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Abstract. We prove a quantitative propagation of chaos and entropic chaos, uni-
formly in time, for the spatially homogeneous Landau equation in the case of Maxwellian
molecules. We improve the results of Fontbona, Guérin and Méléard [9] and Fournier
[10] where the propagation of chaos is proved for finite time. Moreover, we prove
a quantitative estimate on the rate of convergence to equilibrium uniformly in the
number of particles.
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1. Introduction

An important open problem in kinetic theory is to derive Boltzmann equation from a
many-particle system undergoing Newton’s laws of dynamics. The correct scaling limit
for this is the so-called Boltzmann-Grad or low density limit, see Grad [12]. The best
result is Lanford [17] who proved the limit for short times (see also Illner and Pulvirenti
[14] and Gallagher, Saint-Raymond and Texier [11]).

Kac [15] proposed to derive the spatially homogeneous Boltzmann equation from a
many-particle Markov process, performing a mean-field limit. The program set by Kac
in [15] was then to investigate the behavior of solutions of the mean-field equation in
terms of the behaviour of the solutions of the master equation, i.e. the equation for the
law of the many-particle process. We refer to Mischler and Mouhot [20] for a detailed
introduction on Kac’s program and for recent important results.

In the same way, we would like to derive rigorously another equation from kinetic
theory, the Landau equation, from a many-particle system described by Newton’s laws.
It is an open problem, but the correct scalling to this is also known, the weak-coupling
limit, and we refer to Bobylev, Pulvirenti and Saffirio [3] and the references therein for
more information on this topic and partial results. We do not pursue this problem here.

Instead, in this work, we shall use the approach described above introduced by Kac
[15]. Hence, we shall introduce a N -particle Markov process (see section 2.3) from which
we derive the spatially homogeneous Landau equation in the mean-field limit. The N -
particle process used here is obtained by means of the grazing collisions limit applied to
the N -particle master equation for the Boltzmann model. We should mention that the
N -particle master equation introduced here was, in fact, originally proposed by Balescu
and Prigogine in the 1950’s (see [16] and references therein); and it is also studied by
Kiessling and Lancelloti [16] and Miot, Pulvirenti and Saffirio [19] (both in the Coulomb
case).

Let us briefly explain how we can prove the mean-field limit with the approach pro-
posed by Kac. Consider the probability density FN

t associated to the Landau N -particle
system and its evolution equation, i.e. the master equation (section 2.3). Integrating
this equation over all variables but the first, we obtain an evolution equation for the first
marginal Π1(FN

t ) that depends on the second marginal Π2(FN
t ). If the second marginal

of the probability density was the 2-fold tensorization of a one-particle probability ft,
then ft would satisfy the Landau equation (section 2.2). However, even if at initial time
we start with an N -fold tensor probability FN (0) = f(0)⊗N , this property can not be
satisfied at later time because there are interactions between the particles. Kac sug-
gested then that the chaos property (see definition below (1.1)), which is weaker than
tensorization, could be propagated in time, which in turns would prove the mean-field
limit.

1.1. Known results. Before giving our main results let us present known results con-
cerning the propagation of chaos for the Landau equation for maxwellian molecules.

The work of Fontbona, Guérin and Méléard [9] consider nonlinear diffusion processess
driven by a white noise that have an interpretation in terms of PDEs corresponding to
the Landau equation. They construct an N -particle system that converges, in the limit
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N → ∞ and in finite time, to the nonlinear process and, moreover, obtain quantita-
tive convergence rates in Wasserstein distance W2. Then Fournier [10], with the same
probabilistic interpretation, improves the rate of convergence of [9].

We should mention that the Landau master equation introduce in this work (section
2.3) differs from the master equation associated to the N -particle process in [9, 10], see
remark 2.1.

1.2. Main results. Consider a Polish space E, we shall denote by P(E) the space of
probability measures on E. We denote by Psym(EN ) the space of symmetric probabilities

on Psym(EN ). We say that a symmetric probablity FN ∈ Psym(EN ) is f -chaotic (or
Kac chaotic), for some probability f ∈ P(E), if for all ℓ ∈ N

∗ we have

(1.1) FN
ℓ ⇀ f⊗ℓ when N → ∞,

where FN
ℓ = Πℓ(F

N ) is the ℓ-th marginal of FN and the convercence has to be under-

stood in weak sense on P(Eℓ), i.e. the convergence of integral against continuous and
bounded functions ϕ ∈ Cb(E

ℓ). In this paper we are interested in quantitave rates of
convergence, more precisely we shall investigate estimates of the type, for any ϕ ∈ F⊗ℓ

with F ⊂ Cb(E) and ‖ϕ‖F⊗ℓ ≤ 1,
∣∣∣
〈
FN

ℓ − f⊗ℓ, ϕ
〉∣∣∣ ≤ C(ℓ) ε(N),

with a constant C(ℓ) possibly depending on ℓ and a function ε(N) → 0 when N → ∞.
Another possibility is to replace the left-hand side of the last equation by some distance
on the space of probabilities, as for exemple the Wasserstein distance, W1(FN

ℓ , f⊗ℓ).

The many-particle process can be considered in R
dN and then its law FN is a symmet-

ric probality measure on R
dN , however, thanks to the conservation laws, the process can

be restricted to some submanifold of RdN . In our case, the dynamics of the many-particle
process conserves momentum and energy (see section 2 for details), which implies that
the process can be restricted to
(1.2)

SN (E ,M) :=

{
V = (v1, . . . , vN ) ∈ R

dN ;
1

N

N∑

i=1

|vi − M|2 = E , 1

N

N∑

i=1

vi = M
}

where E ≥ 0 and M ∈ R
d. We consider through the paper, without loss of generality,

the case M = 0, we denote SN (E) := SN (E , 0) and call these submanifolds Boltzmann’s
spheres.

Initial data. Considering the process in SN (E), we shall need an initial data FN
0 ∈

Psym(SN (E)) that is f0-chaotic for some f0 ∈ P(Rd). This problem was studied in [5],

where it is proven that for some (regular enough) probability measure f ∈ P(Rd), with
zero momentum M =

∫
vf = 0 and energy E =

∫
|v|2f , we can construct a propability

measure FN ∈ Psym(SN (E)) that is f -chaotic (and also entropically f -chaotic, see
section 5 for the definition), by tensorization of f and restriction to the Boltzmann’s
sphere SN (E). We shall denote this probability measure by

(1.3) FN =
[
f⊗N

]

SN (E)
:=

f⊗N

∫
SN (E) f

⊗N dγN
γN ,

where γN is the uniform probability measure on SN (E).
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We can now state our main results in a simplified version.

Theorem 1.1. Consider f0 ∈ P(Rd), with zero momentun and energy E, and also

FN
0 = [f⊗N

0 ]SN (E) ∈ Psym(SN (E)). Let ft be the solution of the Landau equation (see

(2.10)) with initial data f0 and FN
t the solution of the Landau master equation (see

(2.29)) with initial data FN
0 .

(1) (Theorems 4.1 and 4.2) Then, for all N ∈ N
∗ we have

sup
t≥0

W1

(
FN

t , f⊗N
t

)

N
≤ ε1(N),

where ε1 is a polynomial function and ε1(N) → 0 as N → ∞.
Moreover, for all t ≥ 0, for all N ∈ N

∗, we have

W1(FN
t , γN )

N
≤ p(t),

for a polynomial rate p(t) → 0 as t → ∞ and where γN is the uniform probability
measure on SN (E).

(2) (Theorem 5.3) Then, for all N ∈ N
∗ we have

sup
t≥0

∣∣∣∣
1

N
H(FN

t |γN ) −H(ft|γ)

∣∣∣∣ ≤ ε2(N),

where ε2 is a polynomial function ε2(N) → 0 as N → ∞, H(f |γ) denotes the
relative entropy of ft with respect to γ, the centered Gaussian probability measure
in R

d with energy E, and H(FN
t |γN ) denotes the relative entropy of FN

t with respect
to γN (see Section 5).

Moreover, for all t ≥ 0, for all N ∈ N
∗, we have

1

N
H(FN

t |γN ) ≤ p(t),

for some polynomial function p(t) → 0 as t → ∞.

1.3. Strategy. The main idea is to use the consistency-stability method developped by
Mischler, Mouhot and Wennberg in [20, 21]. Consider the semigroups associated to the
evolution of the N -particle system and the limit mean-field equation, this method re-
duces the problem of propagation of chaos to proving consistency and stability estimates
for these semigroups. First of all, we need to introduce the Landau master equation,
which is derived by the asymptotics of grazing collisions from the Boltzmann master
equation. Then, with the Landau master equation and the limit Landau equation at
hand, we can investigate the estimates needed to apply the consistency-stability method
and prove the propagation of chaos.

1.4. Organization of the paper. Section 2 is devoted to deduce a N -particle stochas-
tic process modeling the Landau dynamics and to present the limit Landau equation.
In Section 3 we present the consistency-satability method, with some adaptations, de-
velopped by Mischler, Mouhot and Wennberg in [20, 21]. In Section 4 we apply the
method presented before to the Landau model in order to prove the propagation of
chaos with quantitative rate and uniformly in time. Finally, in section 5 we prove a
quantitative propagation of entropic chaos.
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2. The Landau model

Our aim in this section is to present the N -particle system and the limit mean-field
equation corresponding to Landau model. The limit Landau equation is well known
and we shall present it in the Subsection 2.2. Furthermore, in Subsection 2.3 we deduce
a master equation for the N -particle system corresponding to Landau.

Fisrt of all, we present the Boltzmann model, with its master equation and limit
equation, which will be very useful in the sequel since Boltzmann and Landau equations
are linked by the asymptotics of grazing collision that we shall explain in details later.

2.1. The Boltzmann model. We present here the Boltzmann model, with the limit
mean field equation and the master equation. The spatially homogeneous Boltzmann
equation [29, 20] is given by, for f = f(t, v),

(2.1) ∂tf = Q(f, f)

with the collision operator given by

(2.2) Q(g, f) =

∫

Rd×Sd−1
B(|v − v∗|, cos θ)

(
g(v′

∗)f(v′) − g(v∗)f(v)
)
dv∗ dσ,

and where the post-collisional velocities v′ and v′
∗ are given by

(2.3) v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′
∗ =

v + v∗
2

− |v − v∗|
2

σ

and cos θ = σ · (v − v∗)/|v − v∗|.
We assume that the collision kernel B satisfies B(|z|, cos θ) = Γ(|z|)b(cos θ) (for more

information on the collision kernel we refer to [29]) for some nonnegative functions Γ and
b. When the interaction potential is proportional to r−s, where r denotes the distance
between particles, then we have

Γ(|z|) = |z|γ , sind−2 θ b(cos θ) ∼ Cb θ
−1−ν when θ ∼ 0,

with γ = (s − 2d + 2)/s, for some constant Cb > 0 and some fixed ν ∈ (0, 2). For
example, in the 3-dimensional case we have ν = 2/s.

In this work we are concerned with the case of true Maxwellian molecules γ = 0
(which corresponds to s = 2d−2), we shall then consider through the paper the following
assumption :

(2.4)

B(|v −w|, cos θ) = b(cos θ),
∫

Sd−1
b(cos θ)(1 − cos θ)α+1/4 dσ < +∞, ∀α > 0.

We remark that in this case we have
∫
Sd−1 b(cos θ) dσ = ∞ but

∫
Sd−1 b(cos θ)(1 −

cos θ) dσ < ∞.
Another possible way to describe the pre and post-collisional velocities is the ω-

representation

(2.5) v′ = v − (v − v∗, ω)ω, v′
∗ = v∗ + (v − v∗, )ω, ω ∈ S

d−1,
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which gives us

QB(f, f) =

∫

Rd×Sd−1
B̃(|v − v∗|, ω)

(
f(v′

∗)f(v′) − f(v∗)f(v)
)
dv∗ dω,

with B̃(z, ω) = |z|γbω(α) and α the angle formed by z and ω, and the following relation
holds

(2.6) σ =
v − v∗
|v − v∗| − 2

(
ω,

v − v∗
|v − v∗|

)
ω.

Let us now present the many-particle model [18, 15, 20, 4, 21]. Given a pre-collisional
system of velocities V = (v1, . . . , vN ) ∈ R

dN and a collision kernel B(|z|, cos θ) =
Γ(|z|)b(cos θ), the process is: for any i′ 6= j′, pick a random time T (Γ(|vi′ − vj′ |))
of collision accordingly to an exponential law of parameter Γ(|vi′ − vj′|) and choose the

minimum time T1 and the colliding pair (vi, vj); draw σ ∈ S
d−1 ⊂ R

d according to
the law b(cos θij), with cos θij = σ · (vi − vj)/|vi − vj |; after collision the new velocities
become V ′

ij = (v1, . . . , v
′
i, . . . , v

′
j , . . . , vN ) with

(2.7) v′
i =

vi + vj

2
+

|vi − vj |
2

σ, v′
j =

vi + vj

2
− |vi − vj|

2
σ.

Iterating this construction we built then the associated Markov process (Vt)t≥0 on
R

dN . As explained in the introduction, we can also consider this process on SN (E).
Then, after a rescaling of time, the master equation is given in dual form by [20, 21],

(2.8) ∂t〈FN
t , ϕ〉 = 〈FN

t , GN
Bϕ〉

where

(2.9) GN
Bϕ =

1

2N

N∑

i,j=1

Γ(|vi − vj |)
∫

Sd−1
b(cos θij)

(
ϕ′

ij − ϕ
)
dσ

with the shorthand notation ϕ′
ij = ϕ(V ′

ij) and ϕ = ϕ(V ) ∈ Cb(R
dN ). We shall consider

the case of Maxwellian molecules, i.e. Γ(|z|) = 1 and b(cos θ) satisfying (2.4).

2.2. Limit equation. We present here the limit spatially homogeneous Landau equa-
tion for maxwellian molecules and some of its basic properties, for more information we
refer to [29, 27, 26].

The Landau equation is a kinetic model in plasma physics that describes the evolution
of the density f of a gas in the phase space of all positions and velocities of particles.
Assuming that the density function does not depend on the position, we obtain the
spatially homogeneous Landau equation in the form

(2.10) ∂tf = QL(f, f)

where f = f(t, v) is the density of particles with velocity v at time t, v ∈ R
d and t ∈ R

+.
The Landau operator is given by

(2.11) QL(g, f) = ∂i

{∫

Rd
aij(v − v∗) (g(v∗)∂jf(v) − ∂jg(v∗)f(v)) dv∗

}
,



PROPAGATION OF CHAOS FOR THE LANDAU EQUATION 7

where here and below we shall use the convention of implicit summation over indices.
Moreover, the matrix a is nonnegative, symmetric and depends on the interaction be-
tween particles. If two particles interact with a potential proportional to 1/rs, where r
denotes their distance, then we have

aij(z) = Λ|z|γ+2Πij(z), Πij(z) = δij − zizj

|z|2 ,

with γ = (s − 2d + 2)/s and some constant Λ > 0. As for the Boltzmann equation, we
consider the case of Maxwellian molecules γ = 0, i.e.

(2.12) aij(z) = Λ|z|2Πij(z).

We also define

(2.13) bi(z) = ∂jaij = −Λ(d− 1)zi, c(z) = ∂ijaij = −3Λ(d− 1),

and we denote

āij = aij ∗ f, b̄i = bi ∗ f, c̄ = c ∗ f.
Hence, we can write the Landau equation in another form

(2.14) ∂tf = āij∂ijf − c̄f.

Moreover, let ϕ(v) be a test function, then we have the following weak forms

(2.15)

∫
QL(f, f)ϕ = − 1

2

∫
dv dv∗ ff∗ a(v − v∗)

(∇f
f

− ∇∗f∗
f∗

)
(∇ϕ− ∇∗ϕ∗)

or

(2.16)

∫
QL(f, f)ϕ =

1

2

∫
dv dv∗ ff∗ aij(v − v∗)(∂ijϕ+ (∂ijϕ)∗)

+

∫
dv dv∗ ff∗ bi(v − v∗)(∂iϕ− (∂iϕ)∗).

This equation satisfies the conservation of mass, momentum and energy. Moreover,
the entropy H(f) =

∫
f log f is nonincreasing, indeed taking ϕ = log f we obtain

(2.17)
d

dt
H(f) = −1

2

∫
ff∗ a(v − v∗)

(∇f
f

− ∇∗f∗
f∗

)
·
(∇f
f

− ∇∗f∗
f∗

)
dv dv∗ ≤ 0,

since a is nonnegative, which is the Landau version of the H-theorem of Boltzmann.
For more information we refer to [27].

The Landau equation was introduce by Landau in 1936. Later it was proven that the
Landau equation can be obtained as a limit of the Boltzmann equation when grazing
collisions prevail (see [7, 1, 6, 26] and the references therein for more details).

2.3. Master equation. We derive a master equation for the Landau model. It is based
on [26] where they use the grazing collisions limit to pass from Boltzmann to Landau
limit equations (see also [7, 1, 6]). Since we know the master equation for the Boltzmann
model (2.8), we shall perform the grazing collisions limit to obtain a master equation
for Landau model. As explained in the introduction, the master equation we derive
here (see (2.29)) is the same introduced by Balescu and Prigorine in the 1950’s, and it
is also studied in the works [16, 19].
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Grazing collisions. We present here the grazing collision limit as in [26]. Consider the
true Maxwellian molecules collision kernel b satisfying (2.4). We say that bε concentrates
in grazing collision if:

(2.18)






∀ θ0 > 0, supθ>θ0
bε(cos θ) −−−→

ε→0
0

Λε =

∫

Sd−1
bε(cos θ)(1 − cos θ) dσ −−−→

ε→0
Λ > 0.

