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FLUCTUATIONS FOR THE NUMBER OF RECORDS ON SUBTREES OF THE

CONTINUUM RANDOM TREE

PATRICK HOSCHEIT

Abstract. We study the asymptotic behavior af the number of cuts X(Tn) needed to isolate the root
in a rooted binary random tree Tn with n leaves. We focus on the case of subtrees of the Continuum
Random Tree generated by uniform sampling of leaves. We elaborate on a recent result by Abraham
and Delmas, who showed that X(Tn)/

√

2n converges a.s. towards a Rayleigh-distributed random
variable Θ, which gives a continuous analog to an earlier result by Janson on conditioned, finite-
variance Galton-Watson trees. We prove a convergence in distribution of n−1/4(X(Tn) −

√

2nΘ)
towards a random mixture of Gaussian variables. The proofs use martingale limit theory for random
processes defined on the CRT, related to the theory of records of Poisson point processes.

Introduction

The Continuum Random Tree (CRT) is a random metric measure space, introduced by Aldous
([3, 4]) as a scaling limit of various discrete random tree models. In particular, if we consider µ, a
critical probability measure on N, with variance 0 < σ2 < ∞ and if we consider a random Galton-
Watson tree Tn with offspring distribution µ, conditioned on having n vertices, then we have the
following convergence in distribution:

(1) lim
n→∞

σ√
n

Tn = T ,

in the sense of Gromov-Hausdorff convergence of compact metric spaces (see for instance [12] for more
information about the Gromov-Hausdorff topology), where T is a CRT. The family of conditioned
Galton-Watson trees turns out to be quite large, since it contains for instance uniform rooted planar
binary trees (take µ(0) = µ(2) = 1/2) or uniform rooted labelled trees (Cayley trees, take µ(k) =
e1/k!, k ≥ 0). There is a combinatorial characterization of conditioned Galton-Watson trees: they
correspond to the class of so-called simply generated trees (see [16] for a detailed survey).

In their 1970 paper ([18]), Meir and Moon considered the problem of isolating the root through
uniform cuts in random Cayley trees. The problem is as follows: start with a rooted discrete tree Tn,
having exactly n edges (in our context, rooted means that, among the n + 1 vertices of Tn, one has
been distinguished). At each step, remove an edge, selected uniformly among all edges, then discard
the connected component not containing the root. This procedure is iterated on the remaining tree
until the root is the only remaining vertex. The number X(Tn) of cuts that is needed to isolate the
root is random, with values in J1, nK. Meir and Moon showed that when Tn is a uniform Cayley tree
with n edges,

E[X(Tn)] ∼
√

πn/2 and Var(X(Tn)) ∼ (2 − 1/π)n.

Later, the limiting distribution was found to be the Rayleigh distribution (the distribution on [0, ∞)
with density x exp(−x2/2)dx) by Panholzer for (a subset of) the class of simply generated trees ([19])
and, using a different proof, by Janson for the class of critical, finite-variance, conditioned Galton-
Watson trees ([15]).

In [15], the distribution of the limiting Rayleigh variable was obtained using a moment problem,
but the question arose whether it had a connection with the convergence (1) above. Indeed, it is
well-known that the distance from the root to a uniform leaf of the CRT is Rayleigh-distributed.
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As a consequence, several approaches were used to describe a cutting procedure on the CRT that
could account for the convergence of X(Tn)/

√
n. All these works are relying on the Aldous-Pitman

fragmentation of the CRT, first described in ([6]). We will give below a brief descriptions of this
procedure, as it will be central in this work. Using an extension of the Aldous-Broder algorithm,
Addario-Berry, Broutin and Holmgren described a fragmentation-reconstruction procedure for Cayley
trees and its analog for the CRT. The invariance they prove shows that the limiting random variable in
Janson’s result can indeed be realized as the height of a uniform leaf in a CRT. However, it is not the
same CRT as the one arising from the scaling limit of Tn/

√
n. Indeed, the random variables n−1/2Tn

and n−1/2X(Tn) do not converge jointly to a CRT T and the height of a random leaf H(T ). Bertoin
and Miermont ([9]) describe the so-called cut-tree cut(T ) of a given CRT T following the genealogy
of fragments in the Aldous-Pitman fragmentation. The limiting variable can then be described as the
height of a uniform leaf in cut(T ), which is again a CRT, thus recovering Rayleigh distribution.

Following Abraham and Delmas ([1]), we will use a different point of view, based on the theory
of records of Poisson point processes. We will now review some of their results, in order to set the
notations and to describe the framework.

The Brownian CRT. In this section, we will recall some basic facts about the Brownian CRT. For
details, see [3, 12, 13]. We will write T for the set of (pointed isometry classes of) compact, rooted
real trees endowed with a finite Borel measure. Recall that real trees are metric spaces (X, d) such
that

(i) For every s, t ∈ X , there is a unique isometric map fs,t from [0, d(s, t)] to X such that
fs,t(0) = s and fs,t(d(s, t)) = t. The image of fs,t is noted Js, tK.

(ii) For every s, t ∈ X , if q is a continuous injective map from [0, 1] to X such that q(0) = s and
q(1) = t, then q([0, 1]) = fs,t([0, d(s, t)]).

There exists a metric on T that makes it a Polish metric space, but we will not attempt to describe
it here. For more details, see [2, 13].

The Brownian CRT (or Aldous’s CRT) is a random element of T, defined using the so-called contour
process description: if f is a continuous nonnegative map f : [0, σ] → R+, such that f(0) = f(σ) = 0,
then the real tree encoded by f is defined by Tf = [0, σ]/∼f

, where ∼f is the equivalence relation

x ∼f y ⇔ f(x) = f(y) = min
u∈[x∧y,x∨y]

f(u), x, y ∈ [0, σ].

The metric on Tf is defined by

df (x, y) = f(x) + f(y) − 2 min
u∈[x∧y,x∨y]

f(u), x, y ∈ [0, σ],

so that df (x, y) = 0 if and only if x ∼f y. Hence, df is definite-positive on Tf and defines a true
metric. It can be checked (see [12]) that (Tf , df ) is indeed a real tree. We define the mass-measure
mTf (ds) on Tf as the image of Lebesgue measure on [0, σ] by the canonical projection [0, σ] → Tf .
Thus, mTf is a finite measure on Tf , with total mass mTf (Tf ) = σ. When the context is clear, we
will usually drop the reference to the tree and write m for the mass-measure mT .

Now, the Brownian Continuum Random Tree (CRT) corresponds to the real tree encoded by
f = 2Bex, twice the normalized Brownian excursion. Since the length of the normalized Brownian
excursion is 1 a.s., the CRT has total mass 1, i.e. the mass measure m is a probability measure. The
distribution of the CRT will be noted P, or sometimes P

(1) if we want to emphasize the fact that m

has mass 1. Sometimes, we will consider scaled versions of the CRT. If r > 0, we consider the scaled
Brownian excursion

Bex,r
t =

√
rBex

t/r, t ∈ [0, r]

and the associated real tree T2Bex,r , whose distribution will be noted P
(r). Note that the transforma-

tion above corresponds to rescaling all the distances in a P
(1)-distributed tree by a factor

√
r.

The measure m is supported by the set of leaves of T , which are the points x ∈ T such that
T \ {x} is connected. There is another natural measure ℓ defined on the CRT, called length measure,
which is σ-finite and such that ℓ(Jx, yK) = d(x, y). Also, the CRT is rooted at one particular vertex ∅,
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which is the equivalence class of 0, but it can be shown (see Proposition 4.8 in [12]) that if x is chosen
according to m, then, if T x is the tree T re-rooted at x, (T , x) has same distribution as (T x, ∅).

When we consider the real tree T encoded by 2B, where B is an excursion of Brownian motion,
distributed under the (σ-finite) excursion measure N, we get that T is a compact metric space, with
a length measure ℓ and with a finite measure m. We will write σ for the (random) total mass of m.
Under N, σ is distributed as the length of a random excursion of Brownian Motion, that is

N[σ ≥ t] =

√
2

πt
.

The Brownian CRT can be seen as a conditioned version of the tree distributed as N[dT ], in the sense
that, if F is some nonnegative measurable functional defined on the tree space T, then

N[F (T )] =

∫ ∞

0

dσ√
2π σ3/2

E
(σ)[F (T )].

In the sequel, we will make use of this disintegration of N, since some computations are easier to do
under N (see Proposition 5).

The Aldous-Pitman fragmentation. Given a CRT T , we consider a Poisson point process

N (ds, dt) =
∑

i∈I

δ(si,ti)(ds, dt)

on T ×R+, with intensity ℓ(ds) ⊗ dt. We will sometimes refer to N as the fragmentation measure. If
(si, ti) is an atom of N , we will say that the point si was marked at time ti. For t ≥ 0, we can consider
the connected components of T separated by the atoms of N (· × [0, t]). They define a random forest
Ft of subtrees of T . Aldous and Pitman proved that if we consider the trees (Tk(t), k ≥ 1) composing
Ft, ranked by decreasing order of their mass, then the process

((m(T1(t)), m(T2(t)), . . . ), t ≥ 0)

is a binary, self-similar fragmentation process, with index 1/2 and erosion coefficient 0, according to
the terminology later framed by Bertoin ([7]).

