Some properties of simple minimal knots - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Some properties of simple minimal knots

Résumé

A minimal knot is the intersection of a topologically embedded branched minimal disk in $\mathbb{R}^4$ $\mathbb{C}^2 $ with a small sphere centered at the branch point. When the lowest order terms in each coordinate component of the embedding of the disk in $\mathbb{C}^2$ are enough to determine the knot type, we talk of a simple minimal knot. Such a knot is given by three integers $N < p,q$; denoted by $K(N,p,q)$, it can be parametrized in the cylinder as $e^{i\theta}\mapsto (e^{Ni\theta},\sin q\theta,\cos p\theta)$. From this expression stems a natural representation of $K(N,p,q)$ as an $N$-braid. In this paper, we give a formula for its writhe number, i.e. the signed number of crossing points of this braid and derive topological consequences. We also show that if $q$ and $p$ are not mutually prime, $K(N,p,q)$ is periodic. Simple minimal knots are a generalization of torus knots.
Fichier principal
Vignette du fichier
noeuds_minimaux.writhe_number.nov.2012.pdf (131.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00763478 , version 1 (10-12-2012)

Identifiants

Citer

Marina Ville, Marc Soret. Some properties of simple minimal knots. 2012. ⟨hal-00763478⟩
107 Consultations
52 Téléchargements

Altmetric

Partager

More