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Abstract

We consider the problem of minimizing
∫ `

0

√
ξ2 +K2(s) ds for a planar curve having fixed

initial and final positions and directions. The total length ` is free. Here s is the variable of
arclength parametrization, K(s) is the curvature of the curve and ξ > 0 a parameter. This
problem comes from a model of geometry of vision due to Petitot, Citti and Sarti.

We study existence of local and global minimizers for this problem. We prove that if for a
certain choice of boundary conditions there is no global minimizer, then there is neither a local
minimizer nor a geodesic.

We finally give properties of the set of boundary conditions for which there exists a solution
to the problem.

1 Introduction

In this paper we are interested in the following variational problem1:

(P) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2 × S1. On the space of (regular enough)
planar curves, parameterized by plane-arclength2 find the solutions of:

x(0) = (xin, yin), x(`) = (xfin, yfin),

ẋ(0) = (cos(θin), sin(θin)), ẋ(`) = (cos(θfin), sin(θfin)),∫ `

0

√
ξ2 +K2(s) ds→ min (here ` is free.) (1) {?}

Here K = ẋÿ−ẏẍ
(ẋ2+ẏ2)3/2

is the geodesic curvature of the planar curve x(·) = (x(·), y(·)). This problem

comes from a model proposed by Petitot, Citti and Sarti (see [9, 21, 22, 26] and references therein)
for the mechanism of reconstruction of corrupted curves used by the visual cortex V1. The model
is explained in detail in Section 2.

It is convenient to formulate the problem (P) as a problem of optimal control, for which the
functional spaces are also more naturally specified.

1In this paper, by S1 we mean R/ ∼ where θ ∼ θ′ if θ = θ′ + 2nπ, n ∈ Z. By P 1 we mean R/ ≈ where θ ≈ θ′ if
θ = θ′ + nπ, n ∈ Z.

2Here by plane-arclength we mean the arclength in R2, for which we use the variable s. Later on, we consider
also parameterizations by arclength on R2×S1 or R2×P 1, that we call sub-Riemannian arclength (sR-arclength for
short), for which we use the variable t. We will also use the variable τ for a general parametrization.

1



(Pcurve) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2 × S1. In the space of integrable
controls v(·) : [0, `]→ R, find the solutions of:

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(`), y(`), θ(`)) = (xfin, yfin, θfin), dx
ds (s)
dy
ds (s)
dθ
ds (s)

 =

 cos(θ(s))
sin(θ(s))

0

+ v(s)

 0
0
1

 (2) e-pcurve

∫ `

0

√
ξ2 +K(s)2 ds =

∫ `

0

√
ξ2 + v(s)2 ds→ min (here ` is free) (3) {?}

Since in this problem we are taking v(·) ∈ L1([0, `]), we have that the curve q(.) = (x(·), y(·), θ(·)) :
[0, `]→ R2 × S1 is absolutely continuous and the planar curve x(·) := (x(·), y(·)) : [0, `]→ R2 is in
W 2,1([0, `]).

Remark 1 Notice that the function
√
ξ2 +K2 has the same asymptotic behaviour, for K → 0 and

for K →∞ of the function φ(K) introduced by Mumford and Nitzberg in their functional for image
segmentation (see [20]).

The main issues we address in this paper are related to existence of minimizers for problem
(Pcurve). More precisely, for (Pcurve) the first question we are interested in is the following:

Q1) Is it true that for every initial and final condition, the problem (Pcurve) admits a global
minimum?

In [6] it was shown that there are initial and final conditions for which (Pcurve) does not admit
a minimizer. More precisely, it was shown that there exists a minimizing sequence for which the
limit is a trajectory not satisfying the boundary conditions. See Figure 1.

Figure 1: Minimizing sequence qn converging to a non-admissible curve q̄ (angles at the begin-
ning/end).

〈fig:angoli-inizio〉

From the modeling point of view, the non-existence of global minimizers is not a crucial issue.
It is very natural to assume that the visual cortex looks only for local minimizers, since it seems
reasonable to expect that it primarly compares nearby trajectories. Hence, a second problem we
address in this paper is the existence of local minimizers for the problem (Pcurve). More precisely,
we answer the following question:

Q2) Is it true that for every initial and final condition the problem (Pcurve) admits a local
minimum? If not, what is the set of boundary conditions for which a local minimizer exists?