Separation times. In order to give a continuous analogue to the cutting procedure on discrete trees
described above, we will use the Aldous-Pitman fragmentation on the CRT. Given a CRT T and a
fragmentation measure N , we will define, for any s ∈ T , the separation time from the root ∅ by

θ(s) = inf {t ≥ 0, N (J∅, sK × [0, t]) ≥ 1},

with the convention inf ∅ = +∞. This separation process will be our main object of study. Note that,
under the definition above, conditionally on T , θ(∅) = ∞ a.s., and θ(s) < ∞ a.s. for all s 6= ∅, since
θ(s) is then exponentially distributed with parameter ℓ(J∅, sK) = d(∅, s). Note also that θ(s) → ∞
when s → ∅, which justifies our convention for θ(∅).

It is also possible to define the separation process started from any q ≥ 0, rather than from infinity.
In order to do this, we consider only the marks whose t-component is smaller than q:

(2) θ(s) = inf {0 ≤ t ≤ q, N (J∅, sK × [0, t]) ≥ 1},

with the convention inf ∅ = q. Note that, under this definition, we always have θ(∅) = q, as well as
lim θ(s)s→∅ = q a.s. In the case where q = ∞, we recover the same distribution as the separation
process defined earlier. The (quenched) distribution of the separation process started at q ∈ [0, ∞] on
a given CRT T will be noted P

T
q .

We will also note P
(r)
q the (annealed) distribution of the process (θ(s), s ∈ T ) started at q ∈ [0, ∞],

when T is distributed as a Brownian CRT with mass r > 0:

P
(r)
q =

∫

T

P
(r)(dT ) P

T

q .

Again, to keep things simple, we will usually work under P∞ = P
(1)
∞ . The jump points of the separation

process correspond to points s marked by the fragmentation measure at a time t where they belong to
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the connected component of the root. This implies that they accumulate in the neighbourhood of the
root if q = ∞. If T is a subtree of T , we note X(T ) the number of jumps of the separation process
on T . This number can be finite or infinite, according to whether T contains the root or not, in the
case q = ∞.

Linear record process. One can consider the record process on the real line (i.e. when T = R+),
defined using a Poisson point measure with intensity ds ⊗ dt. We get, for any q ∈ (0, ∞], a random

process (θ(s), s ≥ 1) such that θ(0) = q, P
R+
q -a.s. The distribution of this process will be noted

Pq = P
R+
q . We can consider the jump process

Xt =
∑

s∈[0,t]

1{θ(s−)>θ(s)},

counting the number of jumps of θ on [0, t]. It should be noted that if q = ∞, then θ jumps infinitely
often in the neighbourhood of the root, so that a.s. Xt = ∞ for any t > 0. It is easy to check that,
for any bounded, measurable functional g defined on [0, q], we have

Eq [g(θ(s))] = e−qs g(q) +

∫ q

0

g(x)s e−sx dx.

In particular,

(3) Eq [θ(s)] =
1 − e−qs

s
.

When q < ∞, if t ≥ 0, and conditionally on θ(t) = q′, the next jump of θ can be seen to be equal to
inf {s ≥ t, N ([0, q′], [t, s]) ≥ 1}, which is exponentially distributed, with parameter q′. Thus, X is the
counting process of a point measure on R+ with intensity θ(s)ds. Elementary properties of counting
processes of point measures (see [1] for more details) then show that, for any q ∈ (0, ∞), the processes

(
Nt = Xt −

∫ t

0

θ(s) ds, t ≥ 0

)
(4)

(
N2

t −
∫ t

0

θ(s) ds, t ≥ 0

)
(5)

(
N4

t − 3

(∫ t

0

θ(s) ds

)2

−
∫ t

0

θ(s) ds, t ≥ 0

)
(6)

are Pq-martingales in the natural filtration of θ.

Number of records on subtrees. Given a CRT T , let (xn, n ≥ 1) be an iid sequence of leaves of T ,
sampled according to m. If n ≥ 1, we consider Tn, the subtree spanned by the leaves (∅, x1, . . . , xn).
The tree Tn is a random rooted binary tree with edge-lengths, whose distribution is explicitly known
(see [4]). Its length Ln = ℓ(Tn) is known to be distributed according to the Chi(2n)-distribution, that
is

(7) P(Ln ∈ dx) =
21−n

(n − 1)!
x2n−1 exp(−x2/2)1{x>0}.

Note that the case n = 1 gives a Rayleigh distribution, as was mentioned earlier. It is proven in [1]
that, a.s.:

(8) lim
n→∞

Ln√
2n

= 1.

The tree Tn has exactly 2n − 1 edges. The edge adjacent to the root will be noted J∅, s∅,nK, where
s∅,n is the first branching point in Tn; the height of s∅,n is noted h∅,n = ℓ(J∅, s∅,nK). Recall from
Proposition 5.3 in [1] that

√
nh∅,n converges in distribution to a nondegenerate random variable, and

that we have the following moment computation, for α > −1:

(9) E
[
hα

∅,n

]
=

Γ(α + 1)

2α/2

Γ(n − 1/2)

Γ(n + α/2 − 1/2)
∼n→∞ Γ(α + 1)2−α/2n−α/2.
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We will also use the notation T
∗
n = (Tn \ J∅, s∅,nK) ∪ {s∅,n} for the subtree above the lowest branching

point in Tn. When a new leaf xn is sampled, it gets attached to the tree Tn−1 through a new edge,
that connects to Tn−1 at the vertex sn ∈ Tn−1. We write

Bn = (Tn \ Tn−1) ∪ {sn} = Jsn, xnK.

The quantity X∗
n is the continuum counterpart of the edge-cutting number X(Tn) that can be found

in the literature. Indeed, as soon as a jump appears on the first edge J∅, s∅,nK, all subsequent jumps
will be on this edge, even closer to the root. Thus, X∗

n can be seen as the number of cuts before the
first cut on J∅, s∅,nK was made. In some sense, the first mark appearing on J∅, s∅,nK is analog to the
last cut needed to isolate the root in the discrete case.

The following theorem is the analog of the convergence (in distribution) that can be found in [15]
X(Tn)/

√
n → R, where R is Rayleigh-distributed. We will write Θ for the mean separation time∫

T
θ(ds)m(ds).

Theorem ([1]). We have P∞-a.s:

(10) lim
n→∞

X∗
n√

2n
= Θ.

Furthermore, under P∞, Θ has Rayleigh distribution.

Note that T
∗
n has 2n − 2 edges, so that the rescaling is

√
2n. In comparison, Janson considers

random trees with n edges, which explains the difference between the two results. It should be noted
that Abraham and Delmas show a slightly more general result, since they consider scaled versions of

the CRT, proving the result under all the measures P
(r)
∞ , r > 0. While our main result, Theorem

1 below is still true in these cases, we restrict ourselves to the case of Aldous’s tree (r = 1) for
convenience.

The purpose of this work is to investigate the fluctuations of X∗
n/

√
2n around its limit Θ. It is

shown in Theorem 1, which is the main result of this work, that these fluctuations are typically of the
order n1/4.

Theorem 1. Under P∞, we have the following convergence in distribution:

(11) lim
n→∞

n1/4

(
X∗

n√
2n

− Θ

)
= Z,

where Z is a random variable which is, conditionally on Θ, distributed according to

(12) E∞
[
eitZ

∣∣Θ
]

= e−t2Θ/
√

2.

In other words, Z is distributed as 21/4
√

ΘG, where G is an independent standard normal ran-
dom variable. As Θ is Rayleigh-distributed under E∞, the Laplace transform (12) can be explicitly
computed, but does not correspond to any known distribution.

The proof of Theorem 1 will be carried out in two steps: we write

(13)

(
X∗

n√
2n

− Θ

)
=

1√
2n

(
X∗

n −
∫

T∗
n

θ(s)ℓ(ds)

)
+

(
1√
2n

∫

T∗
n

θ(s)ℓ(ds) − Θ

)
.

In Section 1, we will show that, when averaging over T , the variance arising from the random
choice of the leaves (xn, n ≥ 1) does not bring any significant contribution to (11). We prove this
by decomposing T conditionally on its subtree Tn and by proving a general disintegration formula
(Lemma 5). Therefore, the second term in (13) converges to 0 when suitably renormalized.

In Section 2, we prove Theorem 1 by showing that, when properly rescaled, the difference (X∗
n −∫

T∗
n

θ(s)m(ds)) is asymptotically normally distributed (Proposition 4). This is a consequence of the

classical martingale convergence theorems of [14].
In the Appendix, we collect several technical lemmas.
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1. Variance in the weak convergence of length measure to mass measure

The main result of this section is Proposition 2.

Proposition 2. As n → ∞, we have the following convergence in probability:

(14) lim
n→∞

n1/4

(∫

T∗
n

θ(s)
ℓ(ds)√

2n
− Θ

)
= 0.

Recall that, conditionally on T , we sample independent leaves (xn, n ≥ 1) with common distribu-
tion m(dx). We will consider the filtration (Fn, n ≥ 1) defined by

Fn = σ ({(T1, . . . , Tn), (θ(s), s ∈ Tn)}) , n ≥ 1.

