Manifold-enhanced Segmentation through Random Walks on Linear Subspace Priors - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Manifold-enhanced Segmentation through Random Walks on Linear Subspace Priors

Résumé

In this paper we propose a novel method for knowledge-based segmentation. Our contribution lies on the introduction of linear sub-spaces constraints within the random-walk segmentation framework. Prior knowledge is obtained through principal component analysis that is then combined with conventional boundary constraints for image segmentation. The approach is validated on a challenging clinical setting that is multicomponent segmentation of the human upper leg skeletal muscle in Magnetic Resonance Imaging, where there is limited visual differentiation support between muscle classes.
Fichier principal
Vignette du fichier
BMVCcamera_BAUDIN.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00773635 , version 1 (14-01-2013)

Identifiants

  • HAL Id : hal-00773635 , version 1

Citer

Pierre-Yves Baudin, Noura Azzabou, Pierre G. Carlier, Nikos Paragios. Manifold-enhanced Segmentation through Random Walks on Linear Subspace Priors. British Machine Vision Conference, 2012, United Kingdom. pp.51.1-51.10. ⟨hal-00773635⟩
759 Consultations
371 Téléchargements

Partager

More