For the sake of simplicity, to derive the Landau master equation in this section, we
suppose the dimension d = 3 to perfom the computations, the other cases being the
same.

From (2.6), using a spherical coordinate system (in dimension d = 3) with axis v−v∗,
we have

σ =
v − v∗
|v − v∗| cos θ + (cosφ~h+ sinφ~i) sin θ.

Moreover we have |(v − v∗, ω)| = |v − v∗| sin(θ/2). Finally we can write the operator in
the following way (see [26])

(2.19) QB(f, f) =

∫ 2π

0
dφ

∫ π/2

0
dθ

∫

Rd
dv∗ ζ(θ)(f ′f ′

∗ − ff∗),

with ζ(θ) = sind−2 θ b(cos θ). In this case, we can rewrite (2.18) and say that ζε concen-
trates in grazing collisions if for all θ0 ≥ 0

(2.20)





supθ≥θ0
ζε(θ) → 0 when ε → 0

Λε :=
π

2

∫ π/2

0
sin2 θ

2
ζε(θ) dθ → Λ < ∞ when ε → 0.

Let us consider then the Boltzmann master equation (2.8)-(2.9), using the form of
(2.19), that is

(GN
Bϕ)(V ) =

1

2N

N∑

i,j=1

∫ 2π

0
dφ

∫ π/2

0
dθ ζ(θ)(ϕ′

ij − ϕ).

In this equation, we take a second order Taylor expansion of ϕ′
ij and obtain

(2.21)
ϕ(V ′

ij) − ϕ(V ) =Dϕ[V ](V ′
ij − V ) +

1

2
(V ′

ij − V )TD2ϕ[V ](V ′
ij − V )

+O(|V ′
ij − V |3).

With the incoming and outgoing velocities V and V ′
ij (see (2.7)), we have

V ′
ij − V = (0, . . . , 0, v′

i − vi, 0, . . . , 0, v
′
j − vj , 0, . . . , 0).

In (2.21), Dϕ[V ] and D2ϕ[V ] are given by

Dϕ[V ] = (∇iϕ(V ))1≤i≤N , D2ϕ[V ] =
(
∇2

ijϕ(V )
)

1≤i,j≤N
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where ∇iϕ =
(
∂vi,αϕ

)

1≤α≤3
and ∇2

ijϕ =
(
∂vi,α∂vj,β

ϕ
)

1≤α,β≤3
. Now we substitute V ′

ij −V
in (2.21) and we get

(2.22)

ϕ(V ′
ij) − ϕ(V ) =∇iϕ(V )(v′

i − vi) + ∇jϕ(V )(v′
j − vj)

+
1

2

{
∇2

iiϕ(V )(v′
i − vi)

2 + ∇2
jjϕ(V )(v′

j − vj)
2

+ ∇2
ijϕ(V )(v′

i − vi)(v
′
j − vj) + ∇2

jiϕ(V )(v′
i − vi)(v

′
j − vj)

}

+O(|V ′
ij − V |3).

Finally, using (2.7) and (2.5) with vi and vj , one obtains

(2.23)

ϕ(V ′
ij) − ϕ(V ) = − (vi − vj, ω)(∇iϕ− ∇jϕ,ω) (= T1)

+
1

2
(vi − vj , ω)2

{
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
}

(ω, ω) (= T2)

+O

(
|vi − vj|3 sin3 θ

2

)
.

For each pair of particules i and j, in the orthonormal basis { vi−vj

|vi−vj | ,
~h,~i}, one has

ω =
vi − vj

|vi − vj | sin
θ

2
+ (cos φ~h+ sin φ~i) cos

θ

2

and then, using the fact that linear combinations of cosφ and sin φ vanish when inte-
grated over φ, we can compute the contribution of T1 integrated over φ

−
∫ 2π

0
dφ(vi − vj, ω)(∇iϕ− ∇jϕ,ω) = −2π sin2 θ

2
(vi − vj ,∇iϕ− ∇jϕ) .

Now we have to compute the integral of T2 over φ, we denote

λαβ = {∂vi,α∂vi,β
ϕ+ ∂vj,α∂vj,β

ϕ− ∂vi,α∂vj,β
ϕ− ∂vj,α∂vi,β

ϕ}/2
and in the same orthonormal basis, we compute

A = |vi − vj|2 sin2 θ

2

∫ 2π

0
dφλαβωαωβ.

Again, linear combinations of cosφ and sinφ vanish, which implies

(2.24)

A = |vi − vj |2 sin2 θ

2

∫ 2π

0
dφ

(
λ11 sin2 θ

2
+ λ22 cos2 φ cos2 θ

2
+ λ33 sin2 φ cos2 θ

2

)

= 2π|vi − vj|2
(
λ11 sin4 θ

2
+
λ22

2
cos2 θ

2
sin2 θ

2
+
λ33

2
cos2 θ

2
sin2 θ

2

)

and we remark that the first coefficient is of order greater than 2 in θ.
We introduce Παβ(vi − vj) the projection over the orthogonal space of

vi−vj

|vi−vj | , and

the dominat term of (2.24) when θ → 0 is

π|vi − vj |2 sin2 θ

2
Παβ(vi − vj)λαβ

or in matricial notation

π|vi − vj |2 sin2 θ

2
Π(vi − vj) :

(
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
)

2
.
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Finally, we obtain

(2.25)

1

2

∫ 2π

0
dφ(ϕ(V ′

ij) − ϕ(V )) = −π

2
sin2 θ

2
(2(vi − vj),∇iϕ− ∇jϕ)

+
π

4
|vi − vj |2 sin2 θ

2
Π(vi − vj) :

(
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
)

+O
(
|vi − vj |2θ4 ∧ 1

)
+O

(
|vi − vj|3θ3 ∧ 1

)
.

Consider now the Boltzmann master equation with kernel ζε satisfying the grazing
collisions (2.20) and plug (2.25) in it, we obtain then

(2.26)

GN
Bϕ =

1

N

N∑

i,j=1

∫ π/2

0
dθ ζε(θ)

1

2

∫ 2π

0
dφ(ϕ′

ij − ϕ)

=
1

N

N∑

i,j=1

∫ π/2

0
dθ ζε(θ)

{
−π

2
sin2 θ

2
(2(vi − vj),∇iϕ− ∇jϕ)

+
π

4
|vi − vj |2 sin2 θ

2
Π(vi − vj) :

(
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
)

+O
(
|vi − vj|2θ4 ∧ 1

)
+O

(
|vi − vj |3θ3 ∧ 1

)}
.

This can be written in the following way
(2.27)

GN
Bϕ =

1

N

N∑

i,j=1

π

2

∫ π/2

0
dθ sin2 θ

2
ζε(θ) (−2|vi − vj |2 (vi − vj)

|vi − vj |2 ) · (∇iϕ− ∇jϕ)

+
1

2N

N∑

i,j=1

π

2

∫ π/2

0
dθ sin2 θ

2
ζε(θ) |vi − vj|2Π(vi − vj) :

(
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
)

+
1

N

N∑

i,j=1

∫ π/2

0
dθ ζε(θ)

(
O
(
|vi − vj|2θ4 ∧ 1

)
+O

(
|vi − vj |3θ3 ∧ 1

))
.

As in [26], the last term converges to 0 when ε → 0. Then we have, using (2.20) and
the definition of the functions a (2.12) and b (2.13), when ε → 0

(2.28)

GN
Bϕ −→ 1

N

N∑

i,j=1

−2Λ|vi − vj |2 (vi − vj)

|vi − vj|2
· (∇iϕ− ∇jϕ)

+
1

2N

N∑

i,j=1

Λ|vi − vj |2Π(vi − vj) :
(
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
)

=
1

N

N∑

i,j=1

b(vi − vj) · (∇iϕ− ∇jϕ)

+
1

2N

N∑

i,j=1

a(vi − vj) :
(
∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ
)

=: GN
L ϕ
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and that defines the Landau generator GN
L . Finally, we derive the following Landau

master equation
(2.29)

∂t〈fN
t , ϕ〉 =

〈
fN

t , G
N
L ϕ
〉

=
1

N

∫ N∑

i,j=1

b(vi − vj) · (∇iϕ− ∇jϕ)fN
t (dV )

+
1

2N

∫ N∑

i,j=1

a(vi − vj) : (∇2
iiϕ+ ∇2

jjϕ− ∇2
ijϕ− ∇2

jiϕ)fN
t (dV ).

Remark 2.1. In the paper [9], the Landau equation is studied with a probabilistic ap-
proach. In particular they prove that the following process associated to a N -particle
system, for i = 1, ..., N ,

(2.30) dXi
t =

√
2√
N

N∑

k=1

σ(Xi
t −Xk

t ) dBi,k
t +

2

N

N∑

k=1

b(Xi
t −Xk

t ) dt,

where Bi,k are N2 independant R
d-valued Brownian motions, converges to the process

(2.31) Xt = X0 +
√

2

∫ t

0

∫

Rd
σ(Xs − y)W (dy, ds) + 2

∫ t

0

∫

Rd
b(Xs − y)Ps(dy)ds

where Pt is the law of Vt and W is a white noise in space-time. Moreover the process
(2.31) is associated to the spatially homogeneous Landau equation with the coefficients
aαβ(z) := (σσ∗)αβ (z) and bα(z) := ∂βaαβ(z). Then, the Kolmogorov equation of

(2.30) is, for a test function ϕ : RdN −→ R and where fN
t represents the law of Xt,

(2.32)

∂t〈fN
t , ϕ〉 = 〈fN

t , G
N
2 ϕ〉

=
1

N

N∑

i,j=1

∫

RdN
b(vi − vj) · (∇iϕ(V ) − ∇jϕ(V )) fN

t (dV )

+
1

2N

N∑

i,j=1

∫

RdN
a(vi − vj) :

(
∇2

iiϕ(V ) + ∇2
jjϕ(V )

)
fN

t (dV ).

In [10], instead of the process (2.31) it was used a similar process with only N inde-
pendent Brownian motion, i.e. replacing Bi,k by Bi in (2.31), and it gives the same
master equation (2.32). We remark that this equation differs from (2.29) by the terms
∑

i,j a(vi − vj) :
(
−∇2

ijϕ− ∇2
jiϕ
)
.

Now, in order to obtain a N -particle SDE associated to (2.28)-(2.29), we shall modify
(2.31). Consider then, for i = 1, . . . , N , Rd-valued random variables (Xi

t)t≥0 satisfying
the following equation

(2.33) ∀ i = 1, . . . , N dXi
t =

√
2√
N

N∑

k=1
k 6=i

σ(Xi
t −Xk

t ) dZi,k
t +

2

N

N∑

k=1
k 6=i

b(Xi
t −Xk

t ) dt

where, for all 1 ≤ i ≤ N and i < k, Zi,k
t = Bi,k

t are N(N − 1)/2 independent R
d-valued

Brownian motions and the other terms are anti-symmetric Zk,i
t = −Bi,k

t . As in (2.31),
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we have a(z) = σ(z)σ∗(z) and σ is symmetric (recall that a also is), i.e. σ(−z) = σ(z).
We can rewrite (2.33), let X = (X1, . . . ,XN ) we have the following equation

(2.34) dXt = µ(Xt) dt + Σ(Xt) dWt

where µ = (µ1, . . . , µN ) is given by

∀ i = 1, . . . , N,∀X = (X1, . . . ,XN ) ∈ R
dN , µi(X) =

2

N

N∑

k=1

b(Xi −Xk),

moreover, Wt is constitued of the N(N − 1)/2 independent Brownian motion, more
precisely

Wt = (W 1
t , . . . ,W

N(N−1)/2
t ) = (B1,2

t , . . . , B1,N
t , B2,3

t , . . . , B2,N
t , . . . , B

(N−1),N
t ),

i.e. for i < k, Bi,k
t = Wα

t with α = (i − 1)(N − i/2) + k − i. Finally, Σ : R
dN →

MN,N(N−1)/2(Md,d(Rd)) is given by, for all 1 ≤ i ≤ N , 1 ≤ β ≤ N(N − 1)/2 and

X = (X1, . . . ,XN ) ∈ R
dN ,

(Σ(X))iβ =






−
√

2√
N
σ(Xi −Xk); β = Nk − k (k+1)

2 , 1 ≤ k ≤ i− 1,
√

2√
N
σ(Xi −Xk); (i− 1)

(
N − i

2

)
+ 1 ≤ β ≤ i

(
N − i+1

2

)
, k = β − (i− 1)

(
N − i

2

)
+ i,

0; otherwise.

Indeed, multipliying the ith-row of Σ(X) by dWt we obtain

−
√

2√
N

i−1∑

k=1

σ(Xi −Xk) dBi,k
t +

√
2√
N

N∑

k=i+1

σ(Xi −Xk) dBi,k
t =

√
2√
N

N∑

k=1
k 6=i

σ(Xi −Xk) dZi,k
t ,

which corresponds to the first term on the right-hand side of (2.33).
Consider a test function φ : RdN → R and fN

t the law of Xt, then the Kolmogorov
equation of (2.34) is

∂t

〈
fN

t , φ
〉

=
2

N

N∑

i,j=1

∫

RdN
b(vi − vj) · (∇iφ) fN

t (dV )

+
1

N

N∑

i,j=1

∫

RdN
a(vi − vj) :

(
∇2

iiφ− ∇2
ijφ
)
fN

t (dV ),

and using the symmetry property of a and anti-symmetry of b we obtain (2.29).

3. The consistency-stability method for the Landau equation

In this section we present the method develloped in [20, 21] with some modifications,
in order to be able to apply it later to the Landau equation in section 4.

3.1. Abstract framework. Consider a polish space E and we shall denote by P(E)
the space of probability measures on E. Consider also EN and the space of symmetric
probability measures Psym(EN ), more precisely, we say that FN ∈ P(EN ) is symmetric
if for all ϕ ∈ Cb(E

N ) we have that
∫

EN
ϕdFN =

∫

EN
ϕσ dF

N ,
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for any permutation σ of {1, . . . , N}, and where

ϕσ := ϕ(Vσ) = ϕ(vσ(1), . . . , vσ(N)),

for V = (v1, . . . , vN ) ∈ EN .
We then consider a N -particle system with initial probability density FN

0 ∈ Psym(EN )
and its evolution equation in dual form, for all ϕ ∈ Cb(E

N ),

(3.1) ∂t

〈
FN

t , ϕ
〉

=
〈
FN

t , GNϕ
〉
.

It generates a linear semigroup denoted by SN
t : FN

0 7→ FN
t . Moreover, we define the

dual semigroup TN
t by

(3.2) ∀φ ∈ Cb(E
N ), ∀FN ∈ Psym(EN ), 〈TN

t (φ), FN 〉 = 〈φ, SN
t (FN )〉

and its generator GN by.

(3.3) ∀φ ∈ Cb(E
N ), ∂tφ = GNφ.

At the level of the limit (mean field) equation, we consider a initial probability density
f0 ∈ P(E) and the equation

(3.4) ∂tft = Q(ft).

We also define its semigroup S∞
t : f0 7→ ft. Then, we define the pullback semigroup

T∞
t by

(3.5) ∀ Φ ∈ Cb(P(E)), ∀ f ∈ P(E), TN
t [Φ](f) := Φ (S∞

t (f))

and its generator G∞ by

(3.6) ∀ Φ ∈ Cb(P(E)), ∂tΦ = G∞Φ.

We define some applications relating this objetcs. The function πN
E : EN/SN → P(E)

is defined by, where SN denotes the group of permutations of {1, . . . , N},

(3.7) πN
E (V ) := µN

V =
1

N

N∑

i=1

δvi

and µN
V is called the empirical measure associated to V . The application πN

C : Cb(P(E)) →
Cb(E

N ) is given by

(3.8) ∀V ∈ EN , ∀ Φ ∈ Cb(P(E)), πN
C [Φ](V ) := Φ(µN

V ).

The application πN
P : Psym(EN ) → P(P(E)) is

(3.9)
∀FN ∈ Psym(EN ), ∀ Φ ∈ Cb(P(E)),
〈
πN

P (FN ),Φ
〉

:=
〈
FN , πN

C (Φ)
〉

=

∫

EN
Φ(µN

V )FN (dV ),

where the first bracket is the duality P(P(E)) ↔ Cb(P(E)) and the second one is the
duality Psym(EN ) ↔ Cb(E

N ). Finally, the application RN : Cb(E
N ) → Cb(P(E)) is

defined by

(3.10)
∀ϕ ∈ Cb(E

N ), ∀ f ∈ P(E),

RN [ϕ](f) :=
〈
ϕ, f⊗N

〉
=

∫

EN
ϕ(V )f(dv1) · · · f(dvN ),
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in the sequel we will denote Rℓ
ϕ := Rℓ[ϕ] for ϕ ∈ Cb(E

ℓ). The functions Rℓ
ϕ are

the ”polynomials” on the space P(E), we will see later (exemple 3.6) that they are
continuous in the sense of Definitions 3.3 and 3.4, where we develop a differential calculus
on P(E).

For a given weight function m : E → R+ we define the N -particle weight function

(3.11) ∀V = (v1, ..., vN ) ∈ EN , MN
m (V ) :=

1

N

N∑

i=1

m(vi) = 〈µN
V ,m〉 = Mm(µN

V ).