A key step in the proof of the a.s. convergence of X∗
n/

√
2n to Θ in [1] is the convergence of Mn =

E∞[Θ|Fn]. Since (Mn, n ≥ 1) is a closed L2 martingale, it converges P
(1)
∞ -a.s. (and in L2) towards

M∞ = Θ (notice that Θ is indeed F∞-measurable, since ∪n≥1Tn is dense in T , and since θ is
continuous m-almost everywhere). The proof of Proposition 2 will be divided in two. First, we prove
the next proposition:

Proposition 3. We have the following convergence in probability:

(15) lim
n→∞

n1/4

(
1√
2n

∫

T∗
n

θ(s)ℓ(ds) − E∞[Θ|Fn]

)
= 0.

Then, we prove a more precise statement than the convergence of E∞[Θ|Fn] towards Θ.

Proposition 4. We have

(16) lim
n→∞

n1/4 (E∞[Θ|Fn] − Θ) = 0,

in probability, as n → ∞.

Of course, Propositions 3 and 4 imply Proposition 2. Before we can prove Proposition 3, we need
to describe more precisely how the marked tree (T , θ) is distributed conditionally on Fn.

1.1. Subtree decomposition. Given the subtree Tn, the set T \ Tn is a random forest; let (Xi, i ∈
In) be the collection of its connected components. For any connected component Xi of T \ Tn, there
is a unique point si ∈ Tn such that ⋂

x∈Xi

J∅, xK = J∅, siK.

For any i ∈ In, we will write Ti for the tree Xi ∪ {si}, rooted at si ∈ Tn. We will sometimes use the
notation

En ={s ∈ T , J∅, sK ∩ T
∗
n = ∅}(17)

=
⋃

i∈In, si∈J∅,s∅,nK

Xi

for the set of all vertices in the tree such that the unique path linking them to the root intersects Tn

on J∅, s∅,nK.
Many things are known about the distribution of the forest (Ti, i ∈ In). For instance, Pitman

pointed out (see [10]) that the stickbreaking construction of the CRT in [3] implied that the sequence
(m(Ti), i ∈ In), ranked in decreasing order, is distributed according to the Poisson-Dirichlet distribu-
tion with parameters α = 1/2 and θ = n−1/2 (for more background on Poisson-Dirichlet distributions,
see [20]). We will give another description, focusing on the tree structure of T conditionally on Fn.
This description can be seen as a conditioned version of Theorem 3 in [17].

Lemma 5. Let F be a nonnegative functional on T × Tn. Then

(18) E∞

[∑

i∈In

F (Ti, si)

∣∣∣∣∣Fn

]
=

∫ 1

0

e−L2
nv/(2−2v)

√
2πv3/2(1 − v)3/2

dv

∫

Tn

ℓ(ds)E
(v)
θ(s)[F (T , s)].
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Proof. Let Y be a Fn-measurable random variable; let us compute E
(1)
∞
[
Y
∑

i∈In
F (Ti, si)

]
. In order

to do this computation, we will perform a disintegration with respect to σ in the following expression:
for µ ≥ 0,

I(µ) = N∞

[
Y
∑

i∈In

F (Ti, si) e−µσ

]

= N∞

[
Y
∑

i∈In

F (Ti, si) e−µσi e
−µ
∑

j 6=i
σj

]
.

Using a Palm formula, we get:

= N∞

[∫

Tn

ℓ(ds)Nθ(s)[F (T , s) e−µσ] exp

(
−
∫

Tn

ℓ(ds)

∫ ∞

0

du√
2πu3/2

(1 − e−µσ)

)]

= N∞

[
Y

∫

Tn

ℓ(ds)Nθ(s)[F (T , s) e−µσ] e−Ln
√

2µ

]
,

since N[1 − exp(−µσ)] =
√

2µ. We can disintegrate the σ-finite measure Nθ(s) according to the total
mass σ:

I(µ) = N∞

[
Y

∫

Tn

ℓ(ds)

∫ ∞

0

dv√
2πv3/2

E
(v)
θ(s)[F (T , s) e−µσ] e−Ln

√
2µ

]

= N∞

[
Y

∫

Tn

ℓ(ds)

∫ ∞

0

dv√
2πv3/2

E
(v)
θ(s)[F (T , s)] e−µv

∫ ∞

0

Ln
dr√
2πr3

e−µr−L2
n/(2r)

]
,

using the well-known formula

ea
√

2s =

∫ ∞

0

e−sr a√
2πr3

e−a2/2r dr,

for the Laplace transform of the density of the 1/2-stable subordinator (see for instance Chapter III,
Proposition (3.7) in [21]). By the Fubini-Tonelli theorem, we then get:

I(µ) = N∞

[
Y

∫

Tn

ℓ(ds)

∫ ∞

0

dv√
2πv3/2

E
(v)
θ(s)[F (T , s)] e−µv

∫ ∞

v

Ln e−µ(t−v) dt√
2π(t − v)3/2

e−L2
n/(2t−2v)

]

=

∫ ∞

0

e−µt dt√
2πt3/2

N∞

[
Y

∫

Tn

ℓ(ds)

∫ t

0

Lnt3/2 dv√
2πv3/2(t − v)3/2

e−L2
n/(2t−2v)

E
(v)
θ(s)[F (T , s)]

]
.

Now, we can use the scaling property of the marked tree (T , θ) under N∞ and that the fact the total

mass σ has density dt/(
√

2πt3/2) under N∞, to get that, for any Fn-measurable random variable Y ,

E∞

[
Y
∑

i∈In

F (Ti, si)

]
= N∞

[
Y

1√
2π

∫ 1

0

Ln dv

v3/2(1 − v)3/2
e−L2

n/(2−2v) ×
∫

Tn

ℓ(ds)E
(v)
θ(s)[F (T , s)]

]
.

Now, recall the absolute continuity relation the distribution of Tn under N∞ and under E∞ (Corollary
4 in [17]): for any measurable bounded functional G,

E∞[G(Tn)] = N∞
[
ℓ(Tn) e−ℓ(Tn)2/2 G(Tn)

]
.

Since exp(−L2
n/(2 − 2v)) = exp(−L2

n/2) · exp(−L2
nv/(2 − 2v)), we get:

E∞

[
Y
∑

i∈In

F (Ti, si)

]
= E∞

[
Y

1√
2π

∫ 1

0

dv

v3/2(1 − v)3/2
e−L2

nv/(2−2v)

∫

Tn

ℓ(ds)E
(v)
θ(s)[F (T , s)]

]
.

Taking conditional expectations with respect to Fn gives the desired result. �
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Remark 1. Notice that if F (T , s) = m(T ), we find the striking identity

(19)
1√
2π

∫ 1

0

Ln e−L2
nv/(2−2v)

v1/2(1 − v)3/2
dv = 1.

In other words, the function fa(v) = a e−a2v/(2−2v) /(
√

2πv1/2(1 − v)3/2)) is a probability density on
(0, 1) for any a > 0. This probability distribution has already been described in the context of the
Aldous-Pitman fragmentation: if a > 0, Aldous and Pitman show that it is the distribution of the size
of the fragment containing the root at time a. We refer to [6, 8] for more information on the “tagged
fragment” process in self-similar fragmentations.

1.2. Proof of Proposition 3. We now have everything we need to prove Proposition 3.

Proof of Proposition 3. We will start from Lemma 7.4 in [1]: we have a.s. for n ≥ 1

(20) − Rn ≤ E∞[Θ|Fn] − 1

Ln

∫

T∗
n

θ(s) ℓ(ds) ≤ Vn,

where we noted Vn = E∞[
∫

En
θ(s)m(ds)|Fn] (recall the definition of En in (17)) and where Rn =

exp(−L2
n/4)θ(h∅,n)2/4. Furthermore, there P∞-a.s. exists a constant C > 0 such that

Rn ≤ Cn8 e−L2
n/8 .

Thus, considering that Ln/
√

2n converges a.s. to 1 (8), we get that n1/4Rn converges a.s. to 0.
Therefore, we needn’t worry about the left-hand side of (20) and the only thing we need to prove is
that n1/4Vn converges in distribution to 0 as n → ∞. The proof in [1] uses a dominated convergence
argument to show that Vn a.s. converges to 0, but we will need a more precise estimate for Vn. By
definition, using the notation

Θ
(n)
i =

∫

Ti

θ(s) m(ds), i ∈ In,

we have

Vn = E∞

[∫

En

θ(s) m(ds)
∣∣∣Fn

]
= E∞

[∑

i∈In

Θi1{si∈J∅,s∅,nK}
∣∣∣Fn

]
.

Using the disintegration formula from Lemma 5, we get:

Vn =
1√
2π

∫ 1

0

dv

v3/2(1 − v)3/2
e−L2

nv/(2−2v)

∫

J∅,s∅,nK

E
(v)
θ(s)[Θ] ℓ(ds).