The main result of this paper is the following.

2



Theorem 2 Fix an initial and a final condition qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin) in
R2 × S1. The only two following cases are possible.

1. There exists a solution (global minimizer) for (Pcurve) from qin to qfin.

2. The problem (Pcurve) from qin to qfin does not admit neither a global nor a local minimum
nor a geodesic.

Both cases occur, depending on the boundary conditions.
〈t-maini〉

We recall that a curve q(.) is a geodesic if for every sufficiently small interval [t1, t2] ⊂ Dom(q(.)),
the curve q(.)|[t1,t2] is a minimizer between q(t1) and q(t2).

One of the main interests of (Pcurve) is that it admits minimizers that are in W 1,1 but are not
Lipschitz, as we will show in Section 5.2. As a consequence, controls lie in L1 but not in L∞. This
is an interesting phenomenon for control theory: indeed, to find minimizers, one usually applies
the Pontryagin Maximum Principle (PMP in the following), that is a generalization of the Euler-
Lagrange condition. But the standard formulation of the PMP holds for L∞ controls; this obliges
us to use a generalization of the PMP for (Pcurve), that we discuss in Section 5.1. Details of this
interesting aspect of (Pcurve) are given in Section 5.2. This also explains the reason for which we
need to define variational problems, global and local minimizers in the space W 1,1, see Section 3.

The second sentence of Q2 is interesting, since one could compare the limit boundary conditions
for which a mathematical reconstruction occurs with the limit boundary conditions for which a
reconstruction in human perception experiments is observed. Indeed, it is well known from human
perception experiments that the visual cortex V1 does not connect all initial and final conditions,
see e.g. [22]. With this goal, we have computed numerically the configurations for which a solution
exists, see Figure 2.

The structure of the paper is as follows. In Section 2 we briefly describe the model by Petitot-
Citti-Sarti for the visual cortex V1. We state it as a problem of optimal control (more precisely
a sub-Riemannian problem), that we denote by (Pprojective). The problem (Pcurve) is indeed
a modified version of (Pprojective). In Section 3 we recall definitions and main results in sub-
Riemannian geometry, that is the main tool we use to prove our results. In Section 4 we define
an auxiliary mechanical problem (crucial for our study), that we denote with (PMEC), and study
the structure of geodesics for it. In Section 5 we describe in detail the relations between problems
(Pcurve), (Pprojective) and (PMEC), with an emphasis on the connections between the minimizers
of such problems. In Section 6 we prove the main results of the paper, i.e. Theorem 2.

2 The model by Petitot-Citti-Sarti for V1

〈s-petitot〉 In this section, we recall a model describing how the human visual cortex V1 reconstructs curves
which are partially hidden or corrupted. The goal is to explain the connection between reconstruc-
tion of curves and the problem (Pcurve) studied in this paper.

The model we present here was initially due to Petitot [21, 22], based on previous work by
Hubel-Wiesel [17] and Hoffman [15], then refined by Citti and Sarti [9, 26], and by the authors of
the present paper in [8, 11, 12]. It was also studied by Hladky and Pauls in [14].

In a simplified model3 (see [22, p. 79]), neurons of V1 are grouped into orientation columns,

3For example, in this model we do not take into account the fact that the continuous space of stimuli is implemented
via a discrete set of neurons.
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Figure 2: Configurations for which we have existence of minimizers with ξ = 1. For other ξ 6= 1, one
can recover the corresponding figure via dilations, as explained in Remark 20. Due to invariance
of the problem under rototranslations on the plane, one can always assume that qin = (0, 0, 0).
Left: We study the cases x2

fin + y2
fin = 1 and x2

fin + y2
fin = 4, with y ≥ 0. The case y ≤ 0 can be

recovered by symmetry. In the case x2
fin + y2

fin = 1 minimizing curves are also shown. Right: For
each point on the right half-plane, we give the set of configurations for which we have existence of
minimizers.

