Curve cuspless reconstruction via sub-Riemannian geometry - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Curve cuspless reconstruction via sub-Riemannian geometry

Résumé

We consider the problem of minimizing $\int_{0}^L\sqrt{\xi^2 +K^2(s)}\, ds $ for a planar curve having fixed initial and final positions and directions. The total length $L$ is free. Here $s$ is the variable of arclength parametrization, $K(s)$ is the curvature of the curve and $\xi>0$ a parameter. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer, then there is neither a local minimizer nor a geodesic. We finally give properties of the set of boundary conditions for which there exists a solution to the problem.
Fichier principal
Vignette du fichier
cuspless.pdf (1.7 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00763141 , version 1 (27-01-2013)

Identifiants

  • HAL Id : hal-00763141 , version 1

Citer

Ugo Boscain, Remco Duits, Francesco Rossi, Yuri Sachkov. Curve cuspless reconstruction via sub-Riemannian geometry. 2013. ⟨hal-00763141⟩
316 Consultations
125 Téléchargements

Partager

More