Definition 3.1. For a given weight function mG : E → R+ we define the subspaces of
probabilities

PG := {f ∈ P(E); 〈f,mG〉 < ∞}
and the corresponding bounded sets, for a ∈ (0,∞),

BPG,a := {f ∈ PG ; 〈f,mG〉 ≤ a} .
For a given constraint function mG : E → R

D such that 〈f,mG〉 is well defined for
any f ∈ PG and a given space of constraints RG ⊂ R

D, we define, for any r ∈ RG , the
constrained subsets

PG,r := {f ∈ PG ; 〈f,mG〉 = r},
and the corresponding bounded constrained subsets

BPG,a,r := {f ∈ BPG,a ; 〈f,mG〉 = r}.
and the corresponding space of increments

IPG := {g − f ; ∃ r ∈ RG s.t. g, f ∈ PG,r}.
We shall consider a distance distG defined on the whole space PG or such that there

is a Banach space G ⊃ IPG endowed with a norm ‖ · ‖G such that distG is defined for
any r ∈ RG on PG,r, by for any f, g ∈ PG,r

distG(g, f) = ‖g − f‖G .

Definition 3.2. We say that two spaces F and PG , endowed with the norm ‖ · ‖F and
the distance distG inherited from the norm ‖ · ‖G , are in duality if

(3.12) ∀ f, g ∈ G , ∀ϕ ∈ F |〈g − f, ϕ〉| ≤ distG(g, f) ‖ϕ‖F .

Definition 3.3. Consider two metric spaces G̃1 and G̃2, some weight function Λ : G̃1 →
R

∗
+ and η ∈ (0, 1]. We denote by C0,η

Λ (G̃1; G̃2) the (weighted) space of functions with

η-Hölder regularity, that is functinos S : G̃1 → G̃2 such that there exists a constant
C > 0

(3.13) ∀ f, g ∈ G̃1 , distG2(S(f),S(g)) ≤ C Λ(g, f) distG1(f, g)η .

where Λ(g, f) = max{Λ(g),Λ(f)}.

We define then a higher order differential calculus.

Definition 3.4. Consider two normed spaces G1 and G2, two metric spaces G̃1 and G̃2

such that G̃i−G̃i ⊂ Gi, some weight function Λ : G̃1 → [1,∞) and η ∈ (0, 1]. We denote by

C2,η
Λ (G̃1; G̃2) the (weighted) space of functions two times continuously differentiable from
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G̃1 to G̃2, and such that the 2th derivative satisfies some weighted η-Hölder regularity
(in the sense of Definition 3.3).

More precisely, these are functions S : G̃1 → G̃2 continuous, such that there exists
maps (for j = 1, 2) DjS : G̃1 → Lj(G1,G2) , where Lj(G1,G2) is the space of j-multilinear
applications from G1 to G2, and there exists some constants Cj > 0, so that we have for

all f, g ∈ G̃1,

(3.14)

‖S(g) − S(f)‖G2
≤ C0 Λ(g, f) ‖g − f‖η0

G1
,

‖〈DS[f ], g − f〉‖G2
≤ C1 Λ(g, f) ‖g − f‖η0

G1
,

‖S(g) − S(f) − 〈DS[f ], g − f〉‖G2
≤ C2 Λ(g, f) ‖g − f‖1+η1

G1
,

∥∥∥
〈
D2S[f ], (g − f)⊗2

〉∥∥∥
G2

≤ C3 Λ(g, f) ‖g − f‖1+η1
G1

,
∥∥∥∥∥S(g) − S(f) −

2∑

i=1

〈
DiS[f ], (g − f)⊗i

〉∥∥∥∥∥
G2

≤ C4 Λ(g, f) ‖g − f‖2+η
G1

,

where η0, η1 ∈ [η, 1].

We define then the seminorms on C2,η
Λ (G̃1; G̃2)

[S]C1,0
Λ

:= sup
f∈G̃1,h∈G1

‖〈DS[f ], h〉‖G2

Λ(f) ‖h‖η0

G1

, [S]C2,0
Λ

:= sup
f∈G̃1,h∈G1

∥∥〈D2S[f ], (h, h)
〉∥∥

G2

Λ(f) ‖h‖1+η1
G1

and

[S]
C

0,η0
Λ

:= sup
f,g∈G̃1

‖S(g) − S(f)‖G2

Λ(g, f) ‖g − f‖η0

G1

,

[S]
C

1,η1
Λ

:= sup
f,g∈G̃1

‖S(g) − S(f) − 〈DS[f ], g − f〉‖G2

Λ(g, f) ‖g − f‖1+η1

G1

,

[S]C2,η
Λ

:= sup
f,g∈G̃1

∥∥∥S(g) − S(f) −∑2
i=1

〈
DiS[f ], (g − f)⊗i

〉∥∥∥
G2

Λ(g, f) ‖g − f‖2+η
G1

.

Finally we combine these seminorms into

‖S‖C2,η
Λ

:= [S]
C

0,η0
Λ

+ [S]
C

1,η1
Λ

+ [S]C2,η
Λ

+ [S]C1,0
Λ

+ [S]C2,0
Λ
.

This differential calculus holds for composition, more precisely for U ∈ Ck,η
ΛU

(G̃1; G̃2)

and V ∈ Ck,η
ΛV

(G̃2; G̃3) we have S = V ◦ U ∈ Ck,ηS

ΛS
(G̃1; G̃3) for some appropriate weight

function ΛS and exposant ηS . We now state the following lemma

Lemma 3.5. Let Gi be normed spaces and G̃i be metric spaces for i = 1, 2, 3, such

that G̃i − G̃i ⊂ Gi. Consider U ∈ C2,η
Λ ∩ C

1,(1+2η)/3
Λ ∩ C

0,(2+η)/3
Λ (G̃1; G̃2), with η ∈ (0, 1],

and V ∈ C2,1(G̃2; G̃3). Then the composition function S = V ◦ U ∈ C2,η
Λ3 ∩ C

1,(1+2η)/3
Λ3 ∩

C
0,(2+η)/3
Λ3 (G̃1; G̃3) and we have

DS[f ] = DV[U(f)] ◦DU [f ],

D2S[f ] = D2V[U(f)] ◦ (DU [f ] ⊗DU [f ]) +DV[U(f)] ◦D2U [f ].
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More precisely, the following estimates hold

[S]
C

0,(2+η)/3
Λ

≤ [V]C0,1 [U ]
C

0,(2+η)/3
Λ

,

[S]C1,0
Λ

≤ [V]C1,0 [U ]C1,0
Λ
,

[S]
C

1,(1+2η)/3

Λ2

≤ [V]C1,0 [U ]
C

1,(1+2η)/3
Λ

+ [V]C1,1 [U ]2
C

0,(2+η)/3
Λ

,

[S]
C2,0

Λ2
≤ [V]C1,0 [U ]

C2,0
Λ

+ [V]C2,0 [U ]2
C1,0

Λ
,

[S]C2,η

Λ3
≤ [V]C1,0 [U ]C2,η

Λ
+ [V]C2,0 [U ]2

C
1,(1+2η)/3
Λ

+ 2 [V]C2,0 [U ]C1,0
Λ

[U ]
C

1,(1+2η)/3
Λ

+ [V]C2,1 [U ]3
C

0,(2+η)/3
Λ

.

Proof of Lemma 3.5. Let f, g ∈ G̃1 and f̄ , ḡ ∈ G̃2.

By Definition 3.4 with U ∈ C2,η
Λ ∩C1,(1+2η)/3

Λ ∩C0,(2+η)/3
Λ (G̃1; G̃2) and V ∈ C2,1(G̃2; G̃3)

we have

(3.15)
U(g) − U(f) = 〈DU [f ], g − f〉 +R1

U (g, f)

U(g) − U(f) = 〈DU [f ], g − f〉 +
〈
D2U [f ], (g − f)⊗2

〉
+R2

U (g, f)

with

‖U(g) − U(f)‖G2
≤ [U ]

C
0,η0
Λ

Λ(g, f) ‖g − f‖η0
G1
,(3.16)

‖〈DU [f ], g − f〉‖G2
≤ [U ]C1,0

Λ
Λ(g, f) ‖g − f‖η0

G1
(3.17)

‖R1
U (g, f)‖G2

≤ [U ]
C

1,η1
Λ

Λ(g, f) ‖g − f‖1+η1

G1
,(3.18)

‖
〈
D2U [f ], (g − f)⊗2

〉
‖

G2

≤ [U ]C2,0
Λ

Λ(g, f) ‖g − f‖1+η1

G1
(3.19)

‖R2
U (g, f)‖G2

≤ [U ]
C2,η

Λ
Λ(g, f) ‖g − f‖2+η

G1
,(3.20)

where, for simplicity, we denote η0 = (2 + η)/3 and η1 = (1 + 2η)/3.
Similarly we have for V,

(3.21)
V(ḡ) − V(f̄) =

〈
DV[f̄ ], ḡ − f̄

〉
+R1

V(ḡ, f̄)

V(ḡ) − V(f̄) =
〈
DV[f̄ ], ḡ − f̄

〉
+
〈
D2V[f̄ ], (ḡ − f̄)⊗2

〉
+R2

V(ḡ, f̄)

with

‖V(ḡ) − V(f̄)‖G3
≤ [V]C0,1 ‖ḡ − f̄‖G2

(3.22)

‖
〈
DV[f̄ ], ḡ − f̄

〉
‖

G3

≤ [V]C1,0 ‖ḡ − f̄‖G2
(3.23)

‖R1
V(ḡ, f̄)‖G3

≤ [V]C1,1 ‖ḡ − f̄‖2
G2

(3.24)

‖
〈
D2V[f̄ ], (ḡ − f̄)⊗2

〉
‖

G3

≤ [V]C2,0 ‖ḡ − f̄‖2
G2

(3.25)

‖R2
V(ḡ, f̄)‖G3

≤ [V]C2,1 ‖ḡ − f̄‖3
G2
.(3.26)
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Using these estimates we can compute for S = V ◦ U , then we obtain first thanks to
(3.22) and (3.16)

‖S(g) − S(f)‖G3
= ‖V (U(g)) − V (U(f))‖G3

≤ [V]C0,1 ‖U(g) − U(f)‖G2

≤ [V]C0,1 [U ]
C

0,η0
Λ

Λ(g, f)‖g − f‖η0
G1

which implies [S]
C

0,(2+η)/3
Λ

≤ [V]C0,1 [U ]
C

0,(2+η)/3
Λ

.

We also have, using (3.21) and (3.15),

S(g) − S(f) = V (U(g)) − V (U(f))

= 〈DV[U(f)],U(g) − U(f)〉 +R1
V(U(g),U(f))

=
〈
DV[U(f)],

{
〈DU [f ], g − f〉 +R1

U (g, f)
}〉

+R1
V(U(g),U(f)),

from which we deduce 〈DS[f ], g − f〉 = 〈DV[U(f)], (〈DU [f ], g − f〉)〉 and, by (3.23) and
(3.17),

‖ 〈DS[f ], g − f〉 ‖G3 ≤ [V]C1,0 ‖ 〈DU [f ], g − f〉 ‖G2

≤ [V]C1,0 [U ]C1,0
Λ

Λ(f)‖g − f‖η0

G1
,

which yields [S]C1,0
Λ

≤ [V]C1,0 [U ]C1,0
Λ

.

Therefore, we obtain using (3.23), (3.24), (3.18) and (3.16),

‖S(g) − S(f) − 〈DS[f ], g − f〉‖G3

≤ ‖
〈
DV[U(f)], R1

U (g, f)
〉

‖
G3

+ ‖R1
V(U(g),U(f))‖G3

≤ [V]C1,0 ‖R1
U (g, f)‖G2

+ [V]C1,1 ‖U(g) − U(f)‖2
G2

≤ [V]C1,0 [U ]
C

1,η1
Λ

Λ(g, f) ‖g − f‖1+η1

G1
+ [V]C1,1 [U ]2

C
0,η0
Λ

Λ(g, f)2 ‖g − f‖2η0

G1
.

Since 1 + η1 = 2η0 = 1 + (1 + 2η)/3 and Λ ≥ 1, the last inequality implies

[S]
C

1,(1+2η)/3

Λ2

≤ [V]C1,0 [U ]
C

1,(1+2η)/3
Λ

+ [V]C1,1 [U ]2
C

0,(2+η)/3
Λ

.

Finally, from (3.21) and (3.15), we have

S(g) − S(f) = V (U(g)) − V (U(f))

= 〈DV[U(f)],U(g) − U(f)〉 +
〈
D2V[U(f)],

(
U(g) − U(f)

)⊗2
〉

+R2
V(U(g),U(f))

=
〈
DV[U(f)],

(
〈DU [f ], g − f〉 +

〈
D2U [f ], (g − f)⊗2

〉
+R2

U(g, f)
)〉

+

〈
D2V[U(f)],

(
〈DU [f ], g − f〉 +R1

U (g, f)
)⊗2

〉

+R2
V(U(g),U(f)),

which yields
〈
D2S[f ], (g − f)⊗2

〉
=
〈
DV[U(f)],

( 〈
D2U [f ], (g − f)⊗2

〉 )〉

+
〈
D2V[U(f)],

(
〈DU [f ], g − f〉

)⊗2
〉
.
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Hence we obtain, with (3.23), (3.25), (3.19) and (3.17),
∥∥∥
〈
D2S[f ], (g − f)⊗2

〉∥∥∥
G3

≤ [V]C1,0

∥∥∥
〈
D2U [f ], (g − f)⊗2

〉∥∥∥
G2

+ [V]C2,0 ‖〈DU [f ], g − f〉‖2
G2

≤ [V]C1,0 [U ]
C2,0

Λ
Λ(f) ‖g − f‖1+η1

G1
+ [V]C2,0

(
[U ]

C1,0
Λ

Λ(f) ‖g − f‖η0

G1

)2

≤
(

[V]C1,0 [U ]
C2,0

Λ
+ [V]C2,0 [U ]2

C1,0
Λ

)
Λ(f)2 ‖g − f‖1+(1+2η)/3

G1
,

which gives [S]
C2,0

Λ2
≤ [V]C1,0 [U ]

C2,0
Λ

+ [V]C2,0 [U ]2
C1,0

Λ
.

Now, for the last estimate we obtain

‖S(g) − S(f) − 〈DS[f ], g − f〉 −
〈
D2S[f ], (g − f)⊗2

〉
‖

G3

≤
∥∥∥
〈
DV[U(f)], R2

U (g, f)
〉∥∥∥

G3

+

∥∥∥∥
〈
D2V[U(f)],

(
R1

U (g, f)
)⊗2

〉∥∥∥∥
G3

+ 2
∥∥∥
〈
D2V[U(f)],

(
〈DU [f ], g − f〉 ⊗R1

U (g, f)
)〉∥∥∥

G3

+
∥∥∥R2

V(U(g),U(f))
∥∥∥

G3

and using the equations (3.22) to (3.26) and (3.16) to (3.20), it gives

‖S(g) − S(f) − 〈DS[f ], g − f〉 −
〈
D2S[f ], (g − f)⊗2

〉
‖

G3

≤ [V]C1,0

∥∥∥R2
U (g, f)

∥∥∥
G2

+ [V]C2,0

∥∥∥R1
U (g, f)

∥∥∥
2

G2

+ 2 [V]C2,0 ‖〈DU [f ], g − f〉‖G2

∥∥∥R1
U (g, f)

∥∥∥
G2

+ [V]C2,1 ‖U(g) − U(f)‖3
G2

≤ [V]C1,0 [U ]
C2,η

Λ
Λ(g, f) ‖g − f‖2+η

G1

+ [V]C2,0 [U ]2
C

1,η1
Λ

Λ(g, f)2 ‖g − f‖2+2η1
G1

+ 2 [V]C2,0 [U ]
C1,0

Λ
[U ]

C
1,η1
Λ

Λ(g, f)2 ‖g − f‖1+η1+η0

G1

+ [V]C2,1 [U ]3
C

0,η0
Λ

Λ(g, f)3 ‖g − f‖3η0

G1
.

Since 1 + η1 + η0 = 3η0 = 2 + η < 2 + 2η1, we deduce

[S]C2,η

Λ3
≤ [V]C1,0 [U ]C2,η

Λ
+ [V]C2,0 [U ]2

C
1,(1+2η)/3
Λ

+ 2 [V]C2,0 [U ]C1,0
Λ

[U ]
C

1,(1+2η)/3
Λ

+ [V]C2,1 [U ]3
C

0,(2+η)/3
Λ

.