〈fig:Q2〉

each of them being sensitive to visual stimuli at a given point of the retina and for a given direction
on it. The retina is modeled by the real plane, i.e. each point is represented by (x, y) ∈ R2,
while the directions at a given point are modeled by the projective line, i.e. θ ∈ P 1. Hence, the
primary visual cortex V1 is modeled by the so called projective tangent bundle PTR2 := R2 × P 1.
From a neurological point of view, orientation columns are in turn grouped into hypercolumns,
each of them being sensitive to stimuli at a given point (x, y) with any direction. In the same
hypercolumn, relative to a point (x, y) of the plane, we also find neurons that are sensitive to
other stimuli properties, like colors, displacement directions, etc... In this paper, we focus only
on directions and therefore each hypercolumn is represented by a fiber P 1 of the bundle PTR2.
Orientation columns are connected between them in two different ways. The first kind is given by
vertical connections, which connect orientation columns belonging to the same hypercolumn and
sensible to similar directions. The second is given by the horizontal connections, which connect
orientation columns in different (but not too far) hypercolumns and sensible to the same directions.
See Figure 3.
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Figure 3: A scheme of the primary visual cortex V1.
〈fig:f-hyper-bis〉

In other words, when V1 detects a (regular enough) planar curve (x(·), y(·)) : [0, T ] → R2 it
computes a “lifted curve” in PTR2 by including a new variable θ(·) : [0, T ] → P 1, defined in
W 1,1([0, T ]), which satisfies: dx

dτ (τ)
dy
dτ (τ)
dθ
dτ (τ)

 = u(τ)

 cos(θ(τ))
sin(θ(τ))

0

+ v(τ)

 0
0
1

 for some u, v : [0, T ]→ R. (4) eq-contrSR

The new variable θ(.) plays the role of the direction in P 1 of the tangent vector to the curve. Here
it is natural to require u(·), v(·) ∈ L1([0, T ]). This specifies also which regularity we need for the
planar curve to be able to compute its lift: we need a curve in W 2,1.

Observe that the lift is not unique in general: for example, in the case in which there exists
an interval [τ1, τ2] such that dx

dτ (τ) = dy
dτ (τ) = 0 for all τ ∈ [τ1, τ2], one has to choose u = 0 on the

interval, while the choice of v is not unique. Nevertheless, the lift is unique (modulo L1) in many
relevant cases, e.g. if dx

dτ (τ)2 + dy
dτ (τ)2 = 0 for a finite number of times τ ∈ [0, T ].

In the following we call a planar curve a liftable curve if it is in W 2,1 and its lift is
unique.

Consider now a liftable curve (x(·), y(·)) : [0, T ] → R2 which is interrupted in an interval
(a, b) ⊂ [0, T ]. Let us call (xin, yin) := (x(a), y(a)) and (xfin, yfin) := (x(b), y(b)). Notice that
the limits θin := limτ↑a θ(τ) and θfin := limτ↓b θ(τ) are well defined, since θ(.) is an absolutely
continuous curve. In the model by Petitot, Citti, Sarti and the authors of the present article
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[8, 9, 23], the visual cortex reconstructs the curve by minimizing the energy necessary to activate
orientation columns which are not activated by the curve itself. This is modeled by the minimization
of the functional

J =

∫ b

a

(
ξ2u(τ)2 + v(τ)2

)
dτ → min, (here a and b are fixed). (5) e-5

Indeed, ξ2u(τ)2 (resp. v(τ)2) represents the (infinitesimal) energy necessary to activate horizontal
(resp. vertical) connections. The parameter ξ > 0 is used to fix the relative weight of the horizontal
and vertical connections, which have different phisical dimensions. The minimum is taken on the set
of curves which are solution of (4) for some u(·), v(·) ∈ L1([a, b]) and satisfying boundary conditions

(x(a), y(a), θ(a)) = (xin, yin, θin), (x(b), y(b), θ(b)) = (xfin, yfin, θfin).

