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Abstract

In this paper we propose a novel method for knowledge-based segmentation. Our
contribution lies on the introduction of linear sub-spaces constraints within the random-
walk segmentation framework. Prior knowledge is obtained through principal compo-
nent analysis that is then combined with conventional boundary constraints for image
segmentation. The approach is validated on a challenging clinical setting that is multi-
component segmentation of the human upper leg skeletal muscle in Magnetic Resonance
Imaging, where there is limited visual differentiation support between muscle classes.

1 Introduction

Although there is an abundant computer vision literature on the subject of automatic image
segmentation, many concrete problems still wait to be solved, in particular in segmentation
of organs in medical applications. Our particular interest lies in segmentation of skeletal
muscles in 3D Magnetic Resonance Imaging, which poses some very specific issues: simul-
taneous multi-object segmentation, non-discriminative appearance of the muscles, partial
contours between them, large inter-subject variations, spurious contours due to fat infiltra-
tions.

Vastly different approaches have been used in the relatively small literature addressing
automatic muscle segmentation. In [6, 7], segmentation is achieved with multi-object de-
formable models. Deformable models ([11, 12]) are surface models superimposed to the

(© 2011. The copyright of this document resides with its authors.
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target image in an initial state and deformed by minimizing an objective function composed
of two terms: a data-term - attracting the surface to detected image contours - and a reg-
ularization term, ensuring the surface remains realistically smooth or similar enough to a
reference surface (as in [7]). In [4], prior knowledge on the shape of one muscle is further
enforced by imposing the model to reside in a hierarchical shape space built via diffusion
wavelets decomposition on training examples. Relying on iterative local optimization proce-
dures, deformable models are very sensitive to the proximity of the initialization state with
the expected solution, and usually only yield non-global optima of the objective function. In
[14], the muscle surface is represented with a set of landmarks in a graph framework, and a
higher-order pose invariant shape prior is encoded by learning the distances within triplets
of landmarks. Then, the surface is fit to the image though a discrete optimization proce-
dure allowing to solve the objective function globally. Such method implies one can find
consistent anatomical landmark points, an assumption which is hardly verified for muscles.
Apart from surface models, a pixel-wise region-based approach was proposed in [1] for seg-
menting muscles with good results. In this framework, a segmentation is a labeling of the
pixels of the target image. Shape prior is enforced by learning a low-dimensional space of
allowed segmentations through Principal Component Analysis on a set of training segmen-
tations projected in the Isometric Log-Ratio space. Optimization of the convex objective
function is carried out through gradient descent. Like surface-based methods, this method
explicitly relies on preliminary contour detection, a difficult and often unreliable process in
muscle images.

Recent advances in numerical methods for computing globally large discrete regions-
based segmentation methods - Graph-Cuts ([3]) and Random Walks ([10]) - have made them
practical for large images. Due to being graph-based, these methods are intrinsically bottom-
up - pixel-wise information has an influence on the whole segmentation. In particular, such
property makes Random Walks notoriously robust to partial contours. On the other hand,
few methods exist for enforcing prior knowledge on object shapes in such framework. Every
method known to us proposes at best an affine deformation of a template shape[5, 13].

In this paper, we propose a segmentation method based on Random Walks, in which
shape deformation is constrained to remain close to a Principal Component Analysis shape
space built from training examples. Using the PCA allows us to model complex non-rigid
shape variations relying on a few eigen-modes. Our method also benefits from the high
performances of the RW optimization process, as it only requires a simple addition to the
RW objective function.

This paper is organized as follow: in section 2, we review the RW segmentation frame-
work, and describe how to include a PCA shape prior. Then in section 3, we demonstrate
the potential of our method on a challenging data set of 3D muscle MR volumes. Section 4
sums up and concludes this paper.

2 Random walk segmentation with prior knowledge

2.1 Random walk formulation

In this section we briefly review the random walks approach for segmentation, based on the
fully detailed presentation of [10]. A segmentation is formulated as a labeling problem of an
undirected weighted graph G = (V,£), where V is a set of nodes and £ is a set of edges. The
i-th node v; corresponds to the i-th pixel of /, the image to be segmented. Given a set of K
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Figure 1: (left) Cross-section of an MR volume of the thigh. (right) Manual segmentation of
four muscles.

labels S (e.g. the indices of the muscles), segmenting image / consists of assigning a label
s € Stoeachnode p € V.