�

Example 3.6. Consider the pair F and PG in duality (Definition 3.2) where F ⊂ Cb(E),
and consider ϕ = ϕ1 × · · · × ϕℓ ∈ F⊗ℓ. Then the application Rℓ

ϕ defined in (3.10)

is C2,1(PG ;R). Consider f, g ∈ PG , then we have thanks to the multilinearity of Rℓ
φ
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[20, 21] that
∣∣∣Rℓ

ϕ(g) −Rℓ
ϕ(f)

∣∣∣ ≤ ℓ ‖ϕ‖F⊗(L∞)ℓ−1 ‖g − f‖G ,
∣∣∣DRℓ

ϕ[f ](g − f)
∣∣∣ ≤ ℓ ‖ϕ‖F⊗(L∞)ℓ−1 ‖g − f‖G ,

∣∣∣Rℓ
ϕ(g) −Rℓ

ϕ(f) −DRℓ
ϕ[f ](g − f)

∣∣∣ ≤ ℓ(ℓ− 1)

2
‖ϕ‖F⊗2⊗(L∞)ℓ−2 ‖g − f‖2

G
∣∣∣D2Rℓ

ϕ[f ](g − f)⊗2
∣∣∣ ≤ ℓ(ℓ− 1)

2
‖ϕ‖F⊗2⊗(L∞)ℓ−2 ‖g − f‖2

G
∣∣∣Rℓ

ϕ(g) −Rℓ
ϕ(f) −DRℓ

ϕ[f ](g − f) −D2Rℓ
ϕ[f ](g − f)⊗2

∣∣∣

≤ ℓ(ℓ− 1)(ℓ− 2)

6
‖ϕ‖F⊗3⊗(L∞)ℓ−3 ‖g − f‖3

G,

where we define

‖ϕ‖F⊗j ⊗(L∞)ℓ−j := max
i1,...,ij distincts in [1,ℓ]


‖ϕi1‖F · · · ‖ϕi1‖F

∏

k 6=i1,...,ij

‖ϕk‖L∞


 .

Since we shall need endow the subspaces of probability measures in Definition 3.1 with
metrics, let us give useful examples. We denote by Pp(Rd) the space of probabilities with

finite moments up to order p, more precisely Pp(Rd) := {f ∈ P(Rd) ; 〈|v|p, f〉 < ∞}.

Definition 3.7 (Monge-Kantorovich-Wasserstein distance). For f, g ∈ Pp(Rd) we de-
fine the distance

W p
p (f, g) := inf

π∈Π(f,g)

∫

Rd×Rd
dist(x, y)p π(dx, dy)

where Π(f, g) is the set of probability measures on R
d × R

d with marginals f and g
respectively.

In a analogous way, we also define, for µ, ν ∈ P(P(Rd)) and a distance D over P(Rd),
the distance

W1,D(µ, ν) := inf
π∈Π(µ,ν)

∫

P(Rd)×P(Rd)
D(f, g)π(df, dg)

where Π(µ, ν) denotes the set of probabillity measures on P(Rd)×P(Rd) with marginals
µ and ν.

Definition 3.8 (Fourier based distances). For f, g ∈ Ps(Rd) we define the distance

(3.27) |f − g|s := sup
ξ∈Rd

|f̂(ξ) − ĝ(ξ)|
|ξ|s

which is well defined if f and g have equal moments up to order s − 1 if s is a integer
or ⌊s⌋ if not. We denote by H−s the space associated to this norm.

Definition 3.9 (General Fourier based distances). Let k ∈ N
∗ and set

mG := |v|k, mG := (vα)αNd , |α| ≤ k − 1

and

vα =
(
vα1

1 , . . . , vαd
d

)
, α = (α1, . . . , αd)
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and we define

∀ f ∈ IPG, ‖f‖G = |f |s := sup
ξ∈Rd

|f̂(ξ)|
|ξ|s , s ∈ (0, k].

We extend the above norm to M1
k (Rd) in the following way. First we define for f ∈

M1
k−1(Rd) and α ∈ N

d, |α| ≤ k − 1 the moment

Mα[f ] :=

∫

Rd
vαf(dv).

For a fixed smooth function with compact support χ ∈ C∞
c (Rd) such that χ = 1 over

{ξ ∈ R
d, |ξ| ≤ 1}, we define then

M̂k[f ](ξ) := χ(ξ)




∑

|α|≤k−1

Mα[f ]
ξα

α!
(−i)|α|



 .

We define then the norm

|||f |||k := |f − Mk[f ]|k +
∑

|α|≤k−1

|Mα[f ]|,

where as above |h|k := supξ
|ĥ(ξ)|
|ξ|k .

3.2. Abstract theorem. We state the assumptions of our abstract theorem 3.11.

Assumption (A1) (N-particle system). The semigroup TN
t and its generator GN are

well defined on Cb(E
N ) and are invariant under permutation so that FN

t is well defined.
Moreover, we assume that the following conditions hold:

(i) Conservation constraint: There exists a constraint function mG1 : E → R
D and a

subset RG1 ⊂ R
D such that defining the set

EN := {V ∈ EN ; 〈µN
V ,mG1〉 ∈ RG1}

there holds
∀ t ≥ 0, suppFN

t ⊂ EN .

(ii) Propagation of integral moment bound: There exists a weight function mG1, a time
T ∈ (0,∞] and a constant CT

mG1
> 0, possibly depending on mG1, but not on N ,

such that

(3.28) ∀N ≥ 1 sup
t≥0

〈
FN

t ,MN
mG1

〉
≤ CmG1

.

Assumption (A2) (Nonlinear semigroup). Consider a probability space PG1 as in
Definition 3.1, associated to some function mG1 and a constraint function m1, and
endowed with the metric induced from G1. For some δ ∈ (0, 1] and some ā ∈ (0,∞), we
have for any a ∈ (ā,∞) :

(i) The nonlinear semigroup is well defined S∞
t : BPG1,a → BPG1,a, which is δ-Hölder

continuous locally uniformly in time, in the sense that for any τ ∈ (0,∞) there
exists Cτ > 0 such that

∀ f, g ∈ BPG1,a sup
0≤t≤τ

‖S∞
t g − S∞

t f‖G1
≤ Cτ ‖g − f‖δ

G1
.
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(ii) The application Q is bounded and δ-Hölder continuous from BPG1,a into G1.

With (A2) we have the following lemma [20, Lemma 2.11] (see also [21, Lemma 2.9])

Lemma 3.10. Assume (A2). For any a ∈ (ā,∞) the pullback semigroup T∞
t defined

by

∀ f ∈ BPG,a, Φ ∈ Cb(BPG,a), T∞
t [Φ](f) := Φ

(
SNL

t (f)
)

is a C0-semigroup of contractions on the Banach space Cb(BPG,a(E)).
Its generator G∞ is an unbounded linear operator on Cb(BPG,a) with domain Dom(G∞)

containing C1,η
b (BPG,a). On the latter space, it is defined by the formula

(3.29) ∀ Φ ∈ C1,η
b (BPG,a), ∀ f ∈ BPG,a, (G∞Φ) (f) := 〈DΦ[f ], Q(f)〉 .

Assumption (A3) (Convergence of the generators). Let PG1 ,mG1 ,RG1 be such as intro-
duced in (A2). Define a weight function 1 ≤ m′

G1
≤ CmG1 and then the corresponding

weight Λ1(f) :=
〈
f,m′

G1

〉
.

We assume that there exist a function ε(N) going to 0 as N → ∞ and η ∈ (0, 1] such

that for all Φ ∈ C2,η
Λ1

(PG1,r;R) we have

(3.30)∥∥∥∥
(
MN

mG1

)−1 (
GNπN − πNG

∞
)

Φ

∥∥∥∥
L∞(EN )

≤ ε(N) sup
r∈RG1

(
[Φ]C1,η

Λ1
(PG1,r;R) + [Φ]C2,0

Λ1
(PG1,r;R)

)
.

Assumption (A4) (Differential stability). We assume that the flow

S∞
t ∈ C2,η

Λ2
∩ C

1,(1+2η)/3
Λ2

∩ C
0,(2+η)/3
Λ2

(PG1,r; PG2),

for any r ∈ RG1 , and that there exists C∞
4 > 0 such that

(3.31) sup
r∈RG1

∫ ∞

0

(
[S∞

t ]
C

1,(1+2η)/3
Λ2

+ [S∞
t ]2

C
0,(2+η)/3
Λ2

+ [S∞
t ]C2,0

Λ2

+ [S∞
t ]2

C1,0
Λ2

)
dt ≤ C∞

4 ,

where PG2 is the same probability space as PG1 but endowed with the norm associated

to some Banach space G2 ⊃ G1, with Λ2 = Λ
1
3
1 and η is the same as in (A3).

Assumption (A5) (Weak stability). We assume that, for some probability space PG3

associated to a weight function mG3, a constraint mG3, a set of contraints RG3 and a
distance distG3, for any a > 0 there exists a constant C∞

5 > 0 such that for any r ∈ RG3 ,

(3.32) ∀ f, g ∈ BPG3,a,r, sup
t≥0

distG3 (S∞
t (f), S∞

t (g)) ≤ C∞
5 distG3 (f, g) .

Theorem 3.11 (Abstract theorem). Let us consider a family of N -particle initial con-
ditions FN

0 ∈ Psym(EN ) and the solution associated FN
t = SN

t (FN
0 ). Consider also a

one-particle initial condition f0 ∈ P(E) and the solution associated ft = S∞
t (f0). As-

sume that (A1)-(A2)-(A3)-(A4)-(A5) hold for some spaces PGi , Gi and Fi, i = 1, 2, 3,
and where Gi and Fi are in duality.



22 KLEBER CARRAPATOSO

Then there exists a constant C ∈ (0,∞) such that for any N, ℓ ∈ N, with N ≥ 2ℓ,
and for any ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, F := F1 ∩ F2 ∩ F3 we have

(3.33)

sup
t≥0

∣∣∣
〈
SN

t (FN
0 ) − (S∞

t (f0))⊗N , ϕ⊗ 1N−ℓ
〉∣∣∣

≤ C

[
ℓ2

N
‖ϕ‖L∞ + CmG1

C∞
4 ε(N) ℓ3 ‖ϕ‖F⊗3

2 ⊗(L∞)ℓ−3

+ C∞
5 ℓ ‖ϕ‖F3⊗(L∞)ℓ−1 W1,G3(πN

P F
N
0 , δf0)

]
.

As a consequence, if FN
0 is f0-chaotic the propagation of chaos holds.

Proof of Theorem 3.11. We split the term (3.33) in three parts :
∣∣∣
〈
SN

t (FN
0 ) − (S∞

t (f0))⊗N , ϕ⊗ 1N−ℓ
〉∣∣∣

≤
∣∣∣
〈
SN

t (FN
0 ), ϕ ⊗ 1N−ℓ

〉
−
〈
SN

t (FN
0 ), Rℓ

ϕ ◦ µN
V

〉∣∣∣ (=: T1)

+
∣∣∣
〈
FN

0 , TN
t (Rℓ

ϕ ◦ µN
V )
〉

−
〈
FN

0 , (T∞
t Rℓ

ϕ) ◦ µN
V

〉∣∣∣ (=: T2)

+
∣∣∣
〈
FN

0 , (T∞
t Rℓ

ϕ) ◦ µN
V

〉
−
〈

(S∞
t (f0))⊗ℓ , ϕ

〉∣∣∣ (=: T3)

and we evaluate each of them.

Step 1. For the first term T1, a classical combinatorial trick (see [23] and [21, Lemma
2.14]) implies

T1 ≤
2ℓ2‖ϕ‖L∞(Eℓ)

N
.

Step 2. For the term T2, we have the following identity

TN
t πN − πNT

∞
t = −

∫ t

0

d

dt
[TN

t−s πN T∞
s ]ds

=

∫ t

0
TN

t−s (GNπN − πNG
∞)T∞

s ds

and then for any t ≥ 0

(3.34)

T2 ≤
∫ ∞

0

∣∣∣
〈

(MN
mG1

)SN
t−s(FN

0 ), (MN
mG1

)−1[GNπN − πNG
∞]T∞

s Rℓ
ϕ

〉∣∣∣ ds

≤ sup
t≥0

〈
MN

mG1
, SN

t (FN
0 )
〉 ∫ ∞

0

∥∥∥(MN
mG1

)−1[GNπN − πNG
∞]T∞

s Rℓ
ϕ

∥∥∥
L∞(EN )

ds

≤ CmG1
ε(N) sup

r∈RG1

∫ ∞

0

([
T∞

s Rℓ
ϕ

]

C1,η
Λ1

(PG1,r;R)
+
[
T∞

s Rℓ
ϕ

]

C2,0
Λ1

(PG1,r;R)

)
ds,

thanks to (A1)-(i) and (A3).
Furthermore we know that the application T∞

s (Rℓ
ϕ) = Rℓ

ϕ ◦ S∞
s and by assumption

(A4) the semigroup

S∞
s ∈ C2,η

Λ2
∩ C

1,(1+2η)/3
Λ2

∩ C
0,(2+η)/3
Λ2

(PG1,r; PG2).
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Moreover, with ϕ ∈ F⊗ℓ
2 we have Rℓ

ϕ ∈ C2,1(PG2 ;R) (see exemple 3.6). Finally, by
Lemma 3.5 we obtain that

T∞
s (Rℓ

ϕ) ∈ C2,η
Λ3

2
∩ C

1,(1+2η)/3

Λ3
2

∩C0,(2+η)/3

Λ3
2

(PG1,r;R)

with
[
T∞

s Rℓ
ϕ

]

C
1,(1+2η)

Λ3
2

(PG1,r;R)
≤ ‖Rℓ

ϕ‖C2,1(PG2
;R)

(
[S∞

t ]
C

1,(1+2η)/3
Λ2

(PG1,r;PG2
)

+ [S∞
t ]2

C
0,(2+η)/3
Λ2

(PG1,r;PG2
)

)
,

[
T∞

s Rℓ
ϕ

]

C2,0

Λ3
2

(PG1,r;R)
≤ ‖Rℓ

ϕ‖C2,1(PG2
;R)

(
[S∞

t ]C2,0
Λ2

(PG1,r;PG2
) + [S∞

t ]2
C1,0

Λ2
(PG1,r;PG2

)

)
.

From assumption (A4), Λ2 = Λ
1/(3)
1 and the estimate of ‖Rℓ

ϕ‖C2,1 in exemple 3.6, we
can deduce, plugging the last estimate on (3.34),

(3.35) T2 ≤ CmG1
C∞

4 ε(N) ℓ3 ‖ϕ‖F⊗3
2 ⊗(L∞)ℓ−3 .

Step 3. For the third term T3 we deduce, thanks to the assumption (A5) and the fact

that Rℓ
ϕ ∈ C0,1(PG3 ;R) for ϕ ∈ F⊗ℓ

3 ,

(3.36)

T3 =
∣∣∣
〈
FN

0 , Rℓ
ϕ(S∞

t (µN
V )) −Rℓ

ϕ(S∞
t (f0))

〉∣∣∣

≤ ‖Rℓ
ϕ‖

C0,1(PG3
;R)

〈
FN

0 ,distG3(S∞
t (µN

V ), S∞
t (f0))

〉

≤ ℓ ‖ϕ‖F3⊗(L∞)ℓ−1 C∞
5

〈
FN

0 ,distG3(µN
V , f0)

〉
.

By the definition of the Wasserstein distance

∀α, β ∈ P(PG3) W1,G3(α, β) := inf
π∈Π(α,β)

∫

PG3
×PG3

distG3(f, g)π(df, dg)

with Π(α, β) the set of probability measures over PG3 × PG3 with marginals α and β
respectively. Taking β = δf0 , the set Π(α, δf0 ) = {α ⊗ δf0} has only one element and

we obtain, with α = πN
P F

N
0 ,

(3.37)

W1,G3(πN
P F

N
0 , δf0) := inf

π∈Π(πN
P F N

0 ,δf0
)

∫∫

PG3
×PG3

distG3(f, g)π(df, dg)

=

∫∫

PG3
×PG3

distG3(f, g)πN
P F

N
0 (df) δf0(dg)

=

∫

PG3

distG3(f, f0)πN
P F

N
0 (df)

=

∫

EN
distG3(µN

V , f0)FN
0 (dV ).

where we have used the definition of πN
P (see subsection 3.1) in the last equality. We

conclude then plugging this estimate on (3.36).
�
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4. Application to the Landau equation

In this section we will use the consistency-stability method presented in the Section
3 to show the propagation of chaos for the Landau equation for maxwellian molecules.
To prove some estimates for the Landau equation we will prove first the same estimates
for the Boltzmann equation (as in [20]) with a collisional kernel satisfying the grazing
collisions (2.18). Then passing to the limit we will recover the same results for Landau.

Our main theorems are:

Theorem 4.1. Consider a N -particle initial condition FN
0 ∈ Psym(RdN ) and, for all t ≥

0, the associated solution of the N -particle Landau dynamics FN
t = SN

t (FN
0 ). Consider

also a one-particle initial condition f0 ∈ P6(Rd), with zero momentum
∫
vf0 = 0 and

energy
∫

|v|2f0 =: E ∈ (0,∞), and the associated solution of the limit (mean-field)
Landau equation ft = S∞

t (f0). Suppose further that there exists E0 ∈ (0,∞) such that

(4.1) suppFN
0 ⊂

{
V ∈ R

dN ,
1

N

N∑

i=1

|vi|2 ≤ E0

}
.

Then, for ℓ ∈ N
∗, for all

ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, F :=

{
ϕ : Rd → R

d; ‖ϕ‖F =

∫

Rd
(1 + |ξ|6)|ϕ̂(ξ)| dξ < ∞

}

we have, for any N ≥ 2ℓ,

sup
t≥0

∣∣∣
〈
SN

t (FN
0 ) − (S∞

t (f0))⊗N , ϕ
〉∣∣∣

≤ C

[
ℓ2

N
‖ϕ‖L∞ + C∞

4

ℓ3

N
‖ϕ‖F3⊗(L∞)ℓ−3 +C∞

5 ℓ ‖ϕ‖W 1,∞⊗(L∞)ℓ−1 W1,W2(πN
P F

N
0 , δf0)

]
.

