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Abstract

A minimal knot is the intersection of a topologically embedded
branched minimal disk in R

4
C
2 with a small sphere centered at the

branch point. When the lowest order terms in each coordinate compo-
nent of the embedding of the disk in C

2 are enough to determine the
knot type, we talk of a simple minimal knot. Such a knot is given by
three integers N < p, q; denoted by K(N, p, q), it can be parametrized
in the cylinder as eiθ 7→ (eNiθ, sin qθ, cos pθ). From this expression
stems a natural representation of K(N, p, q) as an N -braid. In this
paper, we give a formula for its writhe number, i.e. the signed number
of crossing points of this braid and derive topological consequences.
We also show that if q and p are not mutually prime, K(N, p, q) is
periodic. Simple minimal knots are a generalization of torus knots.

1 Introduction

1.1 Simple minimal knots

In the present paper we pursue the investigation of simple minimal knots
that we began in [So-Vi]. We recall that a simple minimal knot K(N, p, q) is
the intersection of the 3-sphere S3 with φ(D) where D is the unit disk in C

and φ is a map of the form

φN,p,q : D −→ C
2

φN,p,q : z 7→ (zN , a(zq − z̄q) + b(zp + z̄p))

for some complex numbers a, b and some integers N < q, p, with (N, q) =
(N, p) = 1.
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We can write such a knot K in R3 by the following expressions

x = 2 cosNt− cosNt sin qt

y = 2 sinNt− sinNt sin qt

z = cos pt

Note that if p = q, we get the (N, q) torus knot.
Our motivation for studying these knots came from Riemannian geometry.
We consider a minimal, i.e. conformal harmonic, map F : D −→ R4 where D
is the disk in C; we assume that dF (0) = 0, that is F has a branch point at
0. If moreover that F is a topological embedding, we can replicate Milnor’s
construction of algebraic knots and take the intersection of F (D) with a small
sphere centered at F (0): we get a knot which we call a minimal knot. Simple
minimal knots are in some sense the building blocks of minimal knots.

2 The periodic case

Theorem 1. Let d = gcd(p, q). If d 6= 1, then K is a periodic knot.

PROOF. We remind the reader ([So-Vi]) of the existence of a function
r : S1 −→ R∗

+ such that K = {φN,p,q(r(θ)e
iθ)/eiθ ∈ S1}. We notice that, for

every r > 0,
‖φN,p,q(re

i(θ+ 2π
d
))‖ = ‖φN,p,q(re

iθ)‖.

It follows that r(θ + 2π
d
) = r(θ).

We define an isometry Ψ of S3 by setting for (z1, z2) ∈ S3,

Ψ(z1, z2) = (e
2iNπ

d z1, z2).

The set I of fixed points of Ψ in S
3 is {(0, eiα)/α ∈ [0, 2π]} and verifies

lk(K, I) = ±1; it is diffeomorphic to S1 and disjoint from K. On the other
hand, since d divides p and q and r(θ + 2π

d
) = r(θ), we have

Ψ(K) = K.

Thus K is a periodic knot (for the definition of a periodic knot, see [Burde-
Zieschang] p.266).
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3 The writhe number

Simple minimal knots have a very natural braid representation; we will recall
it and give a formula for its writhe number.

3.1 The minimal braid

We derive from the map φN,p,q above a braid B in Cyl = S1 × R2 which
naturally represents K: in [So-Vi] we called it the minimal braid. Its N
strands are given by the maps:

Bk : [η, 1 + η] −→ R
2

Bk : t 7→ (sin(
2π

N
q(t+ k)), cos(

2π

N
p(t+ k)))

where k = 0, ..., N − 1, η is a very small positive irrational number (we in-
troduce η in order to avoid crossing points at the endpoints of the interval).

REMARK. These knots can also be defined with a phase: the term

cos(
2π

N
p(t+ k))

can be replaced by

cos(
2π

N
p(t + k + ǫ)).

For technical reasons, we will use phases in our proofs below but we recall
that the phase does not change the isotopy type of the braid up to mirror
symmetry (see [So-Vi]).