Using the fact that θ(s) is, conditionally on Tn, exponentially distributed with parameter s, we get:

E∞ [Vn|Tn] =
1√
2π

∫ 1

0

dv

v3/2(1 − v)3/2
e−L2

nv/(2−2v)

∫ h∅,n

0

ds

∫ ∞

0

s e−st
E

(v)
t [Θ] dt

≤ 1

2

∫ 1

0

dv

v3/2(1 − v)3/2
e−L2

nv/(2−2v)

∫ h∅,n

0

ds

(∫ v−1/2

0

stv e−st dt +

∫ ∞

v−1/2

s
√

v e−st dt

)
,

using the domination E
(v)
q [Θ] ≤

√
π/2 min(qv,

√
v) (Lemma 12). For technical reasons, we will restrict

ourselves to the event {h∅,n < 1/2}, but this will not be too restrictive, since h∅,n → 0 a.s. Computing
the integrals, we eventually get that E∞[Vn|Tn]1{h∅,n<1/2} is dominated by

Wn =

(
1

2

∫ 1

0

dv

v1/2(1 − v)3/2
e−L2

nv/(2−2v)

∫ h∅,n

0

1 − e−s/
√

v

s
ds

)
1{h∅,n<1/2}.
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We will use the domination (1 − exp(−s))/s ≤ 1[0,1](s) + 2/(s + 1)1(1,∞)(s), which gives:

Wn ≤ 1

2

∫ 1

0

e−L2
nv/(2−2v)

v1/2(1 − v)3/2
dv

(
h∅,n√

v
1{h∅,n/

√
v≤1}

+

(
1 + 2 log

(
h∅,n/

√
v + 1

2

))
1{h∅,n/

√
v≥1}

)
1{h∅,n<1/2}

=

(
1

2

∫ h2
∅,n

0

e−L2
nv/(2−2v)

v1/2(1 − v)3/2

(
1 − 2 log 2 + 2 log

(
h∅,n√

v
+ 1

))
dv

)
1{h∅,n<1/2}(21)

+

(
1

2

∫ 1

h2
∅,n

e−L2
nv/(2−2v)

v1/2(1 − v)3/2

h∅,n√
v

dv

)
1{h∅,n<1/2}.(22)

As far as (21) is concerned, we can dominate exp(−αL2
nv/(1 − v)) by 1 and (1 − v)−3/2 by its value

at h2
∅,n, i.e. (1 − h2

∅,n)−3/2 < (3/4)−3/2 to get:

(21) ≤ 1

2(3/4)3/2

∫ h2
∅,n

0

dv√
v

(
1 − 2 log 2 + 2 log

(
h∅,n√

v
+ 1

))
1{h∅,n<1/2} = C · h∅,n1{h∅,n<1/2},

where C is some deterministic constant. Concerning (22), we can bound 1/
√

v by 1/h∅,n, to get:

(22) ≤
(

1

Ln

∫ 1

h2
∅,n

1

2

Ln e−L2
nv/(2−2v)

v1/2(1 − v)3/2
dv

)
1{h∅,n<1/2}

≤
(

1

Ln

∫ 1

0

1

2

Ln e−L2
nv/(2−2v)

v1/2(1 − v)3/2
dv

)
1{h∅,n<1/2} =

√
π√

2Ln

1{h∅,n<1/2},

by equation (19). Putting things together, we get that P∞-a.s.

(23) E∞ [Vn|Tn] 1{h∅,n<1/2} ≤ C · h∅,n1{h∅,n<1/2} +

√
π√

2Ln

.

Now, n1/4h∅,n1{h∅,n<1/2} converges in L1 to 0 thanks to (9). Similarly, an easy moment computation

using (7) for the density of Ln shows that n1/4/Ln also converges in L1 to 0, so that the same is true
for n1/4Vn1{h∅,n<1/2}. Hence, n1/4Vn1{h∅,n<1/2} converges to 0 in probability. Since a.s. there is a

(random) n0 ≥ 1 such that h∅,n < 1/2 for any n ≥ n0, we also get that n1/4Vn converges to 0 in

probability. Combining this with the a.s. convergence to 0 for n1/4Rn, we indeed get a convergence
in probability:

(24) lim
n→∞

n1/4

(
E∞[Θ|Fn] − 1

Ln

∫

T∗
n

θ(s) ℓ(ds)

)
= 0.

To get the announced result, we still have to prove that

(25) lim
n→∞

n1/4

(
1

Ln
− 1√

2n

)∫

T∗
n

θ(s) ℓ(ds) = 0.

This is not difficult: simply write

n1/4

(
1

Ln
− 1√

2n

)∫

T∗
n

θ(s)ℓ(ds) = n1/4

(
1 − Ln√

2n

)(
1

Ln

∫

T∗
n

θ(s)ℓ(ds)

)
.

Now, recall that 1/Ln

∫
T∗

n
θ(s)ℓ(ds) converges to Θ P∞-a.s., hence in probability. Furthermore, we

can compute

n1/2
E∞

[(
1 − Ln√

2n

)2
]

= n1/2
E∞

(
1 +

L2
n

2n
− 2

Ln√
2n

)
,
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Using the density (7) of Ln, we easily get that

E∞[Ln] =
√

2
Γ(n + 1/2)

Γ(n)
; E∞

[
L2

n

]
= 2n.

Therefore, after computations, we get n1/2
E∞[(1−Ln/

√
2n)2] ∼ 1/(8

√
n), so that in the end, n1/4(1−

Ln/
√

2n) converges to 0 in L2. This implies convergence in probability, hence the convergence of
(25). �

1.3. Rate of convergence in the Martingale Convergence Theorem. Before we can move on
to Proposition 4, we are going to state a lemma that will be needed in the proof.

Lemma 6. If 1 < α < 2, then, the sequence
∫

T∗
n

θ(s)αℓ(ds)/Ln is bounded in L1(P∞).

Proof. The main idea is that the measure ℓ(ds)/Ln converges a.s. to the mass measure m(ds), in the
sense of weak convergence of probability measures on T . Since the function θ is neither continuous
nor bounded on T , we cannot use this fact directly, but it will be the inspiration for the proof. We
will compute the first moment of Zn =

∫
T∗

n
θ(s)αℓ(ds)/L∗

n, using the notation L∗
n = ℓ(T∗

n). Since θ(s)

is, conditionally on T , exponentially distributed with parameter ℓ(J∅, sK), we get

E∞[Zn] = E∞

[∫

T∗
n

ℓ(J∅, sK)−α ℓ(ds)

L∗
n

]

= E∞

[∫

T

(d(∅, s) − d(s, T
∗
n))−α1T \En

(s) m(ds)

]
,

where d(s, T
∗
n) is the distance from the leaf s to the closed subtree T

∗
n of T . The last equality comes

from the fact that if s is a leaf of T selected uniformly (according to m(ds)) among all leaves of
T \ En, then its projection π(s, Tn) on Tn is uniformly distributed (according to length measure) on
T

∗
n. We will rewrite the last expression so as to make the leaves ∅, x1, . . . , xn apparent. The set T \En

can be written as

(26) T \ En = {s ∈ T , J∅, π(∅, T
∗
n)K ∩ Js, π(s, T

∗
n)K = ∅},

since π(∅, T
∗
n) = s∅,n. Note that T

∗
n is actually the subtree spanned by the n leaves x1, . . . , xn and

that its definition does not depend on ∅ or on s.
We then apply the fundamental re-rooting invariance of the Brownian CRT, which implies, in this

context, that when re-rooting T at s, the re-rooted tree T s is distributed as a CRT, and the sequence
(∅, x1, . . . , xn) is distributed as a sample of n + 1 uniform leaves in T s. Thus,

E∞[Zn] = E∞

[∫

T

(d(∅, s) − d(s, T
∗
n))−α1{J∅,π(∅,T∗

n)K∩Js,π(s,T∗
n)K=∅}(s) m(ds)

]

= E∞

[∫

T

(d(∅, s) − h∅,n)−α1{J∅,π(∅,T∗
n)K∩Js,π(s,T∗

n)K=∅}(s) m(ds)

]
,

since in the re-rooting, d(s, T
∗
n) becomes d(∅, T

∗
n) = h∅,n. Therefore, we get, using (26) again,

E∞[Zn] = E∞

[∫

T

(d(∅, s) − h∅,n)−α1T \En
(s) m(ds)

]

= E∞

[∫

T
(1)

n ∪T
(2)

n

d(s∅,n, s)−αm(ds)

]
,

where T
(1)

n and T
(2)

n are the connected components of T \ (En ∪ {s∅,n}), joined together by their
common root s∅,n. We can now use the self-similarity property of the fragmentation at heights of the

Brownian CRT (see [7]) which shows that, conditionally on σ
(1)
n = m(T

(1)
n ) and σ

(2)
n = m(T

(2)
n ), the
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trees T
(1)

n and T
(2)

n are rescaled copies of the Brownian CRT. Thus,

E∞[Zn] = E∞

[∫

T
(1)

n

d(s∅,n, s)−αm(ds)

]
+ E∞

[∫

T
(2)

n

d(s∅,n, s)−αm(ds)

]

= E∞



∫

T
(1)

n

(σ(1)
n )−α/2

(
d(s∅,n, s)

(σ
(1)
n )1/2

)−α

σ(1)
n

m(ds)

σ
(1)
n




+ E∞



∫

T
(2)

n

(σ(2)
n )−α/2

(
d(s∅,n, s)

(σ
(2)
n )1/2

)−α

σ(2)
n

m(ds)

σ
(2)
n




= E∞

[(
(σ(1)

n )1−α/2 + (σ(2)
n )1−α/2

)∫

T

d(∅, s)−αm(ds)

]
,

using the scaling invariance of the Brownian CRT. Then, as 0 < 1 − α/2, we can simply dominate

(σ
(1)
n )1−α/2 and (σ

(1)
n )1−α/2 by 1 to get that

E∞[Zn] ≤ 2 · E∞

[∫

T

d(∅, s)−αm(ds)

]
.