The RW method amounts to computing the probability x] that the node v; € V is assigned
to the label s. Assume we possess a set V), of pre-labeled nodes for each label, also called
seeds (typically, manually marked pixels). We denote the set of non pre-labeled nodes as
Vy. It was shown ([10]) that all unknown (non pre-labeled) entries of x* = [x},x3,... ,xj;,]T -

i.e. the probability that each node v; € Vy is assigned to label s - minimize the functional:
Ejw () =T L (1)

where the known entries of x* (the seeds) are set as follow:

W € Vg, o = 1 %f p%xel z %s marked w%th label s @)
0 if pixel i is marked with another label
and where L is the combinatorial Laplacian matrix of the graph, defined as:
Zk ij ifi = ]
L,‘7j =9 —Wij if (l,]) c& (3)
0 otherwise

where w;; is the weight assigned to the edge spanning vertices i and j. It is common to define
w;; as a Gaussian weighting function :

wij=+exp(—B(gi—g)’) )

where g; is the gray-level of pixel i, § is a scaling parameter set accordingly to the image
contrast, and @ is an regularization parameter which amounts to penalizing the gradient norm
of x* (no regularization if @ = 0). Once computed x* for each label s, the segmentation is
obtained by retaining the label of maximum probability: §; = argmax,x;.
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Since minimizing (1) is an independent process for each label, the whole RW process
can be equivalently synthesized in one equation:

Erw (x) = xT Lx 5)

where x! = [xl T2 T xK T] (x € REN>1) i5 the concatenation of all the x* in one vector,
and

L - 0

0 --- L

is a block diagonal matrix with L repeated K times on the diagonal - i.e. as many times as
there are labels. We keep this formulation for the remaining of the paper.

2.2 Prior shape model

Prior knowledge to the RW formulation was introduced in [9], through an estimate of the
probability distribution of the gray-level intensity for each label. Such prior could be en-
forced by minimizing this cost function:

Efwp () =2 TLe' +y (T Ax* — 20T 1") (7

where A° (i) is the probability that the intensity at pixel i belongs to the intensity distribution
for label s, and A = diag (Y, 1*) (we refer the reader to [9] for details).

In the context of muscle segmentation, since the intensity distributions for the labels (the
muscles) are extremely similar, such prior would not be very efficient. As we could not find
any discriminative features (textures, consistent anatomical points, etc.) to use within this
framework, we designed a pixel-wise shape model, trained from a series of ground-truth
segmentations.

Assume we possess such a shape space, in the form of an affine model (details in section
2.3) -i.e. any vector X inside this space takes the form:

f=Ty+x

where # is the mean shape, I' € REKVN*¥ is the shape space matrix (e.g. obtained through
PCA), y € R is the coordinate of & within the shape space. Thus, vector x can be expressed
as:

x=dx+Ty+x ®)

where dx € RN is the deviation of x from the shape space. In order to obtain a segmen-
tation which remains close to the shape space, we want to minimize the objective function
5 with respect to both dx and 7y, while keeping dx small. This leads us to the following
functional:

Ei (dx,y) = (dx+Ty+x)" L(dx+Ty+%) + A ||dx||* 9)

where A is a free parameter setting a constraint on the norm of dx. We reformulate 9 as:
E>(y) = (Av+%)" L(Ay+3) + A" By (10)

with

d I 0
y:[ H,A:UKNF],B:[ o O] (n
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where Igy is the identity matrix of size KN x KN.
The minimum of (10) verifies:

(ATLA+AB)y=A"Lx (12)

Although the system of equations (12) is invertible even when all entries of x are un-
known (no seeds), as noted in [9], it is still possible - and useful - to use seeds in combination
with a prior to obtain more robust segmentations.

2.3 Shape space

Any segmentation corresponding to a vector of probability x belongs to RK¥*! However, it
is obvious that the entries of x are not independent from each other, but instead are highly
tied to each other, at least for sets of close-by pixels. This implies that there exists an implicit
lower dimensional space in which any true segmentations reside. The principle of a shape
space is to design a low dimensional affine space approximating this implicit space. If we
succeed, we expect any true segmentation to lie "not too far" from the shape space, and
the projection of that segmentation into the shape space to be a good approximation of the
segmentation itself. Principal Component Analysis notoriously provides a simple mean to
compute such a shape space.

Assume we possess T co-registered segmented training volumes. We perform the PCA
on vectors {)Ei}izlmT, which are ground truth segmentations represented as probability vec-
tors (actually binary vectors, since x} = 1 if pixel i has label s, and 0 otherwise). Retaining
the n eigen-modes of greatest variance, the projection of any segmentation in the shape space
is represented as:

X=x+Ty

where " € REN>" 5 a rectangular matrix whose columns are the n retained eigen-vectors,
and y € R"*! is the vector of coordinates of ¥ in the shape space.