3.2 The writhe number

A crossing point Q of the braid is the data of two different integers, k, l with
0 ≤ k < l ≤ N − 1 and a number t ∈ [η, 1 + η] such that

sin(
2π

N
q(t+ k)) = sin(

2π

N
q(t+ l)).

There are (N − 1)q crossing points, as in the case of the torus knot where
q = p; each crossing point Q is assigned a sign S(Q) ∈ {−1,+1} as below
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Figure 1: Sign of a crossing point

(in the case of the torus knot, they are all positive).
The writhe number w(B) is the signed number of the crossing points,

w(B) =
∑

Q crossing point

S(Q).

It is related to the signed number of double points one gets when one desin-
gularizes the branched disk φ(D) (see Introduction) into an immersion.

3.3 Formulae for the writhe number

Proposition 1. Put d = gcd(p, q); let p̃ = p
d
and q̃ = q

d
.

1) If p̃ and q̃ have different parities,

w(B) = 0.

2) If p̃ and q̃ have the same parity, then up to sign,

w(B) = d

N−1∑

s=1

(−1)[
ps

N
](−1)[

qs

N
]

where [ ] denotes the integral part.

Corollary 1.

|w(B)| ≤ d(N − 1) (∗)

The equality is attained in (*) if and only if 2N divides p + q or p − q.
Otherwise

|w(B)| ≤ d(N − 3)

By contrast we remind the reader that a (N, q) torus knot has a writhe
number of (N − 1)q, since all the crossing points have a positive sign.
We can plug our estimates into the Franks-Williams-Morton inequalities for
the HOMFLY polynomial ([F-W],[Mo]):

Corollary 2. Let Pmin (resp. Pmax) be the minimal (resp. maximal) degree
of the HOMFLY polynomial of K(N, p, q). Then

−(d + 1)(N − 1) ≤ Pmin and Pmax ≤ (d+ 1)(N − 1).
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If p = q = d and K is a torus knot, both inequalities are equalities. On
the other hand, if p and q are mutually prime, we get

−2(N − 1) ≤ Pmin ≤ Pmax ≤ 2(N − 1).

REMARK. A word of caution about Corollary 2: it cannot help us determine
if a given knot is isotopic to a simple minimal knot. Indeed, N is the number
of strands of a specific braid representative of the knot K but there is no
reason why K could not be represented by braids of smaller index. For
instance, we saw in [So-Vi] that the knot K(5, 22, 6) is isotopic to the knot
77 (notation of the Rolfsen table ([Ro])) which has braid index 4.

4 Proofs

We start with Prop. 1. 1) We proved in [So-Vi] that if p and q have different
parities, then w(B) = 0; a similar proof works here. We use the notations of
the introduction and compute

ΦN,p,q(re
i(θ+π

d
)) = (zNeiN

π
d , (−1)q̃a(zq − z̄q) + b(−1)p̃(zp + z̄p)).

Thus the transformation H of R4 given below and the transformation that
H induces on S3 preserves w(B):

H : C× R× R −→ C× R× R.

H : (w, x, y) 7→ (weiN
π
d , (−1)q̃x, (−1)p̃y)

On the other hand, if q̃ and p̃ have different parities, H reverses the orienta-
tion. It follows that w(B) = 0.

We now assume that p̃ and q̃ have the same parity; since they are mutu-
ally prime, this means that p̃ and q̃ are both odd. We also derive that p and
q have the same parity as well.
We give a proof of Prop. 1 2) based on Lemmas 1 to 6 below.
We have established in [So-Vi] that t ∈ [η, 1 + η] is a crossing point between
the k-th and l-th strands of B if and only if there exists an integer m such
that

t = −
k + l

2
+
N

4q
(2m+ 1) (0)
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This prompts us to investigate the set A of integers m satisfying

η < −
k + l

2
+
N

4q
(2m+ 1) ≤ 1 + η (1)

for some strands k, l. The largest (resp. smallest) value for k + l is 1, for
{k, l} = {0, 1} (resp. 2N − 3 for {k, l} = {N − 1, N − 2}); hence m belongs
to A if and only if

η +
1

2
≤
N

4q
(2m+ 1) ≤ N −

1

2
+ η (2)

Lemma 1. Let m be an integer belonging to A.
a) Then m+ q and m− q cannot both belong to A
b) Assume that neither m + q nor m − q belongs to A and let k, l be the
integers appearing with m in (2). Then k + l is one of the following three
integers: N − 2, N − 1 or N .