Now, since d(∅, s) is Rayleigh-distributed under E∞, we easily see that it has moments of order −α
for any α < 2, which shows that E∞[Zn] is indeed bounded, ending our proof. �

We can now turn to the proof of Proposition 4.

Proof of Proposition 4. Let Mn = E∞[Θ|Fn]. We will use the fact that

(27) n1/4 (Θ − E∞[Θ|Fn]) = n1/4
∞∑

k=n+1

E∞[Mk − Mk−1|Fk−1].

Let ε > 0 be small enough, and consider the events

E1
k = {Lk ≥ k1/2−ε} ; E2

k = {k−2 ≤ h∅,k ≤ 1/2}, k ≥ 1.

Recalling that L2
k is distributed as the sum of k independent exponential random variables with

parameter 1, a simple application of Chernoff’s inequality shows that

(28) P∞
(
E1

k

)
≥ 1 − k−εk.

For E2
k, we can use the moment estimation (9) for h∅,k to find that, for any 0 ≤ α ≤ 1, and for any

β > 0,

1 − P∞
(
E2

k

)
= P∞

(
{h∅,k > 1/2} ∪ {h∅,k < k−2}

)

≤ P∞(h∅,k > 1/2) + P∞
(

h−1
∅,k ≥ k2

)

≤ 2β
E∞

[
hβ

∅,k

]
+ k−2α

E∞
[
h−α

∅,k

]

∼ C · k−β/2 + C′ · k−2αkα/2.

Hence, by taking α = 1 − η (and β > 3α), we get, for sufficiently large k,

(29) P∞
(
E2

k

)
≥ 1 − k−3/2+3/2η.

Thus, combining equations (28) and (29), we get that
∑

k≥1

P∞
((

E1
k

)c ∪
(
E2

k

)c
)

≤
∑

k≥1

P∞
(
(E1

k)c
)

+ P∞
(
(E2

k)c
)

< ∞.

Thus, by the Borel-Cantelli lemma, there a.s. exists k0 ≥ 1 such that for k ≥ k0, Lk ≥ k1/2−ε

and k−2 ≤ h∅,k ≤ 1/2. We will use this truncating events in the following way: since the event
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Ek = E1
k ∩ E2

k is Fk-measurable, the usual martingale computations show that

E∞



(

n1/4
∞∑

k=n

(Mk − Mk−1)1Ek−1

)2

 = n1/2

∞∑

k=n

E∞[(Mk − Mk−1)21Ek−1
].

We will now give precise estimations of E∞[(Mk −Mk−1)2|Fk−1] using the disintegration formula from
Lemma 5. By definition, for all k ≥ 1, we can write

Θ =

∫

T

θ(s) m(ds) =
∑

i∈Ik

Θ
(k)
i .

Then,

Mk = E∞[Θ|Fk]

= E∞

[ ∑

i∈Ik−1

Θ
(k−1)
i

∣∣∣Fk

]

= E∞[Θik
|Fk] + E∞

[ ∑

i∈Ik−1\{ik}
Θi

∣∣∣Fk

]
,

where ik is the unique index in Ik−1 such that xk ∈ Tik
. We then define:

Gk = E∞
[
Θ

(k−1)
ik

|Fk

]

Hk = E∞

[ ∑

i∈Ik−1\{ik}
Θ

(k−1)
i

∣∣∣Fk

]
− E∞

[ ∑

i∈Ik−1

Θ
(k−1)
i

∣∣∣Fk−1

]
,

so that we have Mk − Mk−1 = Gk + Hk and

E∞
[
(Mk − Mk−1)2|Fk−1

]
≤ 2E∞

[
G2

k|Fk−1

]
+ 2E∞

[
H2

k |Fk−1

]
.

As far as Gk is concerned, conditionally on Fk, Θ
(k−1)
ik

can be written as
∑

i∈Ik
Θ

(k)
i 1{si∈Bk}, so that

we can use the disintegration formula of Lemma 5 to get:

Gk =
1√
2π

∫ 1

0

e−L2
kv/(2−2v)

v3/2(1 − v)3/2
dv

∫

Bk

E
(v)
θ(s)[Θ] ℓ(ds).

Hence, using this expression, we can now compute:

E∞[G2
k|Fk−1] = E∞



(

1√
2π

∫ 1

0

e−L2
kv/(2−2v)

v3/2(1 − v)3/2
dv

∫

Bk

E
(v)
θ(s)[Θ] ℓ(ds)

)2 ∣∣∣Fk−1




≤ E∞



(

1√
2π

∫ 1

0

e−L2
kv/(2−2v)

v1/2(1 − v)3/2
dv

∫

Bk

ℓ(ds)θ(s)

)2 ∣∣∣Fk−1


 ,

since E
(v)
θ(s)[Θ] ≤ vθ(s) (Lemma 12). Now, the measure

Ln e−L2
nv/(2−2v)

√
2πv1/2(1 − v)3/2

dv

is a probability density on [0,1] (cf. (19)), so that we get, using the fact that Lk−1 < Lk,

E∞
[
G2

k|Fk−1

]
≤ E∞

[(
1

Lk

∫

Bk

ℓ(ds)θ(s)

)2 ∣∣∣Fk−1

]

≤ 1

L2
k−1

E∞

[(∫

Bk

ℓ(ds)θ(s)

)2 ∣∣∣Fk−1

]
.
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Now, conditionally on Fk−1, the record process on Bk has the distribution of an independent record
process on R+, started from θ(sk), stopped at time ℓ(Bk). Furthermore, it is a consequence from the
stickbreaking construction of Aldous (see [3]) that, conditionally on Fk−1, the random variables sk

and ℓ(Bk) are independent. Furthermore, sk is distributed uniformly on Tk−1, and ℓ(Bk) can be
expressed as the length of the interval between the (k − 1)th and the kth jump of a Poisson process
with intensity t1[0,∞)(t)dt. Therefore, conditionally on Fk−1, ℓ(Bk) has density

(30) rLk−1
(dx) = (Lk−1 + x) e−x2/2−Lk−1x dx.

Thus, using the notation F (q, t) = Eq[(
∫ t

0
θ(s)ds)2] for 0 < q < ∞ and t ≥ 0, we get

E∞
[
G2

k|Fk−1

]
≤ 1

L2
k−1

∫

Tk−1

ℓ(ds)

Lk−1

∫ ∞

0

rLk−1
(dx)F (θ(s), x).

We will cut the integral in two parts, according to Tk−1 = T
∗
k−1 ∪ (Tk−1 \ T

∗
k−1). We then use Lemma

10 to dominate F (θ(s), x): inequality (47) for s ∈ T
∗
k−1 and (48) for s ∈ Tk−1 \ T

∗
k−1. This leads to:

E∞
[
G2

k|Fk−1

]
≤ 1

L2
k−1

∫

T
∗
k−1

ℓ(ds)

Lk−1

∫ ∞

0

rLk−1
(dx)

(
C1θ(s)3/2x3/2 + C2θ(s)x2

)

+
1

L2
k−1

∫

Tk−1\T∗
k−1

ℓ(ds)

Lk−1

∫ ∞

0

rLk−1
(dx)

(
C3θ(s)1/2x1/2 + C4θ(s)−1/2x1/2

)

=
C1

L2
k−1

(∫ ∞

0

rLk−1
(dx)x3/2

)(∫

T∗
k−1

ℓ(ds)

Lk−1
θ(s)3/2

)

+
C2

L2
k−1

(∫ ∞

0

rLk−1
(dx)x2

)(∫

T∗
k−1

ℓ(ds)

Lk−1
θ(s)

)

+
C3

L3
k−1

(∫ ∞

0

rLk−1
(dx)x1/2

)(∫

Tk−1\T∗
k−1

ℓ(ds)θ(s)1/2

)

+
C4

L3
k−1

(∫ ∞

0

rLk−1
(dx)x1/2

)(∫

Tk−1\T∗
k−1

ℓ(ds)θ(s)−1/2

)
.

We can then compute, using Lemma 11 for the asymptotic moments of rLk−1
(dx):

E∞
[
G2

k1Ek−1

]
= E∞

[
E∞

[
G2

k|Fk−1

]
1Ek−1

]

≤ E∞

[∫

T∗
k−1

ℓ(ds)

Lk−1
θ(s)3/2

]
· O(k−7/4+7/2ε)(31)

+ E∞

[(∫

T∗
k−1

ℓ(ds)

Lk−1
θ(s)

)
1Ek−1

]
· O(k−2+4ε)(32)

+ E∞

[(∫

Tk−1\T∗
k−1

ℓ(ds)θ(s)1/2

)]
· O(k−7/4+7/2ε)(33)

+ E∞

[(∫

Tk−1\T∗
k−1

ℓ(ds)θ(s)−1/2

)]
· O(k−7/4+7/2ε).(34)

Using Lemma 6, we see that (31) is indeed of the order k−7/4+7/2ε. As far as (32) is concerned, we
will show the following lemma, which will be useful later on, and which implies in particular that (32)
is of the order k−2+4ε.

Lemma 7. E∞

[(∫
T∗

k−1
θ(s)ℓ(ds)/Lk−1

)2

1Ek−1

]
is bounded as k → ∞.
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Proof of Lemma 7. Recall (20):

(35) − Rk−1 ≤ E∞[Θ|Fk−1] − 1

Lk−1

∫

T∗
k−1

θ(s) ℓ(ds) ≤ Vk−1.