Minimization of the cost (5) is equivalent to the minimization of the cost (which is invariant by
reparameterization)

L =

∫ b

a

√
ξ2u(τ)2 + v(τ)2 dτ =

∫ b

a
‖ẋ(τ)‖

√
ξ2 +K(τ)2 dτ,

where x = (x, y) and with b > a fixed. See a proof of such equivalence in [18].
We thus define the following problem:

(Pprojective): Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2 × P 1. In the space of integrable
controls u(·), v(·) : [0, T ]→ R, find the solutions of:

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(T ), y(T ), θ(T )) = (xfin, yfin, θfin), dx
dτ (τ)
dy
dτ (τ)
dθ
dτ (τ)

 = u(τ)

 cos(θ(τ))
sin(θ(τ))

0

+ v(τ)

 0
0
1


L =

∫ T

0

√
ξ2u(τ)2 + v(τ)2 dτ =

∫ T

0
‖ẋ(τ)‖

√
ξ2 +K(τ)2 dτ → min (here T is free)

Observe that here θ ∈ P 1, i.e. angles are considered without orientation4.
The optimal control problem (Pprojective) is well defined. Moreover, it is a sub-Riemmanian

problem, see Section 3. We have remarked in [8] that a solution always exists. We have also studied
a similar problem in [7], when we deal with curves on the sphere S2 rather than on the plane R2.

One the main interests of (Pprojective) is the possibility of associating to it a hypoelliptic
diffusion equation which can be used to reconstruct images (and not just curves), and for contour
enhancement. This point of view was developed in [8, 9, 11, 12].

However, its main drawback (at least for the problem of reconstruction of curves) is the existence
of minimizers with cusps, see e.g. [6]. Roughly speaking, cusps are singular points in which velocity
changes its sign. More formally, we say that a curve trajectory (q(.), (u(.), v(.))) has a cusp at
τ̄ ∈ [0, T ] if u(τ) changes its sign in a neighbourhood5 of τ̄ . Notice that in a neighborhood of a
cusp point, the tangent direction (with no orientation) is well defined. A minimizer with cusps is
represented in Figure 4.

4Notice that the vector field (cos θ, sin θ, 0) is not continuous on PTR2. Indeed, a correct definition of (Pprojective)
needs two charts, as explained in detail in [8, Remark 12]. In this paper, the use of two charts is implicit, since it
plays no crucial role.

5More precisely, it exists ε > 0 such that u(a)u(b) < 0 for almost every a ∈ (τ̄ − ε, τ̄) , b ∈ (τ̄ , τ̄ + ε).
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Figure 4: A minimizer with two cusps.
〈fig:f-cusp〉

However, to our knowledge, the presence of cusps has not been observed in human perception
experiments, see e.g. [22]. For this reason, people started looking for a way to require that no
trajectories with cusps appear as solutions of the minimization problem. In [9, 12] the authors
proposed to require trajectories parameterizated by spatial arclength, i.e. to impose ‖ẋ‖ = u = 1.
In this way cusps cannot appear. Notice that assuming u = 1, directions must be considered with
orientation, since now the direction of ẋ is defined in S1. In fact, cusps are precisely the points
where the spatial arclength parameterization breaks down. By fixing u = 1 we get the optimal
control problem (Pcurve) on which this paper is focused.

〈r-cuspdistribuita〉Remark 3 We also define an “angular cusp” as follows: we say that a pair trajectory-control
(q(.), (u(.), v(.))) has an “angular cusp” at τ̄ ∈ [a, b] if there exist a neighbourhood B := (τ̄−ε, τ̄+ε)
such that u(τ) ≡ 0 on B and θ(τ̄ − ε) 6= θ(τ̄ + ε). Angular cusps are of the kind q(τ) = (x0, y0, θ0 +∫ τ

0 v(σ) dσ).
The minimum of the distance between (x0, y0, θ0) and (x0, y0, θ1) with arbitrary θ0, θ1 is realized

by such kind of trajectories. This is the only interesting case in which we need to deal with such
trajectories. Indeed, even assuming that a solution q(.) of (Pprojective) satisfies u1 ≡ 0 on a
neighbourhood t̄ only, then analyticity of the solution6 implies that u1 ≡ 0 on the whole [0, T ], and
hence q(.) steers (x0, y0, θ0) to some (x0, y0, θ1).

