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Abstract

Chemoinformatics aim to predict molecule’s prop-

erties through informational methods. Computer sci-

ence’s research fields concerned with chemoinformat-

ics are machine learning and graph theory. From this

point of view, graph kernels provide a nice framework

for combining these two fields. We present in this paper

two contributions to this research field: a graph kernel

based on an optimal linear combination of kernels ap-

plied to acyclic patterns and a new kernel on the cyclic

system of two graphs. These two extensions are vali-

dated on two chemoinformatics datasets.

1 Introduction

Chemoinformatics aims to predict molecules prop-

erties from their structural similarity. Most of existing

methods are based on fingerprints defined as collections

of descriptors such as the boiling point, logP, molar re-

fractivity, etc. An alternative strategy consists to extract

a set of descriptors directly from the molecular graph

G = (V,E, µ, ν), where the unlabeled graph (V,E) en-

codes the structure of the molecule while µ maps each

vertex to an atom’s label and ν characterizes a type of

bond between two atoms (single, double, triple or aro-

matic). Considering this representation, similarity be-

tween molecules can be deduced from the similarity of

their molecular graphs. Graph kernels can be under-

stood as symmetric graph similarity measures. Using a

semi definite positive kernel, the value k(G,G′) where

G and G′ encode two graphs corresponds to a scalar

product between two vectors ψ(G) and ψ(G′) in an

Hilbert space. Graph kernels thus provide a natural con-

nection between structural and statistical pattern recog-

nition fields. A large family of kernels is based on a

bag of patterns. These methods extract a bag of patterns

from the graphs and deduce similarity between graphs

from similarity between their bags. Most of existing

methods are defined on linear patterns [3]. Such meth-

ods generally have a low complexity but are limited by

the lack of expressivity of linear patterns on graphs. In

order to use more structural information, some methods

are defined on non-linear patterns. For example, tree-

pattern kernel [4] is based on an implicit enumeration

of tree-patterns, ie. trees where a node can appear more

than once. Another approach, described in Section 2

and called treelet kernel [1], computes an explicit enu-

meration of a limited set of subtrees.

The above methods don’t take into account the

cyclic information encoded within molecular graphs.

Nonetheless, cycles have an impact on molecules be-

havior and must be taken into account. Horváth pro-

posed to combine the tree pattern kernel with an in-

tersection kernel defined on a set of simple cycles of

a graph. Despite the high complexity of the enumera-

tion of all simple cycles of a graph, this method can be

efficiently used when a set of graphs has a low number

of cycles. In order to tackle the complexity required by

the enumeration of all simple cycles, Horváth proposed

in [2] to use a subset of simple cycles. This set is first

initialized using the set of relevant cycles [9]. Then,

additional simple cycles are iteratively enumerated by

combining relevant cycles and newly discovered cycles.

Horváth showed that a low number of iterations is suf-

ficient to obtain similar results than the ones obtained

using all simple cycles.

This paper presents two contributions: We propose

in Section 3 a treelet kernel based on cyclic informa-

tion. Unlike existing methods based on cycles, this ker-

nel encodes topological relationships between relevant

cycles. Our second contribution (Section 4) allows us

to associate a weight to each treelet found in a training

set. These weights are incorporated within our treelet

kernel and are optimal according to a given regression

or classification task on the training set. Finally, Sec-

tion 5 shows results obtained by these two contributions

on different chemoinformatics problems.
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Figure 1. Set of treelet’s structures

2 Treelet Kernel

Treelet kernel [1] is a graph kernel defined as a con-

volution kernel between bags of patterns extracted from

graphs. The set of extracted patterns, called treelets, is

composed of all labeled trees with a number of nodes

lower than or equal to 6 (Figure 1). The first step of

our bag construction scheme enumerates the set of tree

structures from a graph. This structure identification

step uses two different approaches: First, a depth first

traversal is performed from each node of the graph in

order to enumerate linear patterns. Then, each non lin-

ear pattern is enumerated using a neighborhood analysis

of n-star nodes. Such nodes correspond to nodes having

a degree equal to n.

Once this structure identification step is performed,

a key encoding the labels of each treelet is computed.

This key, based on Morgan numbering, provides a se-

quence of nodes and edges labels which is unique for

two isomorphic treelets. Conversely, we have shown [1]

that two treelets with a same index (a same structure)

and a same key are isomorphic. The concatenation

of treelet’s index and treelet’s key defines a unique

code for each treelet which allows us to perform an

explicit enumeration of all treelets included within a

graph. Based on this enumeration, we define a function

f which associates to each graphG a vector f(G), each

component of this vector being equal to the number of

occurrences of a given treelet t in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(tEG)| (1)

where T (G) denotes the set of treelets extracted from

G and E the subgraph isomorphism relationship. Then,

similarity between treelet distributions is computed us-

ing a sum of subkernels between treelet’s frequencies:

KT (G,G
′) =

∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (2)

where k(., .) defines any positive definite kernel be-

tween real numbers such as the linear kernel, Gaussian

kernel or intersection kernel. Note that, unlike tree pat-

tern methods, this method explicit enumerates sub trees

by computing the number of occurrences of each pat-

tern. This explicit enumeration allows us to apply a

treelet weighting step, as defined in Section 4.
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Figure 2. A cyclic system and its graph

representation. Canonical key µCR
(C2) is

equals to C1C1C1O1C1C2C.

