of a point z (roughly its region of

influence on P ), and then showing that the intersection Σ∩P is contained in the cover

of the annulus Expansion(Σ) centered at a point z ∈ T AMk.
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So lets begin by defining the cover of a point z. Write πx(z) for the orthogonal

projection of z onto the flat supporting the face Fx containing x in P and let Π(z) =

{πx(z) | x ∈ P} be the set of orthogonal projections of z onto the flats supporting all

faces of P . For any non-negative number w, called the radius of the cover, we define

the w-cover as a union of balls:

Cover(z, w) =
⋃

x∈Π(z)

B(x,w).

We say that x is an anchor point of z if x ∈ A(z, ε) and πx(z) = x. Thus, anchor

points of z form a subset of Π(z) that contains the tangency points of the annulus with

the polyhedron and possibly other points of P ∩ A(z, ε). Now we establish that any

point in P ∩A(z, ε) must be close to an anchor point of z.

qyxFx

A(z, ε)

F4

z

F0

F1

F2

F3

Figure 6: Notation for the proof of Lemma 15. The annulus is tangent to the four faces F0, F1,

F2 and F3.

Lemma 15 For every point x ∈ P ∩ A(z, ε) there exists an anchor point y of z in the
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closure of Fx such that

‖x− y‖ ≤ (dimFx − dimFy + 1) ε.

PROOF. The proof is by induction over the dimension dx = dimFx of the face

Fx containing x. If dx = 0, the result holds for y = x. Suppose dx > 0 and let

q = πx(z) be the orthogonal projection of z onto Aff(Fx). We distinguish two cases:

(1) if q ∈ Fx, the segment xq lies inside A(z, ε) and therefore ‖x − q‖ ≤ ε; and the

result holds for y = q. (2) If q 6∈ Fx, we consider the point y ∈ P on the segment

xq, which is closest to x on the boundary of Fx (as in Figure 6). Since the segment

xy is contained in A(z, ε), this implies ‖x − y‖ ≤ ε. Furthermore, since y belongs

to the boundary of Fx, the dimension dy < dx. We apply our induction hypothesis:

cl(Fy) contains an anchor point w of z, with ‖y−w‖ ≤ (dimFy − dimFw +1) ε, so

‖x− w‖ ≤ ε+ (dimFy − dimFw + 1) ε, which gives the result.

The preceding Lemma shows that any point in P ∩ A(z, ε) is at distance at most

(p+1)ε to an anchor point of z. Thus, P ∩A(z, ε) ⊆ Cover(z, (p+1)ε). From there,

we show how to cover a Delaunay sphere using an annulus centered on the trimmed

medial axis.

Lemma 16 For every Delaunay sphere Σ, we have Σ ∩ P ⊆ Cover(z, 4dε) where z

is the center of Expansion(Σ).

PROOF. Again, this follows from the construction of A(zj , ε) = Expansion(Σ).

Initially, z1 is the center of Σ. By Lemma 13, Σ ∩ P ⊂ A(z1, ε), and by Lemma 15,

this implies that for every point x0 ∈ Σ ∩ P , there exists an anchor point x1 of z such
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A(y, ε)
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xi

A(zi, ε)

A(zi+1, ε)

Aff Fi

zi

y

zi+1

xi

Figure 7: On the upper left, three annuli centered at zi, y and zi+1 that share the same intersection

with a hyperplane H . On the lower right, intersection of the three annuli with the tangent space

passing through xi. The restriction of those intersections to H− are nested.

that ‖x0−x1‖ ≤ (dimFx0
−dimFx1

+1)ε. In particular, Σ∩P ⊆ Cover(z1, (p+1)ε).

Now we need to show that as we proceed from zi to zi+1, Σ ∩ P remains covered for

1 ≤ i < j. So we construct a sequence of j points x1, x2, . . . , xj such that xi+1 is an

anchor point of zi+1 and

‖xi − xi+1‖ ≤ (dimFxi
− dimFxi+1

+ 2)ε, (2)

for all 1 ≤ i < j. For simplicity, we write Fi = Fxi
and di = dimFi. Let H be the

hyperplane used during the construction of zi+1 and which contains the union
⋃i

l=1 Fl.