PROOF. a) We see from 1) that the expression N
4q
(2m+1) belongs to an

interval of amplitude N − 1. On the other hand, we compute

N

4q
(2(m+ q) + 1)−

N

4q
(2(m− q) + 1) = N

hence N
4q
(2(m+ q) + 1) and N

4q
(2(m− q) + 1) = N cannot both satisfy a).

b) Assume that m ∈ A but m− q /∈ A and m+ q /∈ A. We derive from (2)

N

4q
(2(m− q) + 1) < η +

1

2
and

N

4q
(2(m+ q) + 1) > N −

1

2
+ η

hence

η −
1

2
+
N

2
<
N

4q
(2m+ 1) < η +

1

2
+
N

2
.

Using the inequality (2), this yields

N

2
−

3

2
<
k + l

2
<
N

2
+

1

2

which translates into N − 2 ≤ k + l ≤ N , which proves b).
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Next, for a given m, we look for all possible values of k, l. Following Lemma
1 we let

A0 = {m ∈ A such that m+ q /∈ A and m− q /∈ A}

A1 = {m ∈ A such that m+ q ∈ A}.

Note that A0 ∪ A1 is included in A but not equal to A; more precisely A is
the disjoint union A = A0 ∪ A1 ∪ {m+ q/m ∈ A1}. We have

Lemma 2. Let m be an integer.
i) If there exists an integer S such that

η ≤ −
S

2
+
N

4q
(2m+ 1) ≤ 1 + η (3)

then there exist exactly two integers which verify (3). If we denote by S1(m)
the smallest one of the two, then the other one, S2(m), verifies

S2(m) = S1(m) + 1.

ii) If m ∈ A0, then S1(m) = N − 2 or S1(m) = N − 1
iii) If m ∈ A1, then S1(m+ q) = S1(m)−N .

REMARK. It follows that if N = 3, A1 is empty.
PROOF. i) If such integers exist for a given m, let S1(m) be the smallest one
verifying (3). Then if S is any integer such that S ≥ S1(m) + 2, we derive
from (3) that

−
S

2
+
N

4q
(2m+ 1) ≤ −1−

S1(m)

2
+
N

4q
(2m+ 1) < η

(the last inequality is strict because η is irrational), hence S does not satisfy
(3). On the other hand, if S1(m) + 1 did not verify (3), a quick computation
would show that S1(m)− 1 would verify (3), which would contradict S1(m)
being the smallest integer with that property. This proves i).
ii) If m ∈ A0 then it verifies the assumptions of Lemma 1 b) and the possible
values for S are N −2, N −1 and N . It follows from Lemma 2 i) that S1(m)
is N − 2 or N − 1.
To prove iii) it is enough to notice that

−
S

2
+
N

4q
(2(m+ q) + 1) = −

S −N

2
+
N

4q
(2m+ 1).
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Lemma 2 is now proved.

We now introduce the phase ǫ which we mentioned but disregarded in §3.1:
namely, we replace the Bk’s by

Bk : t 7→ (sin(
2π

N
q(t+ k)), cos(

2π

N
p(t+ k)) + ǫ).