3 Optimal control

〈s-sR〉 In this section, we give the fundamental definitions and results from optimal control, and the
particular cases of sub-Riemannian problems, that we will use in the following. For more details
about sub-Riemannian geometry, see e.g. [5, 13, 19].

3.1 Minimizers, local minimizers, geodesics

In this section, we give main definitions of optimal control. Observe that we deal with curves in
the space W 1,1 to deal with the problem (Pcurve), see Section 5.2.

6Analyticity of the solution is proved below, see Remark 13.
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?〈d-vp〉?Definition 4 Let M be an n dimensional smooth manifold and fu : q 7→ fu(q) ∈ TqM be a 1-
parameter family of smooth vector fields depending on the parameter u ∈ Rm. Let f0 : M × Rm →
[0,+∞) be a smooth function of its arguments. We call variational problem (denoted by (VP)
for short) the following optimal control problem

q̇(τ) = fu(τ)(q(τ)), (6) q1∫ T

0
f0(q(τ), u(τ)) dτ → min, T free (7) ?q2?

q(0) = q0, q(T ) = q1, (8) q3

u(·) ∈ ∪T>0L
1([0, T ],Rm), q(·) ∈ ∪T>0W

1,1([0, T ],M) (9) q4

Following [28, Ch. 8], we endow ∪T>0W
1,1([0, T ],M) with a topology.

Definition 5 Let q1(.), q2(.) ∈ ∪T>0W
1,1([0, T ],M), with q1 defined on [0, T1] and q2 on [0, T2].

Extend q1 on the whole time-interval [0,max {T1, T2}] by defining q1(t) := q1(T1) for t > T1, and
similarly for q2. We define the distance between q1(.) and q2(.) as

‖q1(.)− q2(.)‖W 1,1 := |q1(0)− q2(0)|+ ‖q̇1(.)− q̇2(.)‖L1 .

From now on, we endow ∪T>0W
1,1([0, T ],M) with the topology induced by this distance. It is clear

that this distance is induced by the norm in W 1,1. For more details, see [28, Ch. 8].
We now give definitions of minimizers for (VP).

?〈d-minimizers〉?Definition 6 We say that a pair trajectory-control (q(·), u(·)) is a minimizer if it is a solution of
(VP).
We say that it is a local minimizer if there exists an open neighborhood Bq(·) of q(·) in ∪T>0W

1,1([0, T ],Rm),
endowed with the topology defined above, such that all (q̄(·), ū(·)) satisfying (6)-(8), with q̄(·) ∈ Bq(·),
have a larger or equal cost.
We say that it is a geodesic if for every sufficiently small interval [t1, t2] ⊂ Dom(q(·)), the pair

(q(·), u(·))|[t1,t2] is a minimizer of
∫ T
t1
f0(q(τ), u(τ)) dτ from q(t1) to q(t2) with T free.

Remark 7 It is interesting to observe that, in general, one can have the same trajectory q(.)
realized by two different controls u1(.), u2(.). For this reason, one has to specifiy the control to have
the cost of a trajectory. Nevertheless, for the problems studied in this article, it is easy to prove
that, for a given trajectory q(.) ∈ W 1,1([0, T ],Rm) satisfying (6) for some control u(.), then such
control is unique.

In this paper we are interested in studying problems that are particular cases of (VP), see
Section 5. In particular, we study the problem (PMEC) defined in Section 4, that is a 3D contact
problem (see the definition below). For such problem we apply a standard tool of optimal con-
trol, namely the Pontryagin Maximum Principle (described in the next section), and then derive
properties for (Pcurve) from the solution of (PMEC).
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3.2 Sub-Riemannian manifolds

In this section, we recall the definition of sub-Riemannian manifolds and some properties of the
corresponding Carnot-Caratheodory distance. We recall that sub-Riemannian problems are special
cases of optimal control problems.

