Graph Kernels Based on Relevant Patterns and Cycle Information for Chemoinformatics - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Graph Kernels Based on Relevant Patterns and Cycle Information for Chemoinformatics

Résumé

Chemoinformatics aim to predict molecule's prop- erties through informational methods. Computer sci- ence's research fields concerned with chemoinformat- ics are machine learning and graph theory. From this point of view, graph kernels provide a nice framework for combining these two fields. We present in this paper two contributions to this research field: a graph kernel based on an optimal linear combination of kernels ap- plied to acyclic patterns and a new kernel on the cyclic system of two graphs. These two extensions are vali- dated on two chemoinformatics datasets.
Fichier principal
Vignette du fichier
icprBenoit2012.pdf (103.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00768652 , version 1 (25-12-2012)

Identifiants

  • HAL Id : hal-00768652 , version 1

Citer

Benoit Gaüzère, Luc Brun, Didier Villemin, Myriam Mokhtari. Graph Kernels Based on Relevant Patterns and Cycle Information for Chemoinformatics. International Conference on Pattern Recognition (ICPR) 2012, Nov 2012, Tsukuba, Japan. pp.000-0000. ⟨hal-00768652⟩
152 Consultations
231 Téléchargements

Partager

More