Fluctuations for the number of records on subtrees of the Continuum Random Tree - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Fluctuations for the number of records on subtrees of the Continuum Random Tree

Résumé

We study the asymptotic behavior af the number of cuts $X(T_n)$ needed to isolate the root in a rooted binary random tree $T_n$ with $n$ leaves. We focus on the case of subtrees of the Continuum Random Tree generated by uniform sampling of leaves. We elaborate on a recent result by Abraham and Delmas, who showed that $X(T_n)/\sqrt{2n}$ converges a.s. towards a Rayleigh-distributed random variable $\Theta$, which gives a continuous analog to an earlier result by Janson on conditioned, finite-variance Galton-Watson trees. We prove a convergence in distribution of $n^{-1/4}(X(T_n)-\sqrt{2n}\Theta)$ towards a random mixture of Gaussian variables. The proofs use martingale limit theory for random processes defined on the CRT, related to the theory of records of Poisson point processes.
Fichier principal
Vignette du fichier
Fluctuations.pdf (319.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00768343 , version 1 (21-12-2012)

Identifiants

Citer

Patrick Hoscheit. Fluctuations for the number of records on subtrees of the Continuum Random Tree. 2012. ⟨hal-00768343⟩
136 Consultations
66 Téléchargements

Altmetric

Partager

More