Definition 8 A sub-Riemannian manifold is a triple (M,N,g), where

• M is a connected smooth manifold of dimension n;

• N is a Lie bracket generating smooth distribution of constant rank m < n; i.e., N is a smooth
map that associates to q ∈M an m-dim subspace N(q) of TqM , and ∀ q ∈M , we have

span {[X1, [. . . [Xk−1, Xk] . . .]](q) | Xi ∈ Vec(M) and Xi(p) ∈ N(p) ∀ p ∈M} = TqM.

Here Vec(M) denotes the set of smooth vector fields on M .

• gq is a Riemannian metric on N(q), that is, smooth as a function of q.

The Lie bracket generating condition (10) is also known as the Hörmander
condition, see [16].

〈d-distanza〉Definition 9 A Lipschitz continuous curve q(.) : [0, T ] → M is said to be horizontal if q̇(τ) ∈
N(q(τ)) for almost every τ ∈ [0, T ]. Given a horizontal curve q(.) : [0, T ]→M , the length of q(.) is

l(q(.)) =

∫ T

0

√
gq(τ)(q̇(τ), q̇(τ)) dτ. (10) {?}

The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) = inf {l(q(.)) | q(0) = q0, q(T ) = q1, q(.) horizontal Lipschitz continuous curve} . (11) e-distanza

Notice that the length of a curve is invariant by time-reparametrization of the curve itself.
The hypothesis of connectedness of M and the Lie bracket generating assumption for the dis-

tribution guarantee the finiteness and the continuity of d(·, ·) with respect to the topology of M
(Rashevsky-Chow’s theorem; see, for instance, [4]).

The function d(·, ·) is called the Carnot–Caratheodory distance. It gives to M the structure of
a metric space (see [5, 13]).

Observe that (Pprojective) and (PMEC) defined in Section 4 are both sub-Riemannian problems.
Indeed, defining

X1 =

 cos θ
sin θ

0

 , X2 =

 0
0
1

 ,

one has that (Pprojective) is sub-Riemannian with M = PTR2, Nq = span {X1(q), X2(q)} and g(q)
such that X1(q), X2(q) is an orthonormal basis. For (PMEC), simply replace M = SE(2).
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3.3 The Pontryagin Maximum Principle on 3D contact manifolds

?〈s-pmp〉? In the following, we state some classical results from geometric control theory which hold for the
3D contact case. For simplicity of notation, we only consider structures defined globally by a pair
of vector fields, that are sometimes called “trivialized structures”.

Definition 10 (3D contact problem) Let M be a 3D manifold and let X1, X2 be two smooth
vector fields such that dim(Span{X1, X2, [X1, X2]}(q))=3 for every q ∈M . The variational problem

q̇ = u1X1 + u2X2, q(0) = q0, q(T ) = q1,

∫ T

0

√
(u1(τ))2 + (u2(τ))2dτ → min (12) ?e:3Dprob?

is called a 3D contact problem.

Observe that a 3D contact manifold is a particular case of a sub-Riemannian manifold, with N =
span {X1, X2} and gq(t) is uniquely determined by the condition gq(τ)(Xi, Xj) = δij . In particular,
each 3D contact manifold is a metric space when endowed with the Carnot-Caratheodory distance.

When the manifold is analytic and the orthonormal frame can be assigned through m analytic
vector fields, we say that the sub-Riemannian manifold is analytic. This is the case of the problems
studied in this article.

〈r-Linf〉
Remark 11 In the problem above the final time T can be free or fixed since the cost is invariant
by time reparameterization. As a consequence the spaces L1 and W 1,1 in (9) can be replaced with
L∞ and Lip (like in (11)), since we can always reparameterize trajectories in such a way that
u1(τ)2 + u2(τ)2 = 1 for every τ ∈ [0, T ]. If u1(τ)2 + u2(τ)2 = 1 for a.e. τ ∈ [0, T ] we say that the
curve is parameterized by sR-arclength. See [6, Section 2.1.1] for more details.

We now state first-order necessary conditions for our problem.

