Invariant Hilbert schemes and desingularizations of quotients by classical groups - Archive ouverte HAL
Article Dans Une Revue Transformation Groups Année : 2014

Invariant Hilbert schemes and desingularizations of quotients by classical groups

Ronan Terpereau

Résumé

Let $W$ be a finite-dimensional representation of a reductive algebraic group $G$. The invariant Hilbert scheme $\mathcal{H}$ is a moduli space that classifies the $G$-stable closed subschemes $Z$ of $W$ such that the affine algebra $k[Z]$ is the direct sum of simple $G$-modules with prescribed multiplicities. In this article, we consider the case where $G$ is a classical group acting on a classical representation $W$ and $k[Z]$ is isomorphic to the regular representation of $G$ as a $G$-module. We obtain families of examples where $\mathcal{H}$ is a smooth variety, and thus for which the Hilbert-Chow morphism $\gamma: \mathcal{H} \rightarrow W//G$ is a canonical desingularization of the categorical quotient.
Fichier principal
Vignette du fichier
Invariant_Hilbert_Schemes_Terpereau.pdf (341.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00777185 , version 1 (17-01-2013)
hal-00777185 , version 2 (19-01-2014)

Identifiants

Citer

Ronan Terpereau. Invariant Hilbert schemes and desingularizations of quotients by classical groups. Transformation Groups, 2014, 19 (1), pp.247-281. ⟨10.1007/s00031-014-9253-1⟩. ⟨hal-00777185v2⟩

Collections

CNRS FOURIER INSMI
86 Consultations
176 Téléchargements

Altmetric

Partager

More