Therefore, we can write

E∞



(∫

T∗
k−1

ℓ(ds)

Lk−1
θ(s) − E∞[Θ|Fk−1]

)2

1Ek−1


 ≤ E∞

[
(Rk−1 ∨ Vk−1)21Ek−1

]

≤ E∞
[
R2

k−11Ek−1

]
+ E∞

[
V 2

k−11Ek−1

]
.

Using (23), we can see that, since Ek−1 ∈ σ({Tn}),

E∞
[
V 2

k−11Ek−1

]
≤ E∞

[(
C · h∅,k−1 +

√
π√

2Lk−1

)2

1Ek−1

]
≤ E∞

[
(C · h∅,k−1 +

√
π/2/Lk−1)2

]
.

Hence, as h∅,k−1 and L−1
k−1 are integrable and decrease to 0 a.s., E∞[V 2

k−11Ek−1
] converges to 0 by

monotone convergence. As for E∞[R2
k−11Ek−1

], we use the fact that, conditionally on Tk−1, θ(h∅,k−1)
is exponentially distributed with parameter h∅,k−1 to find

E∞
[
R2

k−11Ek−1

]
= E∞

[
1

16
e−L2

k−1/2 h−4
∅,k−11Ek−1

]

≤ 1

16
k8
E∞

[
e−L2

k−1/2
]

,

which easily converges to 0 as k → ∞. Hence, since E∞[Θ|Fk−1] converges in L2 to Θ, it is of course L2-
bounded, so that E∞[(

∫
T∗

k−1

θ(s)ℓ(ds)/Lk−1)21Ek−1
] is indeed bounded as k → ∞, as announced. �

In the two remaining terms (33) and (34), the integral is taken on a single branch; therefore, we
can use the linear case to get

E∞

[(∫

Tk−1\T∗
k−1

ℓ(ds)θ(s)1/2

)
1Ek−1

]
= E∞

[
E∞

[∫ h∅,k−1

0

θ(s)1/2ds

]
1Ek−1

]

= C · E∞[h
1/2
∅,k−11Ek−1

],

which easily converges to 0 as k → ∞. A similar argument shows that (34) converges to 0 as

E∞[h
3/2
∅,k−11Ek−1

]. Putting everything together, we find that E∞[G2
k1Ek−1

] is of the order k−7/4+7/2ε

as k → ∞, so that the remainder
∑∞

k=n E∞[G2
k1Ek−1

] is of the order n−3/4+7/2ε.
Turning to Hk, we note that Ik−1 \ {ik} = {i ∈ Ik, si /∈ Bk}, so that, using Lemma 5, we get:

Hk =E∞

[∑

i∈Ik

Θ
(k)
i 1{si /∈Bk}

∣∣∣∣∣Fk

]
− E∞

[ ∑

i∈Ik−1

Θ
(k−1)
i

∣∣∣∣∣Fk−1

]

=

∫ 1

0

e−L2
kv/(2−2v)

√
2πv3/2(1 − v)3/2

dv

∫

Tk

ℓ(ds)E
(v)
θ(s)[Θ]1{s/∈Bk}

−
∫ 1

0

e−L2
k−1v/(2−2v)

√
2πv3/2(1 − v)3/2

dv

∫

Tk−1

ℓ(ds)E
(v)
θ(s)[Θ],

thus, considering that Tk = Tk−1 ∪ (Bk \ {sk}), and that of course ℓ({sk}) = 0,

Hk =

∫ 1

0

dv√
2πv3/2(1 − v)3/2

∫

Tk−1

ℓ(ds)E
(v)
θ(s)[Θ]

(
e−L2

kv/(2−2v) − e−L2
k−1v/(2−2v)

)
.
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We then use the inequality | e−at − e−as | ≤ a e−at(s − t), valid for any a > 0, and t ≤ s, to find:

(36) E∞
[
H2

k |Fk−1

]
≤
(

1√
2π

∫ 1

0

e−L2
k−1v/(2−2v)

v3/2(1 − v)3/2

v

2 − 2v
dv

∫

Tk−1

E
(v)
θ(s)[Θ] ℓ(ds)

)2

× E∞
[
(L2

k − L2
k−1)2|Fk−1

]
.

On the one hand, we will use the change of variables

u = L2
k−1v/(2 − 2v) ⇔ v = u/(L2

k−1/2 + u).

in the integral, which gives:

(37)

(
1√
2π

∫ ∞

0

e−u

(L2
k−1/2)1/2

L2
k−1/2 + u√

u
du

∫

Tk−1

ℓ(ds)

L2
k−1

E
(u/(L2

k−1/2+u))

θ(s) [Θ]

)2

.

We then cut the integral in two parts, according to Tk−1 = T
∗
k−1 ∪ (Tk−1 \ T

∗
k−1), and we use the

simple domination E
(v)
θ(s)[Θ] ≤ vθ(s) on T

∗
k−1, and the domination E

(v)
θ(s)[Θ] ≤ E

(v)
∞ [Θ] =

√
πv/2 on

Tk−1 \ T
∗
k−1 to get

(37) ≤
(

1√
π

∫ ∞

0

du

L3
k−1

L2
k−1/2 + u√

u
e−u

∫

T∗
k−1

ℓ(ds)θ(s)
u

L2
k−1/2 + u

+

∫ ∞

0

du

L3
k−1

L2
k−1/2 + u√

2u
e−u h∅,k−1

√
u√

L2
k−1/2 + u




2

.

The integrals can be computed, giving

(37) ≤
(

1

2
√

πL2
k−1

∫ ∞

0

√
u e−u

∫

T∗
k−1

ℓ(ds)

Lk−1
θ(s) +

∫ ∞

0

du√
2L2

k−1

√
1/2 + u/L2

k−1 e−u h∅,k−1

)2

.

On the other hand, the term E∞[(L2
k−L2

k−1)2|Fk−1] appearing in the domination (36) can be expanded
into

E∞
[
ℓ(Bk)4|Fk−1

]
+ 4L2

k−1E∞
[
ℓ(Bk)2|Fk−1

]
+ 4Lk−1E∞

[
ℓ(Bk)3|Fk−1

]

Then, recall the density (30) of ℓ(Bk) conditionally on Fk−1. In the proof of Lemma 11, we show that
for any λ > 0, we have a.s.

E∞
[
ℓ (Bk)

λ |Fk−1

]
=

∫
rLk−1

(dx)xλ ≤ C1 · L−λ
k−1 + C2 · L−λ−2

k−1

with C1 and C2 deterministic constants. Thus, E∞[(L2
k − L2

k−1)2|Fk−1] is a.s. bounded by F (Lk−1),
where F is a nonincreasing bounded nonnegative function. In the end, we get

E∞
[
H2

k1Ek−1

]
≤ E∞

[(
C

L2
k−1

∫

T∗
k−1

θ(s)
ℓ(ds)

Lk−1

+

∫ ∞

0

e−u du

2L2
k−1

√
1/2 + u/L2

k−1h∅,k

)2

F (Lk−1)1Ek−1

]

≤ F (k2−4ε)

(
C · k−2+4ε

E∞



(∫

T∗
k−1

θ(s)
ℓ(ds)

Lk−1

)2



+C′ · k−2+4ε

(∫ ∞

0

e−u
√

1/2 + u/k1−2ε

)2

E∞[h2
∅,k]

)
.
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Hence, using the fact that
∫

T∗
k−1

θ(s)ℓ(ds)/Lk−1 is bounded in L2 (which is precisely Lemma 7), we

find that E∞[H2
k1Ek−1

] = O(k−2+4ε). Putting this together with the estimate on E∞[G2
k1Ek−1

], we

get that E∞[(Mk − Mk−1)21Ek−1
] = O(k−7/4+7/2ε). If ε < 1/14,

E∞[(Mk − Mk−1)21Ek−1
] = O(k−7/4+7/2ε) = o(k−3/2).

Hence, we get

lim
n→∞

n1/2
∞∑

k=n

E∞
[
(Mk − Mk−1)21Ek−1

]
= 0.

This shows that the random sequence n1/4
∑∞

k=n(Mk − Mk−1)1Ek−1
converges to 0 in L2, hence in

probability. But, since there a.s. exists k0 ≥ 1 such that 1Ek
= 1 for all k ≥ k0, the sequence

n1/4
∑∞

k=n(Mk − Mk−1) also converges to 0 in probability, which is what we wanted to prove. �

2. Proof of the main theorem

We can now turn to the proof of the actual convergence towards a nontrivial limit, in the asymptotic
n1/4. The main idea is to apply the Martingale Central Limit Theorem (Corollary 3.1 in [14]) to

M∗
n = X∗

n −
∫

T∗
n

θ(s) ℓ(ds).

We recall this theorem below for convenience:

Theorem (Hall, Heyde [14]). Let (Mn, n ≥ 1) be a zero-mean square-integrable (Gn)-martingale, and
let η2 be an a.s. finite random variable. Suppose that, for some sequence an increasing to +∞, we
have

(1) (Asymptotic smallness) For all ε > 0, we have the convergence in probability

lim
n→∞

a−2
n

n∑

k=1

E
[
(Mk − Mk−1)21{|Mk−Mk−1|>εak}

∣∣Gk−1

]
= 0

(2) (Convergence of the conditional variance) We have the convergence in probability

lim
n→∞

a−2
n

n∑

k=1

E
[
(Mk − Mk−1)2|Gk−1

]
= η2.