To discuss signs of crossing points, we use the
NOTATION. If r is a real number,

σ(r) = (−1)[r] (4)

We recall the formula from [So-Vi] for the sign S(m, k, l) of a crossing point
given by (0)

S(m, k, l) = (−1)mσ(p
m

q
+ ǫ)σ(p

k − l

N
)σ(q

k − l

N
)

To compute w(B), we need to add the S(m, k, l)’s for all the m, k, l; we will
group them according

w(B) =
∑

m∈A0

S(m, k, l) +
∑

m∈A1

S(m, k, l) +
∑

{m+q/m∈A1}

S(m, k, l) (5)

We write the first term in (4) as
∑

m∈A0
(−1)mσ(pm

q
+ ǫ)s0(m) where

s0(m) =

k+l=S1(m)+1∑

k+l=S1(m)

σ(p
k − l

N
)σ(q

k − l

N
) (6)

We now want to write the sum of the second and third term in (5) as a sum
over A1 only; to this effect we use the fact that p and q have the same parity
(see above) to derive

(−1)m+qσ(p
m+ q

q
+ ǫ) = (−1)p+q(−1)mσ(p

m

q
+ ǫ) = (−1)mσ(p

m

q
+ ǫ) (7).

Using (7), we can write the sum of the last two terms in (5) as∑
m∈A1

(−1)mσ(pm
q
+ ǫ)s1(m) where

s1(m) =

k+l=S1(m)+1∑

k+l=S1(m)

σ(p
k − l

N
)σ(q

k − l

N
)+

k+l=S1(m)−N+1∑

k+l=S1(m)−N

σ(p
k − l

N
)σ(q

k − l

N
) (8)
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We put all this together to derive

w(B) =
∑

m∈Ai/i=1,2

(−1)mσ(p
m

q
+ ǫ)si(m) (9)

where σ, s0 and s1 are respectively defined in (4), (6) and (8).

Lemma 3. If m belongs to Ai, i = 0, 1, we have

si(m) =

N−1∑

s=1

σ(p
s

N
)σ(q

s

N
)

To prove Lemma 3, we will use the following easy identities (n is an
integer)

σ(p
n

N
)σ(q

n

N
) = σ(−p

n

N
)σ(−q

n

N
) = σ(p

2N − n

N
)q(σ

2N − n

N
) (10)

σ(p
n

N
)σ(q

n

N
) = (−1)p+qσ(p

N + n

N
)σ(q

N + n

N
) = σ(p

N − n

N
)σ(q

N − n

N
) (11)

Note that (10) is true for every set of integers q, p, N whereas (11) is true
because p and q have the same parity.

We split the proof of Lemma 3 into three cases which are different but very
similar: therefore we will omit repeating details. In all that follows we take
k < l, in other words

k = min(k, l)

1st case. m ∈ A0 and S1(m) = N − 2

s0(m) =

k+l=N−1∑

k+l=N−2

σ(p
k − l

N
)σ(q

k − l

N
)

=
∑

0≤2k<N−2

σ(p
N − 2− 2k

N
)σ(q

N − 2− 2k

N
) (12)

+
∑

0≤2k<N−1

σ(p
N − 1− 2k

N
)σ(q

N − 1− 2k

N
) (13)
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We rewrite (13) in terms of 2k − 1 instead of 2k: we replace N − 1− 2k by
N − 2− (2k − 1) and 0 ≤ 2k ≤ 2k − 1. We get

(13) =
∑

−1≤2k−1<N−2

σ(p
N − 2− (2k − 1)

N
)σ(q

N − 2− (2k − 1)

N
)

Using this, we rewrite (12)+(13) as a single sum where we replace the vari-
ables 2k and 2k − 1 by a single variable u such that −1 ≤ u < N − 2. We
get

s0(m) =

N−3∑

u=−1

σ(p
N − 2− u

N
)σ(q

N − 2− u

N
).

We replace u by s = u+ 2 and get

s0(m) =

N−1∑

v=1

σ(p
N − s

N
)σ(q

N − s

N
) =

N−1∑

s=1

σ(p
s

N
)σ(q

s

N
)

the last identity following from (11).