3 Experimental validation

In this section, we present results obtained with our method on a set of 3D MR volumes
of muscles. Our data set is comprised of 30 volumes of the right thigh of healthy subjects,
covering a wide range of ages and morphologies. These volumes were acquired with a
3T Siemens scanner using a 3-point Dixon sequence (TR = 10ms, TE, = 2.75ms, TE, =
3.95ms, TE3 = 5.15ms, rf flip angle = 3°) with resolution 1mm X 1lmm x Smm and initial
size 224 x 224 x 128. Four clinically relevant muscles were manually segmented - rectus
femoris, vastus lateralis, vastus intermedius, vastus medialis, providing the ground truth
segmentation against which the output of our method will be compared.

In order to compute the shape space (see section 2.3), we non-rigidly register all volumes
and segmentation atlas to the same reference volume, using the method in [8] and the related
software (Drop, at www.mrf-registration.net). Adopting a leave-one-out validation protocol,
all the volumes in the training set, bar one, are registered to the remaining volume, on which
we test our segmentation method.

Given the large size of the matrices, we solved the system of equations 12 with itera-
tive methods like Bi-Conjugate Gradient. Computation time is approximately 15 min per
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Figure 2: Effect of the PCA shape prior: (left) mean segmentation using x = %, (middle)
shape space segmentation using x = I'y + X, (right) segmentation with shape prior using
x =dx+T"y+x. Notice that the shape space segmentation fits the boundaries better than the
mean segmentation, but has fuzzy contours due to the approximation of projecting complex
shapes into a linear subspace.

Rectus Femoris -

Vastus Lateralis -

all muscles -

Vastus Intermedius -

wof-- -| + TR NUT

Vastus Medialis -

[ registration only + o+t )» ‘ [ registration only
I rw + pca prior : : I rw + pca prior
i

T T L L T n L L L
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3: Segmentation results as Dice coefficients. This paper’s method is represented in
red, and the mean segmentation (using x = X) is shown in white.
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Figure 4: Examples of segmentation results
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segmentation on a 2.8 GHz Intel process with 4GB of RAM. The parameter values, set em-
pirically, were: B =100, @ = 1072, A = 1072, n = 30.

On figure 2, we show the effect of the PCA shape prior on one example of our dataset. We
see that the PCA model (formulated as I'y+x) is deformed from its initial shape (i.e. X) to fit
the boundaries of the test image. Due to the rough approximation of modeling probabilistic
atlases with a linear subspace, the muscles’ boundaries are not well defined. However, when
allowing a small deviation (i.e. dx) from the model, as does our method, the contours are
more accurately defined. Notice there remains segmentation errors (the top red muscle in
figure 2), as the PCA model is not capable of deforming enough to fit unusual shapes while
retaining a realistic topology.

We assess the quality of the segmentation using Dice coefficients, whose expression
is: Dice =2|TNR|/(|T|+|R|), where T and R are the pixel sets for the same muscle in
the computed segmentation and the ground truth segmentation respectively. We obtain an
average Dice coefficient of 0.84 +0.08. On figure 3 we compare the results obtained with
our method to those obtained when using x = X (We called it “registration only”). The
latter method is equivalent to a segmentation through multi-atlas registration, with majority
label voting. A previous method of ours [2] yielded an average Dice of 0.80 +0.19 for a
different but similar dataset. In this method, we automatically generated appropriate seed
positions with respect to the muscle classes. Unlabeled seeds were sampled across the test
image, and were automatically labeled through a graph-based approach considering visual
and topological properties. The resulting seeds were then fed to the standard RW algorithm
[10].

In the presented method, the main segmentation errors are due to the muscles with un-
usual shape - e.g. more elongated, smaller, etc. Modeling probabilistic segmentations with
PCA model does not allow representing shapes which differ too much from standard shapes.
However, the amount of deformation that is allowed by such modeling is enough to capture a
large number of common shapes and thus is valid in many cases. Some segmentation results
are shown in figure 4.

4 Conclusion

In this paper, we presented a novel multi-object segmentation method with prior knowledge,
based on the Random Walks segmentation algorithm. We designed our approach to be capa-
ble of handling muscle segmentation in 3D MRI, where partial contours, large inter-subject
variations, absence of texture differences, etc. render typical segmentation methods ineffi-
cient. Building from the RW formulation, we add a shape space prior term to the objective
function. Our shape space is built from PCA on a set of training segmentations. To reveal
the potential of our method, we presented segmentation results on MR volumes of the thigh
on 30 subjects.

Our model is capable of fitting most shapes encountered in our dataset. However, due
to the approximation induced by the projection into a linear subspace, some more extreme
shapes are not segmented well. In the future, we intend to design a model not relying on
PCA and capable of handling more varied shapes.
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