As a consequence, if FN
0 is f0-chaotic the third term of the right-hand side goes to 0

when N → ∞, which implies the propagation of chaos.

Theorem 4.2. Consider the same framework of Theorem 4.1. Assume moreover that
f0 ∈ P6(Rd)∩Lp(Rd) for some p > 1 and let FN

0 := [f⊗N
0 ]SN (E) ∈ Psym(SN (E)) (observe

that (4.1) is satisfied for this choice of initial data with E0 = E). Then it holds:

(1) For all 0 < ǫ < 9[(7d + 6)2(d+ 9)]−1, there exists a constant Cǫ > 0 such that

sup
t≥0

W1(FN
t , f⊗N

t )

N
≤ CǫN

−ǫ.

(2) For all t ≥ 0, for all N ∈ N
∗

W1(FN
t , γN )

N
≤ p(t),

for a polynomial rate p(t) → 0 as t → ∞ and where γN is the uniform probability
measure on SN (E).

Remark 4.3. This theorem also holds (with different quantitative rates) for other choices
of initial data FN

0 that are f0-chaotic. In particular, if we consider f0 ∈ P6(Rd) with

compact support and FN
0 = f⊗N

0 ∈ Psym(RdN ).
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The proof of Theorem 4.1 relies on the proof of assumptions (A1)-(A2)-(A3)-(A4)-
(A5), with a suitable choice of spaces, and then on the application of Theorem 3.11.
Furthermore, we shall prove Theorem 4.2 using Theorem 4.1 and some results from
[13, 20, 5].

4.1. Proof of assumption A1. Consider the N -particle SDE (2.33)-(2.34). Since b
and σ are Lipschitz, existence and uniqueness hold by standard arguments (see [22,
Chapter 5]). Hence it defines a semigroup TN

t , we can then define its generator GN =
GN

L (given by (2.28)-(2.29)) and its dual semigroup SN
t , as explained in section 3.

We have the following lemma.

Lemma 4.4. The dynamics of the N -particle system (2.29) conserves momentum and
energy, more precisely there holds, for all t ≥ 0,

∫

RdN
ϕ

(
N∑

i=1

vi,α

)
FN

t (dV ) =

∫

RdN
ϕ

(
N∑

i=1

vi,α

)
FN

0 (dV ), α ∈ {1, . . . , d}

and ∫

RdN
ϕ
(
|V |2

)
FN

t (dV ) =

∫

RdN
ϕ
(
|V |2

)
FN

0 (dV ).

Remark 4.5. We can easily observe during the proof that if we consider the N -particle
system of Remark 2.1 with generator GN

2 (2.32), which is different from the system we
considered here (2.29), we have conservation of energy

∂t

〈
fN

t ,
N∑

i=1

|vi|2
〉

=

〈
fN

t , G
N
2

N∑

i=1

|vi|2
〉

= 0,

however this is not true for all functions ϕ = ϕ(|V |2). Then, Lemma 4.6, which is a
consequence os this lemma, does not hold for the N -particle system of Remark 2.1.

Proof of Lemma 4.4. Let us prove the second equality (energy conservation), the proof
of the first one (momentun conservation) being similar. Consider the Landau master
equation (2.29) and ϕ(V ) = ϕ(|V |2) smooth enough, we have then

∇i(ϕ(|V |2)) =
(
∂vi,αϕ(|V |2)

)

1≤α≤d
= 2ϕ′(|V |2)vi

and, for i 6= j,

∂vi,α∂vj,β
ϕ(|V |2) = 4ϕ′′(|V |2)vi,αvj,β

∂vi,α∂vi,β
ϕ(|V |2) = 4ϕ′′(|V |2)vi,αvi,β + 2ϕ′(|V |2)δαβ .

Denoting ϕ′ = ϕ′(|V |2) and ϕ′′ = ϕ′′(|V |2) for simplicity, we obtain

(∇2
iiϕ+ ∇2

jjϕ− ∇2
ijϕ− ∇2

jiϕ)αβ = 4ϕ′δαβ + 4ϕ′′ (vi,αvi,β + vj,αvj,β − vi,αvj,β − vj,αvi,β)

= 4ϕ′δαβ + 4ϕ′′(vi − vj)α(vi − vj)β .

Therefore we have

(4.2)
b(vi − vj)(∇iϕ(|V |2) − ∇jϕ(|V |2)) = −2|vi − vj|γ(vi − vj) · 2ϕ′(|V |2)(vi − vj)

= −4ϕ′(|V |2)|vi − vj |γ+2
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and
a(vi − vj) : (∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiφ) =

= |vi − vj |γ
d∑

α,β=1

{[
|vi − vj|2δαβ − (vi − vj)α(vi − vj)β

]
4ϕ′δαβ

+
[
|vi − vj |2δαβ − (vi − vj)α(vi − vj)β

]
4ϕ′′(vi − vj)α(vi − vj)β

}

=: |vi − vj |γ{T1 + T2}.
Computing T1 we have

(4.3)
T1 = 4ϕ′

d∑

α,β=1

[
|vi − vj |2δαβ − (vi − vj)α(vi − vj)β

]
δαβ

= 8ϕ′|vi − vj|2,
and computing T2

(4.4)

T2 = 4ϕ′′
d∑

α,β=1

[
|vi − vj|2(vi − vj)α(vi − vj)βδαβ − (vi − vj)2

α(vi − vj)
2
β

]

= 4ϕ′′




|vi − vj|4 −
[

d∑

α=1

(vi − vj)
2
α

]2





= 0.

Gathering (4.2), (4.3) and (4.4) we obtain

(4.5)

b(vi − vj)(∇iϕ− ∇jϕ) +
1

2
a(vi − vj) : (∇2

iiϕ+ ∇2
jjϕ− ∇2

ijϕ− ∇2
jiϕ)

= −4ϕ′ |vi − vj|γ+2 +
1

2
8ϕ′ |vi − vj |γ+2

= 0,

which implies, for all t ≥ 0,

(4.6)

∫
ϕ(|V |2)FN

t (dV ) =

∫
ϕ(|V |2)FN

0 (dV ).

�

Lemma 4.6. Consider FN
0 such that

suppFN
0 ⊂ {V ∈ R

dN ; MN
2 (V ) =

1

N

N∑

i=1

|vi|2 ≤ E0}.

Then there holds

∀ t > 0, suppFN
t ⊂ {V ∈ R

dN ; MN
2 (V ) ≤ E0}.

Proof of Lemma 4.6. It is a consequence of Lemma 4.4, with ϕ(|V |2) = 1|V |2>NE0
. Con-

sider a mollifier ρη for η > 0, i.e. ρη(x) = η−1ρ(η−1x), with ρ ∈ C∞
c (R), ρ ≥ 0 and
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suppρ ⊂ B1, and define ϕη = ρη ∗ ϕ. Using Lemma 4.4 we have, for all η and for all
t ≥ 0, ∫

RdN
ϕη F

N
t (dV ) =

∫

RdN
ϕη F

N
0 (dV ).

Passing to the limit η → 0 we obtain
∫

RdN
1|V |2>NE0

FN
t (dV ) =

∫

RdN
1|V |2>NE0

FN
0 (dV ) = 0.

�

Lemma 4.7. Consider FN
0 such that

〈
FN

0 ,MN
k

〉
≤ Ck for k > 2. Then there holds

sup
t≥0

〈
FN

t ,MN
k

〉
≤ Ck.

Proof of Lemma 4.7. Consider FN,ε
t the solution of the Boltzmann N -particle system

(2.8)-(2.9) with grazing collisions (2.18). Then from [20, Lemma 5.3], we obtain the

desired result for FN,ε
t with a constant independent of ε. We conclude passing to the

grazing collisions limit ε → 0. �

Consider the constraint function mG1 : Rd → R+ × R
d, mG1(v) = (|v|2, v) with the

set of constraints RG1 : {(r, r̄) ∈ R+ × R
d; |r̄|2 ≤ r ≤ E0}. Then Lemma 4.6 proves

(A1i). Moreover, Lemma 4.7 proves (A1ii) with the weight function mG1(v) := 〈v〉6 =
(1 + |v|2)3 for all v ∈ R

d.

4.2. Proof of assumption A2. Let us define the spaces of probabilities (and the
corresponding bounded, constrained and increments subsets, see Definition 3.1)

PG1 := {f ∈ P(Rd); M6(f) < ∞},
and, for r ∈ RG1 , more precisely r = (r, r̄) = (r, r1, . . . , rd), the constrained space

PG1,r := {f ∈ PG1 ; 〈f, |v|2〉 = r, 〈f, vi〉 = ri for i = 1, . . . , d}.
We define then the for some a ∈ (0,∞) the bounded set

BPG1,a := {f ∈ PG1 ; M6(f) ≤ a},
and, for any r ∈ RG1 , the bounded constrained set

BPG1,a,r := {f ∈ BPG1,a; 〈f, |v|2〉 = r, 〈f, vi〉 = ri for i = 1, . . . , d}.
We endow these spaces with the distance distG1 associated with the norm ‖·‖G1 = | · |2
(see definitions 3.8 and 3.9).

We have the following lemma.

Lemma 4.8. Let f0, g0 ∈ P2(Rd) with same momentum, i.e. 〈f0, v〉 = 〈g0, v〉, and
consider the solutions ft, gt of Landau equation (2.10)-(2.11). Then

(4.7) sup
t≥0

|ft − gt|2 ≤ |f0 − g0|2.

Remark 4.9. Let us mention that this result can be found in [27] proving uniqueness for
the Landau equation for maxwellian molecules. There the author indicates that we can
prove it using the known result for the Boltzmann equation for maxwellian molecules
from [25] and then passing to the limit of grazing collisions.
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Proof of Lemma 4.8. Let us split the prove in two steps. First we prove the lemma for
the Boltzmann equation then we recover the result for Landau equation passing to the
limit of grazing collisions.

Step 1. We shall prove the deasired result for the Boltzmann equation with true
Maxwellian molecules. This result is prove in [25, 20], but we write it for complete-
ness.

Consider the solutions f ε
t and gε

t of Boltzmann equation (2.1)-(2.2) with initial data
f0 and g0 respectively. Denote dε := gε − f ε and sε := gε + f ε, then the equation
satisfied for d is

∂td
ε =

1

2

[
QB,ε(sε, dε) +QB,ε(dε, sε)

]
.

Performing the Fourier transform ([2]) and denoting Dε = d̂ε, Sε = ŝε, we have

∂tD
ε(ξ) =

∫

Sd−1
bε(σ · ξ̂)

[
Dε(ξ+)Sε(ξ−)

2
+
Dε(ξ−)Sε(ξ+)

2
−Dε(ξ)

]
dσ

where ξ+ = ξ+|ξ|σ
2 , ξ− = ξ−|ξ|σ

2 and ξ̂ = ξ/|ξ|.
We recall that bε is not integrable so we perform the following cut-off, which will be

relaxed in the end,

(4.8)

∫

Sd−1
bK

ε (σ · ξ̂)dσ = K, bK
ε = bε1|θ|≥δ(K),

for some function δ such that δ(K) → 0 as K → +∞, so that bε = bK
ε + bC

ε . In [25, 20],
we observe that the remainder term

RK
ε (ξ) :=

∫

Sd−1
bC

ε (σ · ξ̂)
[
Dε(ξ+)Sε(ξ−)

2
+
Dε(ξ−)Sε(ξ+)

2
−Dε(ξ)

]
dσ

verifies, for any ξ ∈ R
d, |RK

ε (ξ)| ≤ rK
ε |ξ|2, where rK

ε → 0 as K → ∞, and rK
ε depends

on the second order moments of d and s. Indeed, using that D(0) = ∂ξi
D(0) = 0 for all

i, S(0) = 2, sup|η|≤|ξ| |∂ξi
∂jD(η)| and sup|η|≤|ξ| |∂ξi

∂jD(η)| are bounded thanks to the
bounds on the second order moments of d and s, there holds

|Dε(ξ+)Sε(ξ−) +Dε(ξ−)Sε(ξ+) − 2Dε(ξ)|
≤ |Sε(ξ−)||Dε(ξ+) −Dε(ξ)| + |Dε(ξ)||Sε(ξ−) − Sε(0)| + |Dε(ξ−)||Sε(ξ+)|
≤ C|ξ|2(1 − cos θ)1/2,

and we conclude since bC
ε (cos θ)(1 − cos θ)1/2 is integrable.

Using that ‖Sε‖∞ ≤ 2, we have

d

dt

|Dε(ξ)|
|ξ|2 +K

|Dε(ξ)|
|ξ|2 ≤ sup

ξ∈Rd

|Dε(ξ)|
|ξ|2

(
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(
|ξ̂+|2 + |ξ̂−|2

)
dσ

)
+ rK

ε

with

|ξ̂+|2 =
1

2

(
1 + σ · ξ̂

)
, |ξ̂−|2 =

1

2

(
1 − σ · ξ̂

)
.

One obtains
d

dt

|Dε(ξ)|
|ξ|2 +K

|Dε(ξ)|
|ξ|2 ≤ K sup

ξ∈Rd

|Dε(ξ)|
|ξ|2 + rK

ε ,
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and by a Gronwall’s lemma one deduces

sup
ξ∈Rd

|Dε
t (ξ)|

|ξ|2 ≤ sup
ξ∈Rd

|Dε
0(ξ)|

|ξ|2 + t rK
ε .

Relaxing the cut-off K → ∞ one proves

(4.9) |f ε
t − gε

t |2 ≤ |f0 − g0|.

Step 2. Since (4.9) does not depend on ε and the solution of the Boltzmann equation
f ε

t converges towards the solution of the Landau equation ft (see [26]) when ε → 0, we
obtain the desired result.

�

Therefore we have that the Landau semigroup S∞
t is C0,1(PG1 ; PG1) and (A2)-i is

proved.

To prove (A2)-ii we use [20, Lemma 5.5], valid for the Boltzmann operator with
grazing collisions QB,ε, which says that there exists C > 0 and δ ∈ (0, 1] such that for
any f, g ∈ BPG1,a,r we have

|QB,ε(f, f) −QB,ε(g, g)|2 ≤ C|f − g|δ2,
with a constant C that does not depend on ε. Finally, passing to the limit of grazing
collisions ǫ → 0, we have that QB,ε → QL. We prove then (A2)-ii also for the Landau
equation.

4.3. Proof of assumption A3. Let Λ1(f) := 〈f,m′
G1

〉 with the weight m′
G1

(v) := 〈v〉4,

where we recall that mG1 = 〈v〉6, and then consider the generator GN of the Landau
master equation (2.29).

Then we have the following lemma, which proves (A3).

Lemma 4.10. For all Φ ∈ ⋂r∈RG1
C2,η

Λ1
(PG1,r;R) there exists C > 0 such that

(4.10)

∥∥∥∥
(
MN

mG1

)−1 (
GNπN − πNG

∞
)

Φ

∥∥∥∥
L∞(EN )

≤ C

N
sup

r∈RG1

[Φ]
C2,0

Λ1
(PG1,r;R)

.

Proof of Lemma 4.10. The application R
dN → PG1 , V 7→ µN

V is of class C2,1 with (see
[21, Lemma 5.4])

(4.11)
∂iα(µN

V ) =
1

N
∂αδVi

∂2
iα,iβ(µN

V ) =
1

N
∂2

αβδVi

and for i 6= j, ∂2
iα,jβ(µN

V ) = 0.

Let Φ ∈ C2,η
Λ1

(PG1 ;R), so R
dN → R, V 7→ Φ(µN

V ) is also C2,η. Indeed, let φ = DΦ[µN
V ]

and we have

∂vi,α(Φ(µN
V )) = 〈DΦ[µN

V ], ∂vi,αµ
N
V 〉 = 〈DΦ[µN

V ],
1

N
∂vi,αδvi〉 =

1

N
∂αφ(vi)

∂2
vi,α,vi,β

Φ(µN
V ) = 〈DΦ[µN

V ],
1

N
∂2

vi,α,vi,β
δvi〉 +D2Φ[µN

V ]

(
1

N
∂vi,αδvi ,

1

N
∂vi,β

δvi

)

=
1

N
∂2

α,βφ(vi) +
1

N2
D2Φ[µN

V ]
(
∂vi,αδvi , ∂vi,β

δvi

)
.
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We compute

(GNπNΦ)(V ) = GN Φ(µN
V )

=
1

N

N∑

i,j=1

d∑

α=1

bα(vi − vj)
[
∂vi,α(Φ(µN

V )) − ∂vj,α(Φ(µN
V ))

]

+
1

2N

N∑

i,j=1

d∑

α,β=1

aαβ(vi − vj)
[
∂2

vi,α,vi,β
Φ(µN

V ) + ∂2
vj,α,vj,β

Φ(µN
V )

−∂2
vi,α,vj,β

Φ(µN
V ) − ∂2

vj,α,vi,β
Φ(µN

V )
]

=
1

N

N∑

i,j=1

d∑

α=1

bα(vi − vj)

[
1

N
∂αφ(vi) − 1

N
∂αφ(vj)

]

+
1

2N

N∑

i,j=1

d∑

α,β=1

aαβ(vi − vj)

[
1

N
∂2

α,βφ(vi) +
1

N
∂2

α,βφ(vj)

]
(=: I1)

+
1

2N

N∑

i,j=1

d∑

α,β=1

aαβ(vi − vj)

[
1

N2
D2Φ[µN

V ]
(
∂vi,αδvi , ∂vi,β

δvi

)

+
1

N2
D2Φ[µN

V ]
(
∂vj,αδvj , ∂vj,β

δvj

)
− 2

1

N2
D2Φ[µN

V ]
(
∂vi,αδvi , ∂vj,β

δvj

)]
(=: I2).