Let H+ be the closed half-space bounded by H in the direction zi+1 − zi, with H−
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being the open half space on the other side. We consider two cases:

1. The original anchor point xi ∈ H+, including the case in which xi ∈ H . Let

Ri be the outer radius of A(zi, ε). The intersection H+ ∩ B(zi, Ri) ⊆ H+ ∩

B(zi+1, Ri+1), and xi is of course outside both inner balls, so xi remains in

the annulus A(zi+1, ε). It may no longer be an anchor point of zi+1, but by

Lemma 15, there exists an anchor point xi+1 of zi+1 on the closure of Fi such

that ‖xi − xi+1‖ ≤ (di − di+1 + 1) ε.

2. The case in which xi ∈ H− is illustrated in Figure 7. Let us begin by considering

the intersections D = Aff(Fi)∩A(zi, ε) and D′ = Aff(Fi)∩A(zi+1, ε). Since

xi is an anchor point contained in A(zi, ε), the intersection D is a di-dimensional

ball of radius at most ε, with center xi. The annulus is shrinking on this side

of H , implying D′ ∩ H− ⊆ D ∩ H−. It is not possible for D′ ∩ cl(Fi) to

be empty, since that would require there has been some last point at which the

annulus A(y, ε), with y on the segment connecting zi and zi+1, was in contact

with cl(Fi), contradicting the choice of zi+1 as the annulus with the first new

tangent point. Since D′ ∩ cl(Fi) is non-empty, it must contain some point p and

by Lemma 15, there exists an anchor point xi+1 of zi+1 on the closure of Fi such

that ‖p−xi+1‖ ≤ (di−di+1+1) ε. Since p ∈ D′ ⊆ D and D is a ball centered

at xi with radius at most ε, we have ‖xi − p‖ ≤ ε. The triangle inequality then

gives us Inequality 2.

To summarize, for every point x0 ∈ Σ ∩ P , we have constructed a sequence of points

x1, x2, . . . , xj such that xi is an anchor point of zi for all 1 ≤ i ≤ j, ‖x0−x1‖ ≤ (d0−
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d1+1)ε and ‖xi−xi−1‖ ≤ (di−di−1+2)ε. Thus, ‖x0−xj‖ ≤ (d0−dj+1+2(j−1))ε.

Since the number of steps in the construction is bounded by d, i.e. j − 1 ≤ d, we get

‖x0 − xj‖ ≤ (3d+ 1)ε yielding the result.

8 Size of Delaunay triangulation

To establish the upper bound on the number of Delaunay simplices, it remains only

to combine what we know about the size of T AMk with our method of mapping

Delaunay simplices to T AMk.

We first consider a sample M of the trimmed annular k-medial axis T AMk, such

that every point x ∈ T AMk has a sample within distance ε, and such that the number

of samples in a ball of radius O(ε) centered at x is at most λ (unlike our original

sample S of P , it is not necessary to sample the lower-dimensional strata of T AMk).

The size m = |M | is O(ε−(d−k+1)), with k = ⌈d+1
p+1⌉. This follows from the fact that

the dimension of T AMk is d− k + 1, and the results in Section 5, which established

that the volume of T AMk is bounded by a constant that does not depend on ε.

Next, we map each Delaunay simplex σ ∈ Del(S) to a point z ∈ M . Consider the

Delaunay sphere Σ passing through the vertices of σ. Lemma 14 and Lemma 16 tell

us that the Delaunay sphere Σ associated with σ belongs to Cover(z, 4dε) for some

point z ∈ T AMk, where z is an arbitrary point not belonging to M . But there must

be some z′ ∈ M at distance at most ε from z.