3 Kernel on Relevant Cycles

3.1 Relevant Cycle Graph

A simple cycle is defined as a subgraph C =
(V ′, E′, µ, ν) of G = (V,E) where each vertex v ∈ V ′

has a degree equal to 2. Each cycle C ⊆ G can be rep-

resented as a vector ~C ∈ {0, 1}|E| where ~Ci equals 1 if

i is an edge of C and is 0 otherwise. The set of vectors

encoding the cycles of G defines a vector space where

the addition of two cycles C and C ′ corresponds to a

XOR bitwise [9]. The set of relevant cycles, CR, is then

defined by the union of all bases of the vector space of

minimum length. The length of a base being defined as

the sum of lengths of its cycles. This first step allows

us to compute a canonical set of cycles with a polyno-

mial complexity according to the number of nodes of

the graphs.

Topological relations between relevant cycles can be

encoded by the relevant cycle graph [8]. This graph is

defined as GC = (CR, ECR
, µCR

, νCR
) where each ver-

tex encodes a relevant cycle and two vertices are con-

nected by an edge if their cycles share at least one ver-

tex of the initial graph (Figure 2). According to [8], a

labeling function µCR
(v) is defined as the number of

edges composing the cycle of v while νCR
(e) is defined

as the couple (|v(C1)∩v(C2)|, (|e(C1)∩e(C2)|) where

v(CR) and e(CR) respectively denote the set of vertices

and the set of edges of a cycle. These two labeling func-

tions only encode the size of cycles and of their con-

nections. In order to include more information within

relevant cyclic graphs, we propose to redefine these two

labeling functions as follows:

• µCR
(C): Each cycle C is defined by a sequence

of edge and vertex labels encountered during the

traversal ofC. In order to obtain a sequence invari-



ant to cyclic permutations, µCR
(C) is defined as

the sequence having the lowest lexicographic or-

der.

• νCR
(e): An edge e in GC encodes a path between

two cycles and is described by a sequence of edge

and vertex labels. Since such a path may be tra-

versed from its two extremities, we define νCR
(e)

as the sequence of lowest lexicographic order.

In order to encode both the similarities between the cy-

cles of two graphs and the relationships between these

cycles, we apply our treelet kernel defined in Section 2

on cyclic graphs using our edge and vertex labeling

functions. This kernel is thus defined as follows:

KC(G,G
′) =

∑

tC∈T (GC)∩T (G′

C
)

k(fGC
(tC), fG′

C
(tC))

(3)

Unlike cyclic pattern kernel (Section 1) based on a

comparison of set of simple cycles, this kernel encodes

both the similarity between sets of relevant cycles (pat-

ternG0 in Figure 1) and relationships between these cy-

cles (all remaining treelets in Figure 1). The proposed

edge and vertex labels of the cyclic graph allows us to

identify all acyclic combinations composed of at most 6
cycles. In addition, Horváth’s method requires at most

nk operations to perform k iterations on n relevant cy-

cles. On the other hand, our treelet kernel requires at

most nd5 operations, where d denotes the maximal de-

gree of relevant cycle nodes. Our method thus has a

linear complexity according to the number of relevant

cycles of a graph. Such a kernel may be computed ef-

ficiently as soon as the degree of the vertices of GC

remains bounded.

4 Treelet Weighting

As shown in Section 5, the number of different

treelets enumerated from the dataset can be huge and

some of them may not be related to the property to

be predicted. Therefore, considering these treelets in

Equations 2 or 3 leads to inaccurate predictions. In

order to tackle this drawback, we must weight each

treelet according to its relevance for a given property.

To this end, we propose to adapt a multiple kernel learn-

ing method called SimpleMKL [6] to variable selection.

SimpleMKL defines an optimal weighting of any lin-

ear combination of N kernels according to a prediction

task:

KMKL(x, x
′) =

N
∑

i=1

wi ∗ ki(x, x
′) (4)

where wi ∈ R+ and
∑N

i
wi = 1. The treelet kernel

(Equations (2) and (3)) is defined as a sum on the inter-

section of two sets of treelets. Given the set of treelets

T computed over a training set, we define the kernel

kt(G,G
′) specific to each treelet t ∈ T as:

kt(G,G
′) =

{

0 if ft(G) or ft(G
′) = 0

k (ft(G), ft(G
′)) otherwise

(5)

Using Equation (5), Equations (2) and (3) may be writ-

ten as:

KT (G,G
′) =

∑

t∈T

kt(G,G
′) (6)

where the sum is performed over the finite set T . Using

this definition, the treelet kernel can be adapted to the

SimpleMKL formulation as follows:

KW (G,G′) =
∑

t∈T

wt ∗ kt(G,G
′) (7)

where wt denotes the optimal weight defined using

the SimpleMKL method. Since SimpleMKL induces

a sparsity constraint on the objective function, only rel-

evant treelets will be selected. Non zero weights may be

interpreted as treelet influence measures on the property

to predict.