For the first term we have

I1 =

∫ ∫ d∑

α=1

bα(v − v∗) [∂αφ(v) − ∂αφ(v∗)]µN
V (dv)µN

V (dv∗)

+
1

2

∫ ∫ d∑

α,β=1

aαβ(v − v∗)
[
∂2

α,βφ(v) + ∂2
α,βφ(v∗)

]
µN

V (dv)µN
V (dv∗)

=〈QL(µN
V , µ

N
V ), φ〉 = 〈QL(µN

V , µ
N
V ),DΦ[µN

V ]〉 = (πNG∞Φ)(V ),

thanks to Lemma 3.10. For the second one, we deduce that there exists C > 0 depending
on d such that

|I2| ≤ C

N

∣∣∣D2Φ[µN
V ]
(
∂vi,αδvi , ∂vi,β

δvi

)∣∣∣
1

N2

N∑

i,j=1

|vi − vj|2,

since |aαβ(vi − vj)| ≤ |vi − vj |2. We conclude then

|I2| ≤ C

N
[Φ]C2,0

Λ1
(PG1,r;R) Λ1(µN

V )
1

N2

N∑

i,j=1

|vi − vj |2

≤ CE
N

[Φ]
C2,0

Λ1
(PG1,r;R)

MN
mG1

(V )

and therefore we prove (4.10).
�
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4.4. Proof of assumption A4. In the same way of the subsection 4.2, we will use
here the Boltzmann equation and then perform the asymptotics of grazing collisions to
prove the results for the Landau equation.

We define the following equations, denoting by Q the symmetrized version of the
Landau operator QL (2.11), i.e. Q(f, g) = [QL(f, g) +QL(g, f)]/2,

(4.12)





∂tf = Q(f, f), f |t=0 = f0,
∂tg = Q(g, g), g|t=0 = g0,
∂th = 2Q(f, h), h|t=0 = g0 − f0,
∂tu = 2Q(f, u) +Q(h, h), u|t=0 = 0,

and the new variables

d := g − f, s := g + f, ω := g − f − h, ψ := g − f − h− u,

which satisfy

(4.13)





∂td = Q(s, d), d|t=0 = g0 − f0,
∂tω = Q(s,w) +Q(h, d), ω|t=0 = 0,
∂tψ = Q(s, ψ) +Q(h,w) +Q(u, d), ψ|t=0 = 0.

Lemma 4.11. Consider f0, g0 ∈ PG1,r, r ∈ RG1 , and the solutions ft, gt, ht of (4.12)-
(4.13). There exists λ1 ∈ (0,∞) that for any η ∈ [2/3, 1], there exists Cη such that we
have

(4.14)
|gt − ft|2 ≤ Cη e

−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|η2,
|ht|2 ≤ Cη e

−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|η2.
Proof of Lemma 4.11. We split the proof into two steps. Again, we shall first prove the
lemma for Boltzmann equation with a kernel satisfying the grazing collisions, which is
proved in [20], and then passing to the limit of grazing collisions we prove the same
result for the Landau equation.

Step 1. Let us denote by Qε the symmetrized version of the Boltmann operator QB,ε

(2.2) with kernel bε satisfying (2.18), i.e. Qε(f, g) = [QB,ε(f, g) +QB,ε(g, f)]/2.
Consider the solutions f ε

t , gε
t and hε

t of

(4.15)






∂tf
ε = Qε(f ε, f ε), f ε|t=0 = f0,

∂tg
ε = Qε(g

ε, gε), gε|t=0 = g0,
∂th

ε = 2Qε(f ε, hε), hε|t=0 = g0 − f0,

and define dε := gε − f ε which satisfies (where sε := gε + f ε)

∂td
ε = Qε(sε, dε), dε|t=0 = g0 − f0.

As in Lemma 4.8 we denote Dε = d̂ε and Sε = ŝε. Define D̄ε = Dε − M̂4[dε] (see
definition 3.9). Then the equation safisfied for D̄ε is

∂tD̄
ε = Q̂ε(Dε, Sε) − ∂tM̂4[dε] = Q̂ε(D̄ε, Sε) + Q̂ε(M̂4[dε], Sε) − M̂4[Qε(dε, sε)].

From [20, Lemma 5.6] we know that, for any ξ ∈ R
d,

∣∣∣Q̂ε(M̂4[dε], Sε) − M̂4[Qε(dε, sε)]
∣∣∣ ≤ C|ξ|4

∑

|α|≤3

|Mα[f ε − gε]|,
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and also, from [24, Theorem 8.1], that there are constants C, δ > 0 such that for all
t ≥ 0

∑

|α|≤3

|Mα[f ε
t − gε

t ]| ≤ Ce−δt
∑

|α|≤3

|Mα[f0 − g0]|.

Then, following [20] and performing the same cut-off as in the proof of lemma 4.8,
we have that

(4.16)

d

dt

|D̄ε|
|ξ|4 +K

|D̄ε|
|ξ|4 ≤

(
sup
ξ∈Rd

|D̄ε|
|ξ|4

)(
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(
|ξ̂+|4 + |ξ̂−|4

)
dσ

)

+ C e−δt



∑

|α|≤3

|Mα[f0 − g0]|

+

|RK
ε |

|ξ|4 .

where the remainder term

RK
ε (ξ) :=

∫

Sd−1
bC

ε (σ · ξ̂)
[

1

2
D̄ε(ξ+)Sε(ξ−) +

1

2
D̄ε(ξ−)Sε(ξ+) − D̄ε(ξ)

]
dσ

satisfies, for any ξ ∈ R
d, |RK

ε (ξ)| ≤ rK
ε |ξ|4, with rK

ε → 0 as K → ∞, and rK
ε depends

on the fourth order moments of d and s. Indeed, we have

|D̄ε(ξ+)Sε(ξ−) + D̄ε(ξ−)Sε(ξ+) − 2D(ξ)|
≤ |Sε(ξ−)||D̄ε(ξ+) − D̄ε(ξ−)| + |D̄ε(ξ)||Sε(ξ−) − Sε(0)| + |D̄ε(ξ−)||Sε(ξ+)|
≤ C|ξ|4(1 − cos θ)1/2,

where we use that ∇α
ξ D̄(0) = 0 for all multi-index |α| ≤ 3 and, for |α| = 4, sup|η|≤|ξ| ∇α

ξ D̄(η)

and sup|η|≤|ξ| ∇α
ξ S(η) are bounded thanks to the bounds on the fourth moment of d and

s. As in lemma 4.8, the claim follows since bC
ε (cos θ)(1 − cos θ)1/2 is integrable.

We denote

λK :=

∫

Sd−1
bK

ε (σ · ξ̂)
(
|ξ̂+|4 + |ξ̂−|4

)
dσ =

∫

Sd−1
bK

ε (σ · ξ̂)1

2

(
1 + (σ · ξ̂)2

)
dσ

and we compute

λK −K = −1

2

∫

Sd−1
bK

ε (σ · ξ̂)
(
1 − (σ · ξ̂)2

)
dσ

−−−−→
K→∞

−1

2

∫

Sd−1
bε(σ · ξ̂)

(
1 − (σ · ξ̂)2

)
dσ =: −λ̄ε ∈ (−∞, 0)

−−−→
ε→0

−λ̄ ∈ (−∞, 0).

One can now apply Gronwall’s lemma to obtain

sup
ξ∈Rd

|D̄ε
t |

|ξ|4 ≤ e(λK−K)t sup
ξ∈Rd

|D̄ε
0|

|ξ|4 + C




∑

|α|≤3

|Mα[f0 − g0]|



(
e−δt − e(λK −K)t

K − λK − δ

)

+rK
ε

(
1 − e(λK−K)t

K − λK

)
.
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Then relaxing the cut-off K → ∞ and choosing 0 < λ < min(δ, λ̄ε) one has (remark
that λ depends on ε)

(4.17) sup
ξ∈Rd

|D̄ε
t |

|ξ|4 ≤ C e−λt


 sup

ξ∈Rd

|D̄ε
0|

|ξ|4 +
∑

|α|≤3

|Mα[f0 − g0]|

 .

Using a standard interpolation argument [20], one obtains
(4.18)

|g − f |2 ≤ |g − f − M4[g − f ]|2 + C



∑

|α|≤3

|Mα[g − f ]|



≤ ‖g − f − M4[f − g]‖1/2
M1

|g − f − M4[g − f ]|1/2
4 + C




∑

|α|≤3

|Mα[g − f ]|




≤ CM4(f0 + g0) e−(λ/2)t.

Finally one concludes by writing

(4.19)
|gε

t − f ε
t |2 ≤ |gε

t − f ε
t |η2 |gε

t − f ε
t |1−η

2

≤ Cη e
−(1−η)λt M4(f0 + g0)1/3 |g0 − f0|η2

where we have used the last estimate (4.18), lemma 4.8 and the fact that M4(f0 +

g0)1−η ≤ M4(f0 + g0)1/3 for η ∈ [2/3, 1] . For ht one has the same computations.

Step 2. Let us now deduce the result for solutions ft and gt of the Landau equation.
Coming back to (4.17) and choosing 0 < λ1 < min(δ, λ̄), where λ̄ε → λ̄ ∈ (0,∞) as
ε → 0, we recover (4.19) with the exponent λ1 with does not depend on ε. Hence,
passing to the limit ε → 0, we have gε − f ε → g − f and then

|gt − ft|2 ≤ Cη e
−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|η2.

Rigorously, we write

|gt − ft|2 ≤ |gt − gε
t |2 + |ft − f ε

t |2 + |gε
t − f ε

t |2,
then for the third term on the right-hand side we use (4.19) with exponent λ1 that does
not depend on ε, and for the other two terms we use that gε

t weakly converges towards
gt in L1 (see Villani [26]), hence |gt − gε

t |2 → 0 when ε → 0 and we deduce

|gt − ft|2 ≤ Cη e
−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|η2.

�

Lemma 4.12. Consider f0, g0 ∈ PG1,r, r ∈ RG1 , and the solutions ft, gt, ht, ωt and ut

of (4.12) and (4.13). There exists λ1 ∈ (0,∞) that for any η ∈ [2/3, 1], there exists Cη

such that we have

(4.20)
|gt − ft − ht|4 ≤ Cη e

−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|1+η
2

|ut|4 ≤ Cη e
−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|1+η

2

Proof of Lemma 4.12. Let us split the proof into two steps.

Step 1. As in Lemma 4.11, we consider Qε the symmetrized version of the Boltmann
operator QB,ε and the solutions f ε

t , gε
t and hε

t of (4.15).
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Consider also uε
t solution of

(4.21) ∂tu
ε = 2Qε(f ε, uε) +Qε(hε, hε), uε|t=0 = 0,

and define ωε := gε − f ε − hε which satisfies

∂tω
ε = Qε(sε, wε) +Qε(h

ε, dε), ωε|t=0 = 0.

First of all, we remark that ωε
t has moments equals to zero up to order 3. Indeed, let

us prove that, for α ∈ N
d,

(4.22) ∀ |α| ≤ 3, Mα(ωε
t ) :=

∫

Rd
vα ωε

t (v) dv = 0.

Following [20, Lemma 5.8] we know that for maxwellian molecules the α-moment of
the Boltzmann operator QB,ε(g, h) is a sum of terms given by the product of moments
of g and h, then we obtain
(4.23)

∀ |α| ≤ 3,
d

dt
Mα(ωε

t ) =
∑

β≤α

aα,β Mβ(ωε
t )Mα−β(sε

t) +
∑

β≤α

aα,β Mβ(hε
t )Mα−β(dε

t )

and we deduce that

(4.24) ∀ |α| ≤ 3,
d

dt
Mα(ωε

t ) =
∑

β≤α

aα,β Mβ(ωε
t )Mα−β(sε

t )

because for all |α| ≤ 1 we have Mα(hε
t ) = Mα(dε

t ) = 0. We conclude (4.22) by the fact
that ω0 = 0. Therefore |ω|4 is well defined and we do not need to ”take-off the moments
of ω”.

Let us denote Ωε = ω̂ε and Hε = ĥε. We perform then the same cut-off as in Lemmas
4.8 and 4.11 and we have the following equation for ωε

t

(4.25)
d

dt

|Ωε(ξ)|
|ξ|4 +K

|Ωε(ξ)|
|ξ|4

≤ 1

2
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|Ωε(ξ+)||Sε(ξ−)|
|ξ|4 +

|Ωε(ξ−)||Sε(ξ+)|
|ξ|4

)
dσ (=: T1)

+
1

2
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|Hε(ξ+)||Dε(ξ−)|
|ξ|4 +

|Hε(ξ−)||Dε(ξ+)|
|ξ|4

)
dσ (=: T2)

+
|RK

ε |
|ξ|4 ,

where the remainder term

RK
ε (ξ) :=

1

2

∫

Sd−1
bC

ε (σ·ξ̂)
[
Ωε(ξ+)Sε(ξ−) + Ωε(ξ−)Sε(ξ+) +Hε(ξ+)Dε(ξ−) +Hε(ξ−)Dε(ξ+)

]
dσ

satisfies, for any ξ ∈ R
d, |RK

ε (ξ)| ≤ rK
ε |ξ|4, with rK

ε → 0 as K → ∞, and rK
ε depends

on moments of order 4 of d, s, h and w. To see this, we argue as in lemma 4.11, using
that ωε has vanishing moments up to order 3, see (4.22).
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We compute first T1 using the fact that ‖Sε‖∞ ≤ 2

T1 ≤
(

sup
ξ∈Rd

|Ωε(ξ)|
|ξ|4

)
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|ξ̂+|4 + |ξ̂−|4
)
dσ

≤ λK sup
ξ∈Rd

|Ωε(ξ)|
|ξ|4 .

where λK is the same that in the proof of lemma 4.11. Next, we compute T2

T2 ≤
(

sup
ξ∈Rd

|Hε(ξ)|
|ξ|2

)(
sup
ξ∈Rd

|Dε(ξ)|
|ξ|2

)
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|ξ+|2|ξ−|2
|ξ|4

)
dσ

≤ |hε
t |2|dε

t |2 sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(
1 − σ · ξ̂

)
dσ

≤ Λε e
−(1−η)λt M4(f0 + g0)1−η |h0|2|d0|η2

where we have used the estimates of lemmas 4.8 and 4.11, and Λε is defined in (2.18).
After these computations we obtain

d

dt

|Ωε(ξ)|
|ξ|4 +K

|Ωε(ξ)|
|ξ|4 ≤ λK sup

ξ∈Rd

|Ωε(ξ)|
|ξ|4 + Λε e

−(1−η)λt M4(f0 + g0)1−η |d0|1+η
2 + rK

ε

and by Gronwall’s lemma

(4.26)

sup
ξ∈Rd

|Ωε
t (ξ)|
|ξ|4 ≤ ΛεM4(f0 + g0)1−η |d0|1+η

2

(
e−(1−η)λt − e(λK−K)t

K − λK − (1 − η)λ

)

+rK
ε

(
1 − e(λK −K)t

K − λK

)
.

Finally, we conclude by relaxing the cut-off parameterK → ∞ and choosing (1−η)λ ∈
(0, λ̄ε) where λε is the same that in lemma 4.11, therefore we have

(4.27) |ωε
t |4 ≤ Cη Λε e

−(1−η)λt M4(f0 + g0)1−η |g0 − f0|1+η
2 .

We obtain the same estimation for uε
t .

Step 2. Consider the solutions f , g and h of (4.12) .
Let us choose λ1 such that 0 < (1−η)λ1 < λ̄, where λ̄ε → λ̄ ∈ (0,∞) as ε → 0. Then

we recover (4.27) with the exponent λ1 with does not depend on ε. Hence, passing to
the limit ε → 0, we have gε − f ε − hε → g − f − h (grazing collisions limit), and in the
right-hand side of (4.27) we have Λε → Λ > 0 (see (2.18)). Then

|gt − ft − ht|4 ≤ Cη Λ e−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|1+η
2 .

�

Lemma 4.13. Consider f0, g0 ∈ PG1,r, r ∈ RG1 , and the solution ψt of (4.13). There
exists λ1 ∈ (0,∞) such that for any η ∈ [2/3, 1], there exists Cη such that we have

(4.28) |gt − ft − ht − ut|6 ≤ Cη e
−(1−η)λ1tM4(f0 + g0)1/3 |g0 − f0|2+η

2
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Proof of Lemma 4.13. We prove the lemma in two steps.

Step 1. Consider the solutions gε
t , f ε

t and hε
t of (4.15) and uε

t solution of (4.21). Define
ψε

t := gε
t − f ε

t − hε
t − uε

t that satisfies

∂tψ
ε = Qε(s

ε, ψε) +Qε(hε, wε) +Qε(uε, dε), ψε|t=0 = 0.

First of all, let us prove that ψε
t has moments equals to zero up to order 5, more

precisely, for α ∈ N
d,

(4.29) ∀ |α| ≤ 5, Mα(ψε
t ) :=

∫

Rd
vα ψε

t (v) dv = 0.

In fact, as in the proof of Lemma 4.12, we can compute the α-moment of ψ
(4.30)

∀ |α| ≤ 5,
d

dt
Mα(ψε

t ) =
∑

β≤α

aα,β Mβ(ψε
t )Mα−β(sε

t ) +
∑

β≤α

aα,β Mβ(hε
t )Mα−β(ωε

t )

+
∑

β≤α

aα,β Mβ(rε
t )Mα−β(dε

t ).