2nd case. m ∈ A0 and S1(m) = N − 1

The proof is identical to the 1st case except that, when we sum on k+ l = N ,
we need to take 2 ≤ 2k instead of 0 ≤ 2k.

s0(m) =
∑

k+l=N−1

σ(p
k − l

N
)σ(q

k − l

N
) +

∑

k+l=N

σ(p
k − l

N
)σ(q

k − l

N
)

=
∑

0≤2k<N−1

σ(p
N − 1− 2k

N
)σ(q

N − 1− 2k

N
)

+
∑

1≤2k−1<N−1

σ(p
N − 1− (2k − 1)

N
)σ(q

N − 1− (2k − 1)

N
)

=

N−2∑

u=0

σ(p
N − 1− u

N
)σ(q

N − 1− u

N
) =

N−1∑

s=1

σ(p
N − s

N
)σ(q

N − s

N
)

=

N−1∑

s=1

σ(p
s

N
)σ(q

s

N
)
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3rd case. m ∈ A1 s1(m) =

∑

k+l=S1(m)−N

σ(p
k − l

N
)σ(q

k − l

N
) +

∑

k+l=S1(m)−N+1

σ(p
k − l

N
)σ(q

k − l

N
) (14)

+
∑

k+l=S1(m)

σ(p
k − l

N
)σ(q

k − l

N
) +

∑

k+l=S1(m)+1

σ(p
k − l

N
)σ(q

k − l

N
) (15)

We start by dealing with (14) using the same method as in the previous two
cases and write

(14) =
∑

0≤2k<S1(m)−N

σ(p
S1(m)−N − 2k

N
)σ(q

S1(m)−N − 2k

N
)

+
∑

−1≤2k−1<S1(m)−N

σ(p
S1(m)−N − (2k − 1)

N
)σ(q

S1(m)−N − (2k − 1)

N
)

=

S1(m)−N−1∑

u=−1

σ(p
S1(m)−N − u

N
)σ(q

S1(m)−N − u

N
)

=

S1(m)+1∑

s=N+1

σ(p
v

N
)σ(q

s

N
) =

S1(m)−N+1∑

s=1

σ(p
s

N
)σ(q

s

N
)

To treat (15), we proceed as in all the previous two cases, except that we
index our sum with l instead of k. If k+ l = S1(m) (resp. k+ l = S1(m)+1),
we have 2l > S1(m) (resp. 2l − 1 > S1(m)). We derive

(15) =
∑

S1(m)<2l≤2N−2

σ(p
S1(m)− 2l

N
)σ(q

S1(m)− 2l

N
)

+
∑

S1(m)<2l−1≤2N−3

σ(p
S1(m)− (2l − 1)

N
)σ(q

S1(m)− (2l − 1)

N
)

=
2N−2∑

u=S1(m)+1

σ(p
S1(m)− u

N
)σ(q

S1(m)− u

N
) =

−1∑

s=S1(m)−2(N−1)

σ(p
s

N
)σ(q

s

N
)

=
N−1∑

s=2+S1(m)−N

σ(p
s

N
)σ(q

s

N
).
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Adding (14) and (15) yield the third case of Lemma 3. �

Putting Lemma 3 and formula (9) together, we derive

w(B) =
∑

m∈Ai/i=1,2

(−1)mσ(p
m

q
+ ǫ)

N−1∑

s=1

σ(p
s

N
)σ(q

s

N
) (16)

We now focus on
∑

m∈Ai/i=1,2(−1)mσ(pm
q
+ ǫ).

Lemma 4. There exists an integer m0 such that A0∪A1 = [m0, m0+q−1]∩N.

PROOF. We go back to inequality (2) above and derive that m belongs
to A if and only if

2q

N
(η +

1

2
)−

1

2
≤ m ≤ 2q +

2q

N
(η −

1

2
)−

1

2
;

this defines an interval of amplitude 2q − 2q
N
. We derive the existence of two

integers m0, C with 0 < C < q such that A = [m0, m0 + q + C] ∩ N.
With these notations, we see that, if m0 ≤ m,
1) m ∈ A1 if and only if m+ q ≤ m0 + q + C, hence A1 = [m0, m0 + C] ∩ N

2) m ∈ A0 if and only if m − q < m0 and m + q > m0 + q + C. In other
words, A0 = [m0 + C + 1, m0 + q − 1] ∩ N.
The lemma follows from 1) and 2) put together.