5 Experiments

5.1 Regression Problem

Our first experiment evaluates the relevance of our

treelet weighting procedure (Section 4) by a regres-

sion task on molecule’s boiling points using a dataset1

composed of 185 acyclic molecules. Prediction is per-

formed using a 10-fold cross validation. The first line

of Table 1 shows results obtained by the random walks

kernel [3]. Due to the limited expressivity of linear

patterns, this method doesn’t correctly predict the boil-

ing point property. Line 2 shows results obtained by a

Gaussian kernel based on graph edit distance [5]. This

method obtains a better result than a kernel based on

linear patterns. In the same way, tree pattern [4] and

treelet kernels improve the accuracy of prediction mod-

els (Table 1, Lines 3 and 4). Finally, the three last lines

show results obtained by two treelet selection methods

described in [1] and our treelet weighting method de-

fined in Section 4. Using this dataset, 138 different

treelets have been enumerated. As shown by Line 7,

the lowest root mean squared error (RMSE) is obtained

using the SimpleMKL algorithm. A major difference

1This database is available on the IAPR TC15 Web page:

http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry



Table 1. Boiling point prediction.
Method RMSE (◦C)

1 Random Walks Kernel 18.72

2 Gaussian edit distance 10.27

3 Tree Pattern Kernel 11.02

4 Treelet Kernel (TK) 8.10

5 TK + Forward Selection 7.05

6 TK + Backward Elimination 6.75

7 TK + MKL 5.24

between the MKL method and forward selection and

backward elimination methods, which may explain this

result, is that the SimpleMKL algorithm provides an

optimal real weighting on the training set while for-

ward and backward eliminations only a set of selected

treelets [1]. Treelet kernel on cycle graphs has not been

tested on this experiment since the dataset is exclusively

composed of acyclic molecules.

5.2 Classification Problems

The second experiment is a classification problem

taken from the Predictive Toxicity Challenge [7] which

aims to predict carcinogenicity of chemical compounds

applied to female (F) and male (M) rats (R) and mice

(M). This experiment is based on ten different datasets,

each of them being composed of one trainset and one

testset. Table 2 shows the number of correctly classi-

fied molecules over the ten testsets for each method and

for each class of animal. As shown by Table 2, Lines

1 and 2, Horváth’s cycle kernel [2] obtains better clas-

sification accuracy than our treelet kernel, hence show-

ing the importance of cyclic information in this experi-

ment. Our cyclic kernel, taking into account both rele-

vant cycles and their relationships, outperforms the one

of Horvárth’s (Lines 2 and 3) which does not encode

labels between cycles. As shown by Lines 4 and 5, the

selection of treelets using the SimpleMKL algorithm al-

lows us to improve the classification accuracy of both

our treelet and cyclic kernels. Note that SimpleMKL

allows us to reduce the number of treelets from about

3500 to 150, depending on dataset. Finally, a weighted

sum of both kernels (Line 6), with both weights set by

cross-validation, allows us to slightly improve the in-

dividual results of each kernel. This clear separation

between cyclic and acyclic information is one reason

which may explain the better classification accuracy of

our final kernel compared to the one obtained by the

Gaussian Edit Distance kernel (Line 7).

Table 2. Classification accuracy on PTC.
Method MM FM MR FR

1 Treelet Kernel (TK) 208 205 209 212

2 Horváth 209 207 202 228

3 TK on Cycles (TC) 211 210 203 232

4 TK + MKL 217 224 223 250

5 TC + MKL 216 213 212 237

6 (TK + αTC) + MKL 219 226 226 251

7 Gaussian Edit Distance 223 212 194 234

6 Conclusion

We have proposed a new kernel between cyclic sys-

tems of molecules. This kernel compares both the rel-

evant cycles of two graphs and the adjacency relation-

ships between these relevant cycles. This kernel may

be computed with a linear complexity according to the

number of relevant cycles. We also proposed to adapt

a multiple kernel learning framework in order to select

the most relevant patterns of our kernels for a prediction

task. Further works will aim to improve the definition

of our graph of relevant cycles in order to take into ac-

count more information about cycles within our kernel.
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[2] T. Horváth. Cyclic pattern kernels revisited. PAKDD

2005, pages 791–801, 2005.
[3] H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for

graphs, chapter 7, pages 155–170. MIT Press, 2004.
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