〈p-pmp〉Proposition 12 (Pontryagin Maximum Principle for 3D contact problems) In the 3D con-
tact case, a curve parameterized by sR-arclength is a geodesic if and only if it is the projection of
a solution of the Hamiltonian system corresponding to the Hamiltonian

H(q, p) =
1

2
(〈p,X1(q)〉2 + 〈p,X2(q)〉2), q ∈M, p ∈ T ∗qM, (13) ?eq-HH?

lying on the level set H = 1/2.

This simple form of the Pontryagin Maximum Principle follows from the absence of nontrivial abnor-
mal extremals in 3D contact geometry, as a consequence of the condition dim(Span{X1, X2, [X1, X2]}(q)) =
3 for every q ∈M , see [2]. For a general form of the Pontryagin Maximum Principle, see [4].

〈analytic〉Remark 13 As a consequence of Proposition 12, for 3D contact problems, geodesics and the cor-
responding controls are always smooth and even analytic if M,X1, X2 are analytic, as it is the case
for the problems studied in this article. Analyticity of geodesics in sub-Riemannian geometry holds
for general analytic sub-Riemannian manifolds having no abnormal extremals. For more details
about abnormal extremals, see e.g. [3, 19].
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In general, geodesics are not optimal for all times. Instead, minimizers are geodesics by defini-
tion.

For 3D contact problem, we have that local minimizers are geodesics. Indeed, first observe
that the set of local minimizers is same if we consider the space W 1,1 or W 1,∞, see Remark 11.
Observe now that a local minimizer is a solution of the PMP (see [4]), and due to Proposition 12
a curve is a solution of the PMP if and only if it is a geodesic. See more details in [3].

A 3D contact manifold is said to be “complete” if all geodesics are defined for all times. This is
the case for the problem (PMEC) defined in Section 4 below. In the following, for simplicity
of notation, we always deal with complete 3D contact manifolds.

In the following we denote by (q(t), p(t)) = et
~H(q0, p0) the unique solution at time t of the

Hamiltonian system

q̇ = ∂pH, ṗ = −∂qH,

with initial condition (q(0), p(0)) = (q0, p0). Moreover we denote by π : T ∗M → M the canonical
projection (q, p) 7→ q.

Definition 14 Let (M, span{X1, X2}) be a 3D contact manifold and q0 ∈ M . Let Λq0 := {p0 ∈
T ∗q0M |H(q0, p0) = 1/2}. We define the exponential map starting from q0 as

Expq0 : Λq0 × R+ →M, Expq0(p0, t) = π(et
~H(q0, p0)). (14) ?eq:expmap?

Next, we recall the definition of cut and conjugate time.

?〈def:cut〉?Definition 15 Let q0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q0.
The cut time for q(.) is Tcut(q(.)) = sup{t > 0, | q(.)|[0,t] is optimal}. The cut locus from q0 is the
set

Cut(q0) = {q(Tcut(q(.))) | q(.) geodesic parameterized by sR-arclength starting from q0}.

?〈def:con〉?Definition 16 Let q0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q0

with initial covector p0. The first conjugate time of q(.) is

Tconj(q(.)) = min{t > 0 | (p0, t) is a critical point of Expq0}.

The conjugate locus from q0 is the set Con(q0) = {q(Tconj(q(.))) | q(.) sR-arclength geodesic from q0}.

A geodesic loses its local optimality at its first conjugate locus. However a geodesic can lose
optimality for “global” reasons. Hence we introduce the following:

?〈def:max〉?Definition 17 Let q0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q0.
We say that tmax > 0 is a Maxwell time for q(.) if there exists another geodesic q̄(.), parameterized
by sR-arclength starting from q0 such that q(tmax) = q̄(tmax)

It is well known that, for a geodesic q(.), the cut time Tcut(q(.)) is either equal to the first
conjugate time or to the first Maxwell time, see for instance [2]. Moreover, we have (see again [2]):

?〈corr:1〉?Theorem 18 Let γ be a geodesic starting from q0 and let Tcut and Tconj be its cut and conjugate
times (possibly +∞). Then

11



• Tcut ≤ Tconj;

• γ is globally optimal from t = 0 to Tcut and it is not globally optimal from t = 0 to Tcut + ε,
for every ε > 0;

• γ is locally optimal from t = 0 to Tconj and it is not locally optimal from t = 0 to Tconj + ε,
for every ε > 0.

