Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules
Résumé
We prove a quantitative propagation of chaos, uniformly in time, for the spatially homogeneous Landau equation in the case of Maxwellian molecules. We improve the results of Fontbona, Guérin and Méléard \cite{FonGueMe} and Fournier \cite{Fournier} where the propagation of chaos is proved for finite time. Moreover, we prove a quantitative estimate on the rate of convergence to equilibrium uniformly in the number of particles.
Origine | Fichiers produits par l'(les) auteur(s) |
---|