Central limit theorems for linear statistics of heavy tailed random matrices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Central limit theorems for linear statistics of heavy tailed random matrices

Florent Benaych-Georges
  • Fonction : Auteur
  • PersonId : 849874
Alice Guionnet

Résumé

We show central limit theorems (CLT) for the Stieltjes transforms or more general analytic functions of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of $\alpha$-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike to the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.
Fichier principal
Vignette du fichier
TCLHTRM_06_09_13.pdf (477.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00769741 , version 1 (03-01-2013)
hal-00769741 , version 2 (02-04-2013)
hal-00769741 , version 3 (06-09-2013)
hal-00769741 , version 4 (10-12-2013)
hal-00769741 , version 5 (25-12-2013)

Identifiants

Citer

Florent Benaych-Georges, Alice Guionnet, Camille Male. Central limit theorems for linear statistics of heavy tailed random matrices. 2013. ⟨hal-00769741v3⟩
613 Consultations
404 Téléchargements

Altmetric

Partager

More