Lemma 17 For every pair of points z and z′ with ‖z − z′‖ ≤ ε:

Cover(z, wε) ⊆ Cover(z′, (w + 1)ε).
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PROOF. Recalling that πx(z) is the orthogonal projection of z onto the tangent plane

to P at x, we have ‖πx(z)− πx(z
′)‖ ≤ ‖z− z′‖ ≤ ε. The claim follows immediately.

Using Lemma 17 and Lemma16, we get that for d ≥ 1 there exists a point z′ ∈ M

such that

Σ ∩ P ⊆ Cover(z′, 5dε)

The cover of z′ is a union of d-balls, each with radius 5dε, at most one for each face

of the polyhedron, and therefore it contains a constant number of points of S. So

the number of simplices that we can form by picking points in the cover of z′ is also

a constant. This means that only a constant number of Delaunay simplices can be

charged to each point z′ ∈ M , and the size of the Delaunay triangulation is proportional

to the size m of M .

Recall that the number of points in a λ-sparse ε-sample S of a p-dimensional poly-

hedron P is n = Θ(ǫ−p) and that the i-faces of P have Θ(ε−i) points of S. Using

n = Ω(ε−p), we get that the number of Delaunay simplices is

O(m) = O(ε−(d−k+1)) = O(n
d−k+1

p ),

where k = ⌈d+1
p+1⌉.

9 Conclusion

This paper answers only the first of many possible questions about the complexity of

the Delaunay triangulations of points distributed nearly uniformly on manifolds. It
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would be interesting to establish a bound which does not require all faces of P to be

sampled. Similar bounds for smooth surfaces rather than polyhedra would be of more

practical interest. The proof in this paper seems to rely critically on some properties

specific to polyhedra, particularly that sample points on k faces are needed to form a

simplex, so other techniques will be needed for the cases of more general manifolds of

dimension 1 < p < d.
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acknowledge André Lieutier for helpful suggestions, and the insights and suggestions

of our patient anonymous reviewers. The work of the first author was supported by

NSF awards CCF–0331736 and CCF–0635250.

References

[1] N. Amenta, D. Attali, and O. Devillers. Complexity of Delaunay triangulation for

points on lower-dimensional polyhedra. In Proc. ACM-SIAM Sympos. Discrete

Algorithms (SODA), New-Orleans, Lousiana, USA, January 7–9 2007.

[2] D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the Delau-

nay triangulation of points on polyhedral surfaces. Discrete and Computational

Geometry, 31(3):369–384, 2004.

34



[3] D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity of the Delaunay tri-

angulation of points on surfaces: the smooth case. In Proc. of the 19th ACM

Symposium on Computational Geometry, pages 201–210, 2003.

[4] Su-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical Delaunay

meshing algorithm for a large class of domains. In Proceedings of the 16th Inter-

national Meshing Roundtable, pages 477–494, 2007.

[5] James W. Demmel. The probability that a numerical analysis problem is difficult.

MATHEMATICS OF COMPUTATION, 50(182):449–480, 1988.

[6] J. Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete and

Computational Geometry, 30:109–132, 2003.

[7] M. J. Golin and H.-S. Na. The probabilistic complexity of the Voronoi diagram

of points on a polyhedron. In Proc. 14th Annu. ACM Sympos. Comput. Geom.,

pages 209–216, 2002.

[8] M.J. Golin and H.-S. Na. On the average complexity of 3d-Voronoi diagrams

of random points on convex polytopes. Computational Geometry: Theory and

Applications, 25:197–231, 2003.

[9] Mark Goresky and Robert MacPherson. Stratified Morse theory, volume 14 of

Results in Mathematics and Related Areas (3). Springer-Verlag, 1988.

[10] Gunnells. Stratified spaces twigs. TWIGS talks. http://www.math.umass.

edu/%7Egunnells/talks/singspc.pdf.

35



[11] A. Lieutier. Any open bounded subset of has the same homotopy type as its

medial axis. Computer-Aided Design, 36:1029–1046, 2004.

[12] P. McMullen. The maximum number of faces of a convex polytope. Mathematika,

17:179–184, 1970.

36