Then, the sequence (a−1
n Mn, n ≥ 1) converges in distribution to a random variable Z with character-

istic function E[exp(−η2t2/2)].

However, M∗
n is not a martingale in the filtration (Fn, n ≥ 1), because the (n + 1)st branch Bn+1

might be connected to Tn through a vertex on J∅, s∅,nK. In that case, M∗
n+1 − M∗

n has a nonnegative
Fn-measurable part, corresponding to the atoms on Js∅,n+1, s∅,nK. For this reason, we will consider

M̂n =
∑

s∈Tn\T1

1{θ(s−)>θ(s)} −
∫

Tn\T1

θ(s) ℓ(ds), n ≥ 2

and M̂1 = 0. The process (M̂n, n ≥ 1) is a (Fn)-martingale. It is actually more convenient to introduce
the filtration (Gn, n ≥ 1), defined by:

Gn = σ({(Tm, m ≥ 1), (θ(s), s ∈ Tn)}),

Notice that the branching point sn+1 = Bn+1 ∩ Tn, as well as ℓ(Bn+1) and θ(sn+1) are all Gn-

measurable. In this filtration, M̂ is also a martingale. Indeed, it is obvious that M̂ is G-adapted.
Furthermore, we have

M̂n+1 − M̂n =
∑

s∈Bn+1

1{θ(s−)>θ(s)} −
∫

Bn+1

θ(s) ℓ(ds),

which is, conditionally on Gn, distributed as Nℓ(Bn+1), where N is the martingale from (4) for a linear

record process started at θ(sn+1) . Thus, E∞[M̂n+1 − M̂n|Gn] = 0.
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2.1. Convergence of the asymptotic variance. In order to get a convergence in distribution of

n−1/4M̂n, we first need to compute the asymptotic variance of the martingale. This is done in the
following proposition.

Proposition 8. We have:

(38) lim
n→∞

1√
n

n∑

k=2

E∞

[(
M̂k − M̂k−1

)2 ∣∣∣Gk−1

]
=

√
2Θ,

in probability.

Proof. Using the martingale from (5), in the present case of a linear record process started at θ(sk),
we easily get that, for k ≥ 2,

(39) E∞

[(
M̂k − M̂k−1

)2 ∣∣∣Gk−1

]
= E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]
.

A Law of Large Numbers argument will show that we have

(40) lim
n→∞

1√
n

n∑

k=2

E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]
= lim

n→∞
1√
n

∫

T∗
n\Js∅,n,x1K

θ(s) ℓ(ds).

We postpone the proof of this equality to the end of this section. Now, recall Proposition 6.3 in [1],
which shows that a.s.

lim
n→∞

1√
n

∫

T∗
n

θ(s) ℓ(ds) =
√

2Θ.

Since Tn \ B1 = T
∗
n \ Js∅,n, x1K, the convergence (38) will follow if we manage to prove that

Sn =
1√
n

∫

Js∅,n,x1K

θ(s) ℓ(ds)

converges in probability to 0. We will simply compute the first moment:

√
nE∞[Sn] = E∞

[∫

Js∅,n,x1K

θ(s) ℓ(ds)

]
= E∞

[∫ L1

h∅,n

θ(s) ds

]

= E∞

[∫ L1−h∅,n

0

Eθ(s∅,n)[θ(s)] ds

]
,

by the Markov property of θ at h∅,n. We can compute this expectation using (3):

= E∞

[∫ L1−h∅,n

0

1 − e−sθ(s∅,n)

s
ds

]

≤ E∞

[∫ L1

0

1

s
(sθ(s∅,n))1/4 ds

]
= 4E∞

[
θ(s∅,n)1/4L

1/4
1

]
,

by the elementary inequality 1−exp(−t) ≤ t1/4. The Cauchy-Schwarz inequality then gives the bound

(41)
√

nE∞[Sn] ≤ C · E∞
[
θ(s∅,n)1/2

]1/2

.

As θ(s∅,n) is, conditionally on T , exponentially distributed with parameter h∅,n, we get

E∞[Sn] ≤ C · n−1/2
E∞[h

−1/2
∅,n ]1/2,

which converges to 0 as n → ∞ by (9), which shows (38).
We still have to show (40) to end the proof. The process

(42)

(
Qn =

n∑

k=2

∫

Bk

θ(s)ℓ(ds) − E∞

[∫

Bk

θ(s)ℓ(ds)

∣∣∣∣Gk−1

]
, n ≥ 1

)
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is a G-martingale. We will write

(43) 〈Q〉n =

n∑

k=1

E∞

[(∫

Bk

θ(s) ℓ(ds)

)2
∣∣∣∣∣Gk−1

]
− E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]2

for its quadratic variation process. Conditionally on Gk−1, the process (θ(s), s ∈ Bk) is distributed
as a linear record process started from θ(sk). Hence, using (9) and (3), we get:

(44) E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]
= Eθ(sk)

[∫ ℓ(Bk)

0

θ(s) ds

]
=

∫ θ(sk)ℓ(Bk)

0

1 − e−u

u
du.

Similarly, we have:

E∞

[(∫

Bk

θ(s) ℓ(ds)

)2
∣∣∣∣∣Gk−1

]
= Eθ(sk)



(∫ ℓ(Bk)

0

θ(s) ds

)2



= 2 · Eθ(sk)

[∫ ℓ(Bk)

0

du

∫ u

0

dv θ(u)θ(v)

]
.

The latter can be computed by applying the Markov property at u, as well as (3), giving

(45) E∞

[(∫

Bk

θ(s) ℓ(ds)

)2
∣∣∣∣∣Gk−1

]
=

1

θ(sk)

∫ θ(sk)ℓ(Bk)

0

1 − e−s

s
− e−s ds

+ 2

∫ θ(sk)ℓ(Bk)

0

ds

∫ s

0

dt
1

s − t

(
1 − e−t

t
− 1 − e−s

s

)
.

Now, putting (44) and (45) together, compensations occur, so that we get, after tedious computations:

〈Q〉n =

n∑

k=1

E∞

[(∫

Bk

θ(s) ℓ(ds)

)2
∣∣∣∣∣Gk−1

]
− E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]2

=

n∑

k=1

2

θ(sk)

∫ θ(sk)ℓ(Bk)

0

1 − e−s

s
− e−s ds

+2

∫ θ(sk)ℓ(Bk)

0

ds

∫ s

0

dt
s e−s −t e−t −(s − t) e−(s+t)

st(s − t)
.

The term s e−s −t e−t −(s − t) e−(s+t) being negative for t < s, we get

0 ≤ 〈Q〉n ≤
n∑

k=1

2

θ(sk)

∫ θ(sk)ℓ(Bk)

0

1 − e−s

s
− e−s ds

≤
n∑

k=1

2

θ(sk)
θ(sk)ℓ(Bk) = 2

n∑

k=1

ℓ(Bk),

the second inequality coming from (1 − e−s)/s − e−s ≤ 1 if s > 0. Then, recall that by definition,∑n
k=1 ℓ(Bk) ≤ Ln, and that Ln is the square root of a Gamma(n, 1)-distributed variable (Proposition

5.2 in [1]). Thus, for any γ > 1/2, we have

(46)
1

nγ
E∞[〈Q〉n] ≤ 2

nγ
E∞[Ln] → 0

Then, by the conditional Law of Large Numbers (Theorem 1.3.17 in [11]), we get that n−1/4−εQn

converges a.s. to 0 for any ε > 0, which implies (40), hence ends the proof. �
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2.2. Asymptotic smallness. We now turn to the proof of the asymptotic smallness of the sequence

(M̂n, n ≥ 1). In order to prove this, we will use a Liapounov-type criterion, which is sufficient to
prove asymptotic negligibility.

Proposition 9. We have the following convergence in probability:

lim
n→∞

1√
n

n∑

k=1

E∞
[
(M̂k − M̂k−1)21{|M̂k−M̂k−1|>εn1/4}

∣∣∣Gk−1

]
= 0.

Proof. We use the standard inequality 1{|M̂k−M̂k−1|>εn1/4} ≤ (M̂k − M̂k−1)2/ε2
√

n to get that, for

ε > 0:

1√
n

n∑

k=1

E∞

[(
M̂k − M̂k−1

)2

1{|M̂k−M̂k−1|>εn1/4}

∣∣∣Gk−1

]
≤ 1

ε2n

n∑

k=1

E∞

[(
M̂k − M̂k−1

)4
∣∣∣∣∣Gk−1

]
.

Using the martingale from (6), we find that:

1

ε2n

n∑

k=2

E∞

[(
M̂k − M̂k−1

)4
∣∣∣∣∣Gk−1

]
=

3

ε2n

n∑

k=2

E∞

[(∫

Bk

θ(s) ℓ(ds)

)2
∣∣∣∣∣Gk−1

]

+
1

ε2n

n∑

k=2

E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]
.