Since

(4.31)
∀ |α| ≤ 2, Mα(hε

t ) = Mα(dε
t ) = 0,

∀ |α| ≤ 3, Mα(ωε
t ) = Mα(rε

t ) = 0,

we deduce that

(4.32) ∀ |α| ≤ 5,
d

dt
Mα(ψε

t ) =
∑

β≤α

aα,β Mβ(ψε
t )Mα−β(sε

t)

and we conclude thanks to ψ0 = 0. Then |ψ|6 is well defined.

Denoting Ψε = ψ̂ε and U ε = ûε, we perform the same cut-off as in lemmas 4.8, 4.11
and 4.12, and it gives the following equation for ψt

(4.33)
d

dt

|Ψε(ξ)|
|ξ|6 +K

|Ψε(ξ)|
|ξ|4

≤ 1

2
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|Ψε(ξ+)||Sε(ξ−)|
|ξ|6 +

|Ψε(ξ−)||Sε(ξ+)|
|ξ|6

)
dσ (=: T1)

+
1

2
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|Hε(ξ+)||Ωε(ξ−)|
|ξ|6 +

|Hε(ξ−)||Ωε(ξ+)|
|ξ|6

)
dσ (=: T2)

+
1

2
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(

|U ε(ξ+)||Dε(ξ−)|
|ξ|6 +

|U ε(ξ−)||Dε(ξ+)|
|ξ|6

)
dσ (=: T3)

+
|RK

ε |
|ξ|6 ,

where the remainder term

(4.34) RK
ε (ξ) :=

1

2

∫

Sd−1
bC

ε (σ · ξ̂)
[
Ψε(ξ+)Sε(ξ−) + Ψε(ξ−)Sε(ξ+) +Hε(ξ+)Ωε(ξ−)

+Hε(ξ−)Ωε(ξ+) + U ε(ξ+)Dε(ξ−) + U ε(ξ−)Dε(ξ+)
]
dσ
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satisfies, for any ξ ∈ R
d, |RK

ε (ξ)| ≤ rK
ε |ξ|6, with rK

ε → 0 as K → ∞, and rK
ε depends

on moments of order 6 of d, s, h, w, u and ψ. It easily follows arguing as in lemmas 4.11
and 4.13, using (4.32) and the bounds of moments of order 6.

We compute first T1 using the fact that ‖Sε‖∞ ≤ 2

T1 ≤ sup
ξ∈Rd

|Ψε(ξ)|
|ξ|6 sup

ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)
(
|ξ̂+|6 + |ξ̂−|6

)
dσ

≤ αK sup
ξ∈Rd

|Ψε(ξ)|
|ξ|6 .

Let us analyze αK ,

αK =

∫

Sd−1
bK

ε (σ · ξ̂)
(
|ξ̂+|6 + |ξ̂−|6

)
dσ =

∫

Sd−1
bK

ε (σ · ξ̂)1

4

(
1 + 3(σ · ξ̂)2

)
dσ

and we compute

αK −K = −
∫

Sd−1
bK

ε (σ · ξ̂) 1

(4/3)

(
1 − (σ · ξ̂)2

)
dσ

−−−−→
K→∞

−
∫

Sd−1
bε(σ · ξ̂) 1

(4/3)

(
1 − (σ · ξ̂)2

)
dσ =: −ᾱε ∈ (−∞, 0)

−−−→
ε→0

−ᾱ ∈ (−∞, 0).

Next, we compute T2

T2 ≤
(

sup
ξ∈Rd

|Hε(ξ)|
|ξ|2

)(
sup
ξ∈Rd

|Ωε(ξ)|
|ξ|4

)
sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)1

2

(
|ξ+|2|ξ−|4

|ξ|2|ξ|4 +
|ξ+|4|ξ−|2

|ξ|4|ξ|2

)
dσ

≤ |hε
t |2|dε

t |2 sup
ξ∈Rd

∫

Sd−1
bK

ε (σ · ξ̂)1

2

(
|ξ̂−|4 + |ξ̂−|2

)
dσ

≤ βKe
−(1−η)λt M4(f0 + g0)1−η |h0|2|d0|1+η

2

where we have used the estimates of lemmas 4.8 and 4.12. We compute βK

βK =

∫

Sd−1
bK

ε (σ · ξ̂)1

2

(
|ξ̂−|4 + |ξ̂−|2

)
dσ

=

∫

Sd−1
bK

ε (σ · ξ̂)1

2

(
1 − σ · ξ̂

)
dσ −

∫

Sd−1
bK

ε (σ · ξ̂)1

8

(
1 − (σ · ξ̂)2

)
dσ

−−−−→
K→∞

Λ̄ε :=
Λε

2
− λ̄ε

4

−−−→
ε→0

Λ̄ :=
Λ

2
− λ̄

4

with Λ > 0 (see (2.18)), λ̄ > 0 and we have the same estimate for T3.
After these computations we obtain

d

dt

|Ψε(ξ)|
|ξ|6 +K

|Ψε(ξ)|
|ξ|6 ≤ αK sup

ξ∈Rd

|Ψε(ξ)|
|ξ|6 + 2βKe

−(1−η)λt M4(f0 + g0)1−η |d0|2+η
2 + rK

ε

and by Gronwall’s lemma

sup
ξ∈Rd

|ψ̂t(ξ)|
|ξ|6 ≤ 2βK M4(f0 + g0)1−η |d0|2+η

2

(
e−(1−η)λt − e(αK −K)t

K − αK − (1 − η)λ

)
+ rK

ε

(
1 − e(αK −K)t

K − αK

)
.
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We conclude by relaxing the cut-off parameter K → ∞ and choosing (1−η)λ ∈ (0, ᾱε),
therefore we have

(4.35) |ψε
t |6 ≤ Cη Λ̄ε e

−(1−η)λt M4(f0 + g0)1−η |d0|2+η
2 .

Step 2. Consider the solutions f , g, h and r of (4.12) .
Let us choose λ1 such that 0 < (1−η)λ1 < ᾱ, where ᾱε → ᾱ ∈ (0,∞) as ε → 0. Then

we recover (4.35) with the exponent λ1 with does not depend on ε. Hence, passing to
the limit ε → 0, we have gε − f ε − hε − uε → g − f − h − u (grazing collisions limit),

and in the right-hand side of (4.35) we have Λ̄ε → Λ̄. Then

|gt − ft − ht − rt|6 ≤ Cη Λ̄ e−(1−η)λ1t M4(f0 + g0)1/3 |g0 − f0|1+η
2 .

�

Therefore the semigroup of the Landau equation

S∞
t ∈ C2,η

Λ2
∩ C

1,(1+2η)/3
Λ2

∩ C
0,(2+η)/3
Λ2

(PG1,r; PG2),

where PG2 is defined as PG1 but endowed with the distance associated to the norm

‖ · ‖G2 = | · |6, with Λ2(f) := M4(f)1/3 = Λ1(f)1/3. Moreover there exists a constant
C4 > 0 such that one has

(4.36) sup
r∈RG1

∫ ∞

0

(
[S∞

t ]C2,0
Λ2

+ [S∞
t ]2

C1,0
Λ2

)
dt ≤ C4,

which proves (A4).

Remark 4.14. In fact, we can deduce that

sup
r∈RG1

∫ ∞

0

(
[S∞

t ]
C

1,(1+2η)/3
Λ2

+ [S∞
t ]2

C
0,(2+η)/3
Λ2

+ [S∞
t ]C2,0

Λ2

+ [S∞
t ]2

C1,0
Λ2

)
dt ≤ C4.

However, coming back to the proof of Theorem 3.11 and from the proof of (A3) (4.10),
where we need only [Φ]C2,0 instead of [Φ]C1,η +[Φ]C2,0 , we remark that (4.36) is sufficient.

4.5. Proof of assumption A5. We define the space of probability measures PG3 :=
P2(Rd) = {f ∈ P(Rd); M2(f) < ∞}, the constraint function mG3(v) = (|v|2, v) and
RG3 = {(r, r̄) ∈ R+ × R

d; r ≤ E0}. Then we define for a ∈ (0,∞), the bounded set

BPG3,a := {f ∈ PG3 ; M2(f) ≤ a},
the constrained bounded set

BPG3,a,r := {f ∈ BPG3,a; 〈f, |v|2〉 = r, 〈f, vi〉 for i = 1, . . . d},
endowed with the distance distG3 = W2. The following lemma proves (A5) with F3 =
Lip(Rd).

Lemma 4.15. Let f0, g0 have the same momentum and energy, and consider ft =
S∞

t (f0), gt = S∞
t (g0) theirs respective solutions of the Landau Maxwell equation. Then

(4.37) sup
t≥0

W2(ft, gt) ≤ W2(f0, g0).
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Proof of Lemma 4.15. Consider f ε
t , g

ε
t the solutions of the Boltzmann equation with ker-

nel bε satisfying the grazing collisions (2.18) and with initial data f0 and g0, respectively.
We know from [24] that

sup
t≥0

W2(f ε
t , g

ε
t ) ≤ W2(f0, g0)

We know also that [26] f ε
t converges weakly in L1 to a weak solution ft of the Landau

equation (grazing collisions limit). Moreover, both equations conserve energy so we
have, for all ε ∫

|v|2f ε
t (v) dv =

∫
|v|2ft(v) dv =

∫
|v|2f0(v) dv.

Using the fact that the Wasserstein distance W2 is equivalent to the weak convergence
in P(Rd) plus the second order momentum convergence [30], we obtain

W2(ft, gt) ≤ W2(ft, f
ε
t ) +W2(f ε

t , g
ε
t ) +W2(gt, g

ε
t )

and then, passing to the limit ε → 0, we have W2(ft, f
ε
t ) → 0, W2(gt, g

ε
t ) → 0 and

sup
t≥0

W2(ft, gt) ≤ W2(f0, g0).

�

4.6. Proof of Theorem 4.2. The proof is a consequence of Theorem 4.1, some results
on differents forms of measuring chaos from [13], quantitative estimates on the chaoticity
of initial data from [5].

Proof of Theorem 4.2 (1). Thanks to Theorem 4.1, taking ℓ = 2, we have for all φ =
φ1 ⊗ φ2 ∈ F⊗2 that

sup
t≥0

|
〈

Π2(FN
t ) − f⊗2

t , φ
〉

|
‖φ‖F

≤ C

(
WW2

(
πN

P F
N
0 , δf0

)
+

1

N

)
,

where we recall that ‖φ‖F =
∫

(1+ |ξ|6)|φ̂(ξ)|. Then we observe that, for r > 0, applying
Cauchy-Schwarz inequality,

‖φ1‖F =

∫
(1 + |ξ|6)(1 + |ξ|2)r/2 |φ̂1(ξ)|(1 + |ξ|2)−r/2 dξ

≤ C

(∫
(1 + |ξ|2)6+r |φ̂1(ξ)|2

)1/2 (∫
(1 + |ξ|2)−r

)1/2

.

The first integral in the right-rand side is the norm ‖φ1‖H6+r and the second one is
finite if 2r > d. We have then Hs ⊂ F for s > 6 + d/2 which implies

(4.38) sup
t≥0

∥∥∥Π2(FN
t ) − f⊗2

t

∥∥∥
H−s

≤ C

(
WW2

(
πN

P F
N
0 , δf0

)
+

1

N

)
.

Let us denote Mk = Mk(Π2(FN
t )) + Mk(f⊗2

t ). Thanks to [13], for any 0 < α <
k(dk + d+ k)−1 there exists C := C(α, d, s,Mk) such that

W1(FN
t , f⊗N

t )

N
≤ C

(∥∥∥Π2(FN
t ) − f⊗2

t

∥∥∥
αk

d+ks

H−s
+N− α

2

)
,

which implies with (4.38)

(4.39)
W1(FN

t , f⊗N
t )

N
≤ C

(
W1,W2(πN

p F
N
0 , f⊗N

0 )
αk

d+ks +N− α
2

)
.
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Now, we have just to estimate the first term of the right-hand side of (4.38).
We have from [5, Proof of Theorem 8] that for any 0 < β < (7d + 6)−1 there exists

C = C(β) such that

W1,W2(πN
P F

N
0 , δf0) ≤ C N−β.

We assumed that M6(f0) is finite, which implies by contruction that M6(Π2(FN
0 )) is

also finite. Then, for all t ≥ 0 we have M6(ft) finite (see [27]) and M6(Π2(FN
t )) also

finite (see Lemma 4.7). We can conclude gathering the last equation with (4.39), k = 6
and s > 6 + d/2. �

Using this result, we can prove the second part of the theorem following [20].

Proof of Theorem 4.2 (2). We split the expression into

W1(FN
t , γN )

N
=
W1(FN

t , f⊗N
t )

N
+
W1(γ⊗N , γN )

N
+W1(ft, γ),

where γ is the equilibrium Gaussian probability with zero momentum and energy E =∫
|v|2dγ. For the first term we have from point (1) that for all ǫ < 9[(7d+ 6)2(d+ 9)]−1

there exists Cǫ such that
W1(FN

t , f⊗N
t )

N
≤ CǫN

−ǫ

The second term can be estimated by [5, Theorem 18]

W1(γ⊗N , γN )

N
≤ CN−θ,

for some θ > ε. For the third term, thanks to [27, Theorem 6] we have

W1(ft, γ) ≤ ‖(ft − γ)〈v〉‖L1 ≤ Ce−λt.

for contants C > 0 and λ > 0. Finally, putting togheter these estimates it follows

(4.40)
W1(FN

t , γN )

N
≤ C ′

ε(N−ǫ + e−λt).

Moreover, consider hN
t the Radon-Nicodym derivative of FN

t with respect to γN , i.e.
hN

t = dFN
t /dγN . Thanks to [16], for all N ∈ N

∗ and t ≥ 0, it holds

‖hN
t − 1‖L2(SN (E),dγN ) ≤ e−λ1t‖hN

0 − 1‖L2(SN (E),dγN ),

where λ1 > 0. Since FN
0 = [f⊗N

0 ]SN (E) and f0 ∈ P6(Rd), it is possible to bound the
right-hand side by

‖hN
0 − 1‖L2(SN (E),dγN ) ≤ AN ,

with A > 1 that depends on f0. Hence we deduce, with φ : RdN → R,

W1(FN
t , γN ) = sup

‖φ‖
C0,1 ≤1

∫

RdN
φ(dFN − dγN )

≤
∫

RdN

N∑

j=1

|vj|
∣∣∣dFN − dγN

∣∣∣

≤ NE1/2‖hN
t − 1‖L1(SN (E),dγN )

≤ NE1/2‖hN
t − 1‖L2(SN (E),dγN ),
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which implies

(4.41)
W1(FN

t , γN )

N
≤ ANe−λ1t.

Define N(t) by N(t) := λ1t (2 logA)−1 for some δ > 0. Then, choosing (4.40) for
N > N(t) and (4.41) for N ≤ N(t) it yields, for all N ∈ N

∗ and t ≥ 0,

W1(FN
t , γN )

N
≤ p(t) := min

{
C ′

ε

(
N(t)−ε + e−λt

)
, e− λ1

2
t
}
,

with a polynomial funtion p(t) → 0 as t → ∞.
�

5. Entropic chaos

We can define the master equation (2.29) on R
dN or SN (E) thanks to the conservation

of momentum and energy, hence for gN ∈ Psym(RdN ) and fN ∈ Psym(SN (E)) we have

∂t

〈
gN , ψ

〉
=

〈
gN , GNψ

〉
, ∀ψ ∈ C2

b (RdN )(5.1)

∂t

〈
fN , φ

〉
=

〈
fN , GNφ

〉
, ∀φ ∈ C2

b (SN (E)),(5.2)

where GN is given by (2.29).
Suppose that gN is abolutely continous with respect to the Lebesgue measure (and

we still denote by gN its Radon-Nikodym derivative). Taking ψ = log gN in (5.1), we
obtain an equation for the entropy of gN , i.e. H(gN ) :=

∫
RdN gN log gN dV ,

(5.3)
d

dt

∫

RdN
gN log gN dV

= − 1

2N

∑

i,j

∫

RdN
a(vi − vj)

(
∇ig

N

gN
− ∇jg

N

gN

)
·
(

∇ig
N

gN
− ∇jg

N

gN

)
gN dV ≤ 0,

since a is nonnegative.
Considering now fN absolutely continuous with respect to γN , the uniform proba-

bility measure on SN (E), and denoting by hN := dfN/dγN its derivative, we want to
obtain the equation satisfied for the relative entropy of fN with respect to γN , given by

(5.4) H(fN |γN ) :=

∫

SN
hN log hN dγN .

For this purpose we could take φ = log hN in (5.2), but we have to give a meaning to
∇ih

N for a function hN defined on SN .
Let us consider h a function on SN (E) and we define h̃ on R

dN by

(5.5) h̃(V ) = ρ(E(V )) η(M(V ))h

(
E V − M(V )

E(V )

)
, ∀V ∈ R

dN .

where E(V ) = N−1∑N
i=1 |vi − M(V )|2, M(V ) = N−1∑N

i=1 vi and the functions ρ and
η are smooth.