We derive from Lemma 4 that

∑

m∈Ai/i=1,2

(−1)mσ(p
m

q
+ ǫ) =

q∑

u=1

σ(
p(m0 − 1 + u)

q
+ ǫ)(−1)m0−1+u

=

q∑

u=1

σ(
pu

q
+
p(m0 − 1)

q
+ ǫ+m0 − 1)(−1)u =

q∑

u=1

σ(
pu

q
+ ψ)(−1)u

for some irrational number ψ. Thus we can rewrite (16) as

w(B) = (

q∑

u=1

σ(
pu

q
+ ψ)(−1)u)(

N−1∑

s=1

σ(p
s

N
)σ(q

s

N
)) (17)

Lemma 5.
∑q

u=1 σ(
pu
q
+ ψ)(−1)u = d

∑q̃
u=1 σ(

p̃u
q̃
+ ψ)(−1)u.

12



PROOF.
∑q

u=1 σ(
pu
q
+ ψ)(−1)u =

∑q
u=1 σ(

p̃u
q̃
+ ψ)(−1)u

=

d−1∑

a=0

q̃∑

v=1

σ(
p̃(v + aq̃)

q̃
+ ψ)(−1)v+aq̃ = (

d−1∑

a=0

(−1)a(p̃+q̃))

q̃∑

u=1

σ(
p̃u

q̃
+ ψ)(−1)u

= d

q̃∑

u=1

σ(
p̃u

q̃
+ ψ)(−1)u

since p̃+ q̃ is even.

Lemma 6. Up to sign
∑q̃

u=1 σ(
p̃u
q̃
+ ψ)(−1)u = 1

PROOF. For every u, we have σ( p̃(u+q̃)
q̃

+ ψ)(−1)u+q̃ = σ( p̃u
q̃
+ ψ)(−1)u,

hence

q̃∑

u=1

σ(
p̃u

q̃
+ ψ)(−1)u =

1

2

2q̃∑

u=1

σ(
p̃u

q̃
+ ψ)(−1)u =

1

2

2q̃∑

u=1

σ(
p̃u

q̃
+ ψ)(−1)p̃u;

this last identity comes from the fact that p̃ is odd.
Since p̃ and 2q̃ are mutually prime, the map

Z/2q̃Z −→ Z/2q̃Z

u 7→ p̃u

is a bijection which preserves the parity - by parity of an element of Z/2q̃Z,
we mean the parity of its representative in [1, 2q̃]. Hence we have

1

2

2q̃∑

u=1

σ(
p̃u

q̃
+ ψ)(−1)p̃u =

1

2

2q̃∑

u=1

σ
u

q̃
+ ψ)(−1)u =

q̃∑

u=1

σ(
u

q̃
+ ψ)(−1)u

We let r = ψ − [ψ]. Since the statement of the Lemma is up to sign, we can
assume that [ψ] is even, so for every u, σ(u

q̃
+ ψ) = σ(u

q̃
+ r). For every u

with 1 ≤ u ≤ q̃, we have 0 < u
q̃
+ r < 2 since r is irrational. It follows that

σ(
u

q̃
+ r) = 1 ⇔

u

q̃
+ r < 1 ⇔ u < q̃(1− r) ⇔ 1 ≤ u ≤ [q̃(1− r)]

Similarly

σ(
u

q̃
+ r) = −1 ⇔ [q̃(1− r)] + 1 ≤ u ≤ q̃

13



The reader can now finish the proof of Lemma 6 him/herself, treating sepa-
rately the cases when [q̃(1− r)] is even and when [q̃(1− r)] is odd.

This concludes the proof of Prop. 1.

PROOF OF COROLLARY 1. When we look at the formula for w(B) in
Prop. 1, we realize that equality is attained in (*) if and only if for every
s ∈ {1, ..., N − 1}, σ(p s

N
)σ(q s

N
) have the same sign.