In this expression, the term n−1
∑n

k=2 E[
∫

Bk
θ(s)ℓ(ds)|Gk−1 ] converges in probability to 0, according

to (39) and Proposition 8. Furthermore, recall from (43) that

3

ε2n

n∑

k=1

E∞

[(∫

Bk

θ(s) ℓ(ds)

)2
∣∣∣∣∣Gk−1

]
=

3〈Q〉n

ε2n
+

3

ε2n

n∑

k=1

E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]2

,

where Q is the martingale defined in (42). The quadratic variation process 〈Q〉n/n converges in
probability to 0 by (46). Also, applying Lemma 13 to ak = E∞[

∫
Bk

θ(s)ℓ(ds)|Gk−1 ], we find that

1

n

n∑

k=1

E∞

[∫

Bk

θ(s) ℓ(ds)
∣∣∣Gk−1

]2

= 0,

which ends the proof. �

Putting all the previous elements together, we can now prove Theorem 1.

Proof of Theorem 1. First, we write that

n1/4

(
X∗

n√
2n

− Θ

)
=

M̂n√
2n1/4

+
M∗

n − M̂n√
2n1/4

+ n1/4

(
1√
2n

∫

T∗
n

θ(s) ℓ(ds) − Θ

)
.

The convergence in distribution of n−1/4M̂n towards a non-degenerate limit Z is a consequence of the
Martingale Central Limit Theorem recalled at the beginning of this section with an = n1/4, as well as
the two Propositions 8 and 9. Furthermore, the limiting random variable Z is indeed distributed as
announced:

E∞
[
eitZ

]
= E∞

[
e−t2

√
2Θ/2

]
.

The term en = M∗
n − M̂n can be expressed as

en = M∗
n − M̂n =

∑

s∈Js∅,n,x1K

1{θ(s−)>θ(s)} −
∫

Js∅,n,x1K

θ(s) ℓ(ds).

Using the martingale (5) to compute its second moment, we get

E∞
[
e2

n

]
= E∞

[∫

Js∅,n,x1K

θ(s) ℓ(ds)

]
,



20 PATRICK HOSCHEIT

so that n−1/4(M∗
n −M̂n) converges to 0 in L2, hence in distribution as n → ∞, by the previously used

bound (41). Finally, Proposition 3 and Proposition 4 show that the term ((2n)−1/2
∫

T∗
n

θ(s) ℓ(ds)−Θ)

brings no contribution in the asymptotic n1/4. This ends the proof. �

Remark 2. Note that, under our assumptions, since Θ > 0, P∞-a.s., we can actually prove that the

convergence in distribution of n−1/4M̂n is mixing (see [5] for more details on mixing limit theorems).
This implies in particular that we can obtain a standard normal limit by renormalizing by the random
factor Vn, where V 2

n is the conditional variance

V 2
n =

n∑

k=1

E∞

[(
M̂k − M̂k−1

)2 ∣∣∣Gk−1

]
,

instead of the deterministic renormalization n1/4. Corollary 3.2 in [14] then shows that V −1
n M̂n

converges in distribution to a standard N (0, 1) random variable.

Technical appendix

In this appendix, we will state and prove several lemmas that are used throughout the paper. They
are purely analytic in nature, and their proof is elementary, so we gather them here, for the reader’s

convenience. First, we prove some universal bounds on F (q, t) = Eq[(
∫ t

0
θ(s)ds)2].

Lemma 10. There exists C1, C2, C3, C4 > 0 such that

F (q, t) ≤ C1(qt)3/2 + C2qt2(47)

F (q, t) ≤ C3 log2(qt) + C4q−1/2t1/2(48)

Proof. First, we recall that, according to (45),

F (q, t) = Eq

[(∫ t

0

θ(s) ds
)2
]

=
1

q

∫ qt

0

1 − e−s

s
− e−s ds +

∫ qt

0

ds

∫ s

0

dt
1

s − t

(
1 − e−t

t
− 1 − e−s

s

)

:= F̃ (q, t) + G(ql).

The two estimates (47) and (48) will come from an asymptotic analysis of

F̃ (q, t) =
1

q

∫ qt

0

1 − e−s

s
− e−s ds

and

G(qt) =

∫ qt

0

ds

∫ s

0

dt
1

s − t

(
1 − e−t

t
− 1 − e−s

s

)
.

Let us start with F̃ . We have

F̃ (q, t) =
1

q

∫ qt

0

1 − e−s

s
− e−s ds

=
1

q

(
γ + log(qt) +

∫ ∞

qt

e−t

t
dt + e−qt −1

)
.

It is elementary to check that the function γ + log(x) +
∫∞

x
e−t

t dt + e−x −1 is equivalent to x2/4 when

x → 0, and equivalent to log(x) = o(
√

x) when x → ∞. Since
√

x = o(x2) in the neighbourhood of
+∞ and x2 = o(

√
x) in the neighbourhood of 0, by continuity, we can find constants C2 and C4 such

that F̃ (q, t) ≤ C2(qt)2/q and such that F̃ (qt) ≤ C4(qt)1/2/q.
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Turning to the function G, we can write

G(x) =

∫ x

0

ds

∫ s

0

dt
1

s − t

(
1 − e−t

t
− 1 − e−s

s

)

=

∫ 1

0

du

∫ u

0

dv
1

u − v

(
1 − e−xv

v
− 1 − e−xu

u

)
,

so that

G′(x) =

∫ 1

0

du

∫ u

0

dv
1

u − v
(e−xv − e−xu),

and that

G′′(x) =

∫ 1

0

du

∫ u

0

dv
1

u − v
(u e−xu −v e−xv).

Thus, we have G(0) = G′(0) = 0 and G′′(0) = 1. Since G is smooth, we get that G(x) ∼ x2/2 when
x → 0.

As far as the asymptotic x → ∞ is concerned, we can express G′(x) in terms of the exponential
integral1 function Ei(x) =

∫ x

−∞ exp(t)/t dt:

G′(x) =

∫ 1

0

du

∫ u

0

dv

u − v
(e−xv − e−xu)

=

∫ 1

0

du e−xu

∫ xu

0

dv

v
(ev −1)

=

∫ 1

0

du e−xu(Ei(xu) − log(xu) − γ).

When x → ∞, we get

G′(x) ∼
∫ 1

0

du e−xu Ei(xu) =
1

x

∫ x

0

du e−t Ei(t)

∼ log x

x
.

Integrating from 0 to x, we get G(x) ∼ log2 x = o(
√

x) when x → ∞. Again,
√

(x) = o(x2) in the
neighbourhood of +∞ and x2 = o(

√
x) in the neighbourhood of 0, so that by continuity, there exist

two constants C1 and C2 such that G(x) ≤ C1x2 and such that G(x) ≤ C2x1/2. Thus, we get the two
dominations (47) and (48). �

We now turn to a useful estimation of the moments of the distribution ra(dx) introduced in (30):

ra(dx) = (a + x) e−x2/2−ax 1(0,∞)(x) dx.

Lemma 11. Let λ > 0. Then, if (a(n), n ≥ 1) is some sequence in R+ increasing to +∞, then, as
n → ∞, we have

∫∞
0

ra(n)(dx)xλ = O(a(n)−λ).

Proof. This is fairly easy: if λ > 0, we can write∫ ∞

0

ra(n)(dx)xλ =

∫ ∞

0

xλ(a(n) + x) e−x2/2−a(n)x dx

=

∫ ∞

0

uλ

a(n)λ

(
a(n) +

u

a(n)

)
e−u2/(2a(n)2)−u du

a(n)

≤ 1

a(n)λ

∫ ∞

0

uλ e−u du +
1

a(n)λ+2

∫ ∞

0

uλ+1 e−u du,

which ends the proof. �

1Note that this integral is to be taken in the sense of Cauchy’s principal value.
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Lemma 12. For any 0 < q < ∞ and any v ≥ 0, we have

E
(v)
q [Θ] ≤

√
π/2 min(qv,

√
v).

Proof. We will use formula (21) from [1], stating that, in our context, if Y is a Rayleigh-distributed
variable, then

E
(v)
q [Θ] =

√
v

∫ q
√

v

0

E
[
e−tY

]
dt.

We simply expand the Laplace transform, giving

E
(v)
q [Θ] =

√
v

∫ q
√

v

0

∫ ∞

0

x e−x2/2 e−tx dx dt

=
√

v

∫ ∞

0

e−x2/2
(

1 − e−xq
√

v
)

dx.

Now, we use the obvious inequality 1 − exp(−x) ≤ min(x, 1), to get the desired domination, since

qv
∫∞

0 x exp(−x2/2) = qv and
√

v
∫∞

0 e−x2/2 dx =
√

πv/2. �

Finally, the next lemma is needed to prove the asymptotic smallness of the martingale M̂n.

Lemma 13. Let (an, n ≥ 1) be a nonnegative sequence such that

lim
n→∞

1√
n

n∑

k=1

ak < ∞.

Then, we have

lim
n→∞

1

n

n∑

k=1

a2
k = 0.

Proof. Let sn = n−1/2
∑n

k=1 ak. Taking the difference sn −sn−1, we easily see that n−1/2an converges
to 0. Then, if ε > 0, there exists n0 ≥ 1 such that for all n ≥ n0, an < ε

√
n. Thus, if n ≥ n0, we have

sup
k≤n

ak ≤ sup
k<n0

ak + sup
n0≤k≤n

ak

≤ sup
k<n0

ak + ε,

which proves that actually

lim
n→∞

supk≤n ak√
n

= 0.

Then, we simply write

1

n

n∑

k=1

a2
k ≤

(
supk≤n ak√

n

)(
1√
n

n∑

k=1

ak

)

to conclude. �
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