Denoting by ∇SN the gradient with respect to SN (E) and by ∇⊥ the gradient with
respect to its orthogonal space (SN )⊥, we can decompose the gradient on R

dN

(5.6) ∇RdN h̃ = ∇⊥h̃+ ∇SN h̃ = (∇⊥ρη)h + ρη∇SNh = (∇⊥ log(ρη)) h̃+ ρη∇SNh.
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For h̃ we can compute ∇ih̃ ∈ R
d, for 1 ≤ i ≤ N , as

∇ih̃ =
(
∂vi,α h̃

)

1≤α≤d
=
(
∇RdN h̃ · ei,α

)

1≤α≤d
,

where (ei,α)j,β = δijδαβ ∈ R
dN . Hence by (5.6), for all 1 ≤ i ≤ N and all 1 ≤ α ≤ d,

∂vi,α h̃ = (∇⊥ log(ρη) · ei,α) h̃+ ρη (∇SNh · ei,α).

Now, observing that (∇⊥ log(ρη) · (ei,α − ej,α))1≤α≤d is proportional to (vi − vj) and

using that a(z)z = 0 for all z ∈ R
d, we can evaluate the expression

a(vi−vj)
(
∇ih̃− ∇jh̃

)
·
(
∇ih̃− ∇jh̃

)
= (ρη)2 a(vi−vj)(∇SN

i
h−∇SN

j
h)·(∇SN

i
h−∇SN

j
h),

where we define

(5.7) ∇SN
i
h = (∇SNh · ei,α)1≤α≤d .

Since we have the following Fubini-like theorem for Boltzmann’s spheres (see [8, 5])

(5.8)

∫

RdN
ρ(E(V )) η(M(V ))A

(
h

(
E V − M(V )

E(V )

))
dV

=

(∫

R+×Rd
B (ρ(E), η(M)) dE dM

)(∫

SN (E)
A(h) dγN

)
,

for some functions A and B, thanks to (5.3) with h = hN and h̃ = gN , we obtain the
equation for the relative entropy H(fN |γN ),
(5.9)
d

dt

∫

SN (E)
hN log hN dγN

= − 1

2N

∑

i,j

∫

SN (E)
a(vi − vj)




∇SN

i
hN

hN
−

∇SN
j
hN

hN



 ·



∇SN

i
hN

hN
−

∇SN
j
hN

hN



hN dγN

=: −DN (FN ) ≤ 0,

and DN is called the entropy-production functional. This implies

(5.10)
1

N
H(FN

t |γN ) +

∫ t

0

1

N
DN (FN

s ) ds =
1

N
H(FN

0 |γN ).

Moreover for the limit equation we have [27]

d

dt
H(f) :=

d

dt

∫
f log f dv = −1

2

∫
ff∗ a(v − v∗)

(∇f
f

− ∇∗f∗
f∗

)
·
(∇f
f

− ∇∗f∗
f∗

)
dv dv∗

and then for the relative entropy H(f |γ) =
∫

(f/γ) log(f/γ) γ(dv), we obtain

(5.11) H(ft|γ) +

∫ t

0
D(fs) ds = H(f0|γ).

We are able now to prove the following result, which will be useful in the sequel.

Lemma 5.1. If FN is f -chaotic, then

H(f |γ) ≤ lim inf
N→∞

1

N
H(FN |γN ) and D(f) ≤ lim inf

N→∞
1

N
DN (FN ).



PROPAGATION OF CHAOS FOR THE LANDAU EQUATION 43

Proof of Lemma 5.1. The lower semicontinuity property of the relative entropy is proved
in [5, Theorem 21], thus we prove only the second inequality.

Let us denote ∇12 = ∇1 − ∇2, ∇SN
12

= ∇SN
1

− ∇SN
2

, and for all x, y, z ∈ R
d we denote

a(z)xy = (a(z)x) · y. Since a is nonnegative, considering a function ϕ : R2d → R
d, we

have

a(v1 − v2)

(
∇12 log f1f2 − ϕ

2

)(
∇12 log f1f2 − ϕ

2

)
≥ 0,

which gives the following representation for D(f),

D(f) =
1

2
sup

ϕ:R2d→Rd

∫∫
a(v1 − v2)

[
(∇12 log f1f2)ϕ− ϕϕ

4

]
f1f2 dv1 dv2

=
1

2
sup

ϕ:R2d→Rd

∫∫ {
−∇12 · (a(v1 − v2)ϕ) − a(v1 − v2)

ϕϕ

4

}
f1f2 dv1 dv2

where f1 = f(v1) and f2 = f(v2). Let ε > 0 and choose ϕ = ϕ(v1, v2) : R2d → Rd such
that

D(f) − ε ≤ 1

2

∫∫ {
−∇12(a(v1 − v2)ϕ) − a(v1 − v2)

ϕϕ

4

}
f1f2 dv1 dv2.

For the N -particle entropy-production DN defined in (5.9), we have by symmetry

1

N
DN (FN )

=
N(N − 1)

N2

1

2

∫

SN
a(v1 − v2)

(∇SN
1
hN

hN
−

∇SN
2
hN

hN

)
·
(∇SN

1
hN

hN
−

∇SN
2
hN

hN

)
hN dγN

=:
N(N − 1)

N2
DN

12(FN ),

and then lim infN→∞N−1DN (FN ) ≥ lim infN→∞DN
12(FN ). For Φ : RdN → R

d, Φ ∈
C1

b , we have, with FN = hNγN ,

DN
12(FN ) =

1

2

∫

SN
a(v1 − v2)∇SN

12
log hN · ∇SN

12
log hN hN dγN

=
1

2
sup

Φ:RdN →Rd

∫

SN
a(v1 − v2)

(
∇SN

12
log hN Φ − ΦΦ/4

)
hN dγN

=
1

2
sup

Φ

{∫

SN
a(v1 − v2)∇SN

12
hN Φ dγN −

∫

SN
a(v1 − v2)

ΦΦ

4
hN dγN

}
.

Choosing Φ(V ) = ϕ(v1, v2) we obtain, using (5.7),

(5.12)

DN
12(FN ) ≥ 1

2

∫

SN
a(v1 − v2)∇SN

12
hN ϕdγN − 1

2

∫

SN
a(v1 − v2)

ϕϕ

4
hN dγN

≥ 1

2

d∑

α,β=1

∫

SN
∇SNhN · [(e1,α − e2,α) aαβ(v1 − v2)ϕβ ] dγN

− 1

2

∫

SN
a(v1 − v2)

ϕϕ

4
hN dγN .
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We need an integration by parts formula for the first term on the right-hand side, thanks
to [5, Lemma 22], for a function A and a vector field Ψ, we have
∫

SN

{
∇SNA(V ) · Ψ(V ) +A(V ) divSN Ψ(V ) − d(N − 1) − 1

dN
A(V ) Ψ(V ) · V

}
dγN (V ) = 0,

with

(5.13) divSN Ψ(V ) = div Ψ(V ) − 1

N

N∑

i,j=1

d∑

β=1

∂vi,β
Ψj,β(V ) −

N∑

j=1

d∑

β=1

V · ∇Ψj,β
vj,β

|V |2 .

Taking Ψ(V ) = (e1,α − e2,α) aαβ(v1 − v2)ϕβ we obtain
∫

SN
∇SNhN · (e1,α − e2,α) aαβ(v1 − v2)ϕβ dγ

N

= −
∫

SN
hN divSN [(e1,α − e2,α) aαβ ϕβ ] dγN +

d(N − 1) − 1

dN

∫

SN
hN aαβ ϕβ (e1,α − e2,α) · V dγN .

Since (e1,α − e2,α) · V = (v1,α − v2,α), when performing the summation α, β = 1 to d in
the second term of the right-hand side of last equation, we obtain

∫

SN
hNa(v1 − v2)(v1 − v2)ϕdγN = 0.

For the first term, thanks to (5.13),

d∑

α,β=1

∫

SN
hN divSN [(e1,α − e2,α) aαβ ϕβ ] dγN

=

∫

SN
∇12 · (a(v1 − v2)ϕ)hN dγN

−
d∑

α,β=1

1

|V |2
∫

SN
{v1 · ∇1(aαβ ϕβ) + v2 · ∇2(aαβ ϕβ)} (v1,α − v2,α)hN dγN

Getting back to (5.12) with last expression, we split the integral over (v1, v2) and

SN (v1, v2) := {(v3, . . . , vN ) ∈ R
d(N−2); V ∈ SN}, use that |V |2 = EN and

∫
SN (v1,v2) h

N dγN =

FN
2 , which yields

(5.14)

DN
12(FN ) ≥ −1

2

∫∫
∇12 · (a(v1 − v2)ϕ)FN

2 (v1, v2) dv1 dv2 − 1

2

∫∫
a(v1 − v2)

ϕϕ

4
FN

2 (v1, v2) dv1 dv2

+O

(
1

N

) d∑

α,β=1

∫∫
{v1 · ∇1(aαβ ϕβ) + v2 · ∇2(aαβ ϕβ)} (v1,α − v2,α)FN

2 (v1, v2) dv1 dv2.

Passing to the limit N → ∞, since FN
2 ⇀ f⊗2 we obtain

lim inf
N→∞

DN
12(FN ) ≥ 1

2

∫ {
−∇12 · (a(v1 − v2)ϕ) − a(v1 − v2)

ϕϕ

4

}
f1f2 dv1 dv2 ≥ D(f)−ε

and we conclude letting ε go to 0.
�
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We define the Fisher information of G ∈ P(RdN ) that is absolutely continuous with
respect to the Lebesgue measure by

I(G) :=

∫

RdN

|∇RdNG|2
G

dV.

Moreover, for a probability measure F ∈ P(SN (E)) absolutely continuous with respect
to γN , we define the relative Fisher’s information by

(5.15) I(F |γN ) :=

∫

SN (E)

|∇SNh|2
h

dγN , h =
dF

dγN
,

where ∇SN stands for the gradient on SN (E).
We can now give the following result.

Lemma 5.2. Let FN
0 ∈ Psym(SN (E)) with finite relative Fisher information I(FN

0 |γN ).
For all t > 0 consider the solution FN

t of the Landau master equation (2.29). Then we
have

I(FN
t |γN ) ≤ I(FN

0 |γN ).

Proof of Lemma 5.2. Denote hN
0 := dFN

0 /dγN and, for all t ≥ 0, hN
t := dFN

t /dγN .

Consider h̃N
t defined on R

dN given by (5.5) and define then F̃N
t = h̃N

t L a solution of
(5.1), where L is the Lebesgue measure on R

dN . Following [20, Lemma 7.4], we claim
that is enough to prove that

I(F̃N
t ) :=

∫

RdN

|∇RdN h̃N
t |2

h̃N
t

dV ≤
∫

RdN

|∇RdN h̃N
0 |2

h̃N
0

dV =: I(F̃N
0 ).

Indeed, this equation, (5.6), (5.8) and the conservation of momentum and energy yield

I(F̃N
t ) = |∇⊥ log(ρη)|2 +

(∫

R+×Rd
B (ρ(E), η(M)) dE dM

)(∫

SN (E)

|∇SNhN
t |2

hN
t

dγN

)

≤ |∇⊥ log(ρη)|2 +

(∫

R+×Rd
B (ρ(E), η(M)) dE dM

)(∫

SN (E)

|∇SNhN
0 |2

hN
0

dγN

)
= I(F̃N

0 ),

which implies, dropping the time independent terms,

I(FN
t |γN ) ≤ I(FN

0 |γN ).

Now, let FN
t,ε ∈ Psym(SN (E)) be the solution of the Boltzmann master equation (2.8)-

(2.9) with collision kernel bε satisfying the grazing collisions assumptions (2.18) and
initial datum FN

0 ∈ Psym(SN (E)). Then we have from [20, Lemma 7.4], for all t ≥ 0,

I(F̃N
t,ε) ≤ I(F̃N

0 ),

where F̃N
0 , F̃N

t,ε ∈ Psym(RdN ) are constructed as before.

Since F̃N
t,ε weakly converges towards F̃N

t when ε → 0 and the Fisher information
functional is weakly lower semicontinuous, we obtain

I(F̃N
t ) ≤ lim inf

ε→0
I(F̃N

t,ε) ≤ I(F̃N
0 )

and that concludes the proof.
�
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Now, with the definitions of relative entropy (5.4), relative Fisher information (5.15)
and the notion of entropic chaos, described below, we are able to state our main theorem
of this section, concerning the propagation of entropic chaos.

Let FN be a sequence of probability measures SN (E) such that FN
1 weakly converges

to f in measure sense, for some f ∈ P(Rd). We say that FN is entropically f -chaotic if

(5.16)
H(FN |γN )

N
−−−−→
N→∞

H(f |γ).

For more information on entropic chaos we refer to [4, 13, 5].

Theorem 5.3. Let f0 ∈ P(Rd) and FN
0 ∈ Psym(SN (E)) that is f0-chaotic. Consider

then, for all t > 0, the solution FN
t of the Landau master equation (2.29) with initial

condition FN
0 , and the solution ft of the limit Landau equation (2.10)-(2.11) with initial

data f0.
Then we have

(1) If FN
0 is entropically f0-chaotic, then for all t > 0 FN

t is entropically ft-chaotic,
more precisely

1

N
H(FN

t |γN ) −→ H(ft|γ) as N → ∞.

(2) Consider f0 ∈ P6(Rd) with I(f0|γ) < ∞ and FN
0 = [f⊗N

0 ]SN (E) ∈ Psym(SN (E)).

Then, for all t > 0, FN
t is entropically ft-chaotic, more precisely, for any 0 <

ε < 18[5(7d + 6)2(d+ 9)]−1 there exists a constant C := C(ε) such that

sup
t≥0

∣∣∣∣
1

N
H(FN

t |γN ) −H(ft|γ)

∣∣∣∣ ≤ CN−ε.

(3) Consider f0 ∈ P6(Rd) with I(f0|γ) < ∞ and FN
0 = [f⊗N

0 ]SN (E) ∈ Psym(SN (E)).
Then for all N it holds

1

N
H(FN

t |γN ) ≤ p(t),

for some polynomial function p(t) → 0 as t → ∞.

Proof of Theorem 5.3 (1). The idea is from [20]. Using (5.10), (5.11) and the entropic
chaoticity at initial time, one has

1

N
H(fN

t |γN ) +

∫ t

0

1

N
DN (FN

s ) ds =
1

N
H(fN

0 |γN )

−−−−→
N→∞

H(f0|γ) = H(ft|γ) +

∫ t

0
D(fs) ds.

By Lemma 5.1 one also has

lim inf
N→∞

(
H(fN

t |γN ) +

∫ t

0

1

N
DN (FN

s ) ds

)
≥ H(ft|γ) +

∫ t

0
D(fs) ds,

and we can conclude with these two last equations togheter with Lemma 5.1.
�
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Proof of Theorem 5.3 (2). From Lemma 5.2 we know that, for all t ≥ 0, N−1I(FN
t |γN ) ≤

N−1I(FN
0 |γN ) and the later one is bounded by construction, we deduce then that the

normalized relative Fisher’s information N−1I(FN
t |γN ) is bounded. Since the limit

Landau equation for maxwellian molecules propagates moments and the Fisher’s infor-
mation’s bound [27, 28], we have, for all t > 0, M6(ft) and I(ft|γ) bounded.

We can then apply [5, Theorem 31] to FN
t and we obtain that for any β < (7d+ 6)−1

there exists C ′ = C ′(β) such that

∣∣∣∣
1

N
H(FN

t |γN ) −H(ft|γ)

∣∣∣∣ ≤ C ′
(
W2(FN

t , f⊗N
t )√

N
+N−β

)
.

We have then to estimate the first term of the right-hand side. From [13], the following
estimation holds,

(5.17)
W2(FN

t , f⊗N
t )√

N
≤ C

(
M6(FN

t , f⊗N
t )

N

)1/10 (
W1(FN

t , f⊗N
t )

N

)2/5

where M6(FN
t , f⊗N

t ) = M6(FN
t ) + M6(f⊗N

t ). We observe that N−1M6(FN
t , f⊗N

t ) is

bounded since N−1M6(f⊗N
t ) = M6(ft), N

−1M6(FN
t ) ≤ C N−1M6(FN

0 ) by Lemma 4.7
and N−1M6(FN

0 ) is bounded by construction, thanks to the assumption M6(f0) finite.
Finally, Theorem 4.2 and last equation (5.17) imply that for any ǫ < 9[(7d + 6)2(d+

9)]−1 and any β < (7d + 6)−1 there exists a positive constant C = C(ǫ, β) such that

(5.18)

∣∣∣∣
1

N
H(FN

t |γN ) −H(ft|γ)

∣∣∣∣ ≤ C
(
N−2ǫ/5 +N−β

)
,

which concludes the proof.
�

Proof of Theorem 5.3 (3). By the HWI inequality [30, Theorem 30.21], for all t ≥ 0, we
have

H(FN
t |γN )

N
≤ π

2

√
I(FN

t |γN )

N

W2(FN
t , γN )√
N

.

From Lemma 5.2 we have N−1I(FN
t |γN ) ≤ N−1I(FN

0 |γN ) ≤ C for some constant
C > 0 independent of N , by construction. Moreover, thanks to Lemma 4.7 and (5.17)
we deduce

W2(FN
t , γN )√
N

≤ C

(
W1(FN

t , γN )

N

)2/5

.

Gathering these two estimates with point (2) in Theorem 4.2 it follows

H(FN
t |γN )

N
≤ C

(
W1(FN

t , γN )

N

)2/5

≤ p(t),

for a polynomial function p(t) → 0 as t → ∞.
�
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