Suppose that 2N |p + q or 2N |p − q; then there exists τ ∈ {−1,+1} and
µ ∈ Z such that

p+ τq = 2Nµ

and p = 2Nµ− τq. It follows that, for every integer s,

σ(
ps

N
)σ(

qs

N
) = (−1)2Nµs+τσ(

ps

N
)σ(

qs

N
) = (−1)τ

(we remind the reader that if x is not an integer, [−x] = −[x] − 1, hence
σ(−x) = −σ(x)) hence the σ(p s

N
)σ(q s

N
)’s have all the same sign.

The converse will follow from

Lemma 7. i) If ∀s ∈ {1, ..., N − 1}, σ( qs
N
) = σ(ps

N
), then 2N divides p− q

ii) If ∀s ∈ {1, ..., N − 1}, σ( qs
N
) = −σ(ps

N
), then 2N divides p+ q.

PROOF. We assume i) of Lemma 7 and we do the Euclidean division of
p and q by N : we get

p = Na1 +R1, q = Na2 +R2 with 1 ≤ R1, R2 ≤ N − 1 (18)

(the left inequality in (18) comes from the fact that N does not divide p or
q).
If we write assumption i) for s = 1, we get

σ(a1 +
R1

N
) = σ(a2 +

R2

N
)

which implies that
(−1)a1 = (−1)a2 (19)

that is, a1 and a2 have the same parity.

14



Lemma 8. Under the assumptions of Lemma 7 i), for every s = 1, ..., N −1

[
R1s

N
] = [

R2s

N
] (20)

PROOF. Since (N, p) = (N, q) = 1, it follows that for i = 1, 2, (N,Ri) =
1. We keep this in mind and prove Lemma 8 by induction on s.
If s = 1, (20) follows immediately from (18). We now assume that (20) is
true for s: there exists an integer M such that for i = 1, 2,

MN ≤ sRi < (M + 1)N.

Since (N,Ri) = 1, this implies

MN + 1 ≤ sRi ≤MN +N − 1 i = 1, 2

hence

M +
Ri + 1

N
≤
Ri(s+ 1)

N
≤M + 1 +

Ri − 1

N
.

Since Ri+1
N

< 2 and Ri−1
N

< 1, we derive that

[
Ri(s+ 1)

N
] ∈ {M,M + 1} (21)

On the other hand, we have (s+1)p = (s+1)a1N +(s+1)R1 and (s+1)q =
(s+1)a2N+(s+1)R2; since (s+1)a1N and (s+1)a2N have the same parity
(19), i) implies that

σ(
(s+ 1)R1

N
) = σ(

(s+ 1)R2

N
) (22).

Putting (20) et (22) together yields [ (s+1)R1

N
] = [ (s+1)R2

N
]. �.

Going back to the proof of Lemma 7i), we write Lemma 8 for s = N − 1 and
we put

E = [
(N − 1)R1

N
] = [

(N − 1)R2

N
].

For i = 1, 2, we have

EN ≤ (N − 1)Ri ≤ EN +N − 1

15



We derive that (N − 1)|R1 − R2| ≤ N − 1 which implies that R1 = R2 or
|R1 − R2| = 1. But we see from (18) that

R1 −R2 = p− q +N(a1 − a2)

which is an even number since p − q is even by assumption and a1 − a2 is
even by (19). hence R1 = R2 and

p− q = N(a1 − a2) (23)

Since a1 − a2 is even number by (19), this concludes the proof of Lemma 7
i).

Suppose now that p, q, N verify ii) of Lemma 7 and let T be a positive integer
such that 2NT − q > 0. We get, for s = 1, ..., N − 1

σ((2NT − q)
s

N
) = −σ(

qs

N
) = σ(

ps

N
).

We let 2NT − q play the role which q played above and we apply Lemma 7
i) to the integers 2NT − q, p, N ; we derive

2N |(2NT − q)− p.

It follows that 2N divides p+ q and this concludes the proof of Lemma 7 ii).

To conclude the proof of Cor. 1, note that if the σ( qs
N
)’s and σ(ps

N
)’s are

not all of the same sign, then |
∑N−1

s=1 σ(
qs
N
)σ(ps

N
)| ≤ N − 3.
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