Remark 19 In 3D contact geometry (and more in general in sub-Riemannian geometry) the ex-
ponential map is never a local diffeomorphism in a neighborhood of a point. As a consequence,
spheres are never smooth and both the cut and the conjugate locus from q0 are adjacent to the point
q0 itself, i.e. q0 is contained in their closure (see [1]).

4 Definition and study of (PMEC)

〈s-pmec〉 In this section we introduce the auxiliary mechanical problem (PMEC). The study of solutions of
such problem is the main tool that we use to prove Theorem 2.

We first define the mechanical problem (PMEC).

(PMEC): Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2 × S1. In the space of L1 controls
u(·), v(·) : [0, T ]→ R, find the solutions of:

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(T ), y(T ), θ(T )) = (xfin, yfin, θfin), dx
dτ (τ)
dy
dτ (τ)
dθ
dτ (τ)

 = u(τ)

 cos(θ(τ))
sin(θ(τ))

0

+ v(τ)

 0
0
1


∫ T

0

√
ξ2u(τ)2 + v(τ)2 dτ → min (here T is free) (15) ?eq-KOST?

This problem (which cannot be interpreted as a problem of reconstruction of planar curves,
as explained in [8]) has been completely solved in a series of papers by one of the authors (see
[18, 24, 25]).

〈remark:xi〉Remark 20 Observe that (PMEC) (as well as (Pprojective) and (Pcurve)) depend on a parameter
ξ > 0. It is easy to reduce our study to the case ξ = 1. Indeed, consider the problem (PMEC)
with a fixed ξ > 0, that we call (PMEC)(ξ). Given a curve q(.) with cost Cξ, apply the dilation
(x, y)→ (1

ξx,
1
ξ y) to find a curve q̃(.). This curve has boundary conditions that are dilations of the

previous boundary conditions, and it satisfies the dynamics for (PMEC). If one considers now its
cost C1 for the problem (PMEC)(1), one finds that C1 = Cξ. Hence, the problem of minimization
for all (PMEC) is equivalent to the case (PMEC)(1). The same holds for (Pprojective), (Pcurve),
with an identical proof. For this reason, we will fix ξ = 1 from now on.

Remark that (PMEC) is a 3D contact problem. Then, one can use the techniques given in
Section 3 to compute the minimizers. This is the goal of the next section.
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4.1 Computation of geodesics for (PMEC)

〈s-geo-pmec〉 In this section, we compute the geodesics for (PMEC) with ξ = 1, and prove some properties that
will be useful in the following. First observe that for (PMEC) there is existence of minimizers for
every pair (qin, qfin) of initial and final conditions, and minimizers are geodesics. See [18, 24, 25].
Moreover, geodesics are analytic, see Remark 13.

Since (PMEC) is 3D contact, we can apply Proposition 12 to compute geodesics. We recall that
we have

M = R2 × S1, q = (x, y, θ), p = (p1, p2, p3), X1 =

 cos(θ)
sin(θ)

0

 , X2 =

 0
0
1

 .

Hence, by Proposition 12, we have

H =
1

2

(
(p1 cos θ + p2 sin θ)2 + p2

3

)
,

and the Hamiltonian equations are:

ẋ = ∂H
∂p1

= h(q, p) cos θ, ṗ1 = −∂H
∂x

= 0,

ẏ = ∂H
∂p2

= h(q, p) sin θ, ṗ2 = −∂H
∂y

= 0,

θ̇ = ∂H
∂p3

= p3, ṗ3 = −∂H
∂θ

= −h(q, p)(−p1 sin θ + p2 cos θ),

where h(q, p) = p1 cos θ + p2 sin θ. Notice that this Hamiltonian system is integrable in the
sense of Liouville, since we have enough constant of the motions in involution. Moreover, it can
be solved easily in terms of elliptic functions. Setting p1 = Pr cosPa, p2 = Pr sinPa one has
h(p, q) = Pr cos(θ − Pa) and θ(t) is solution of the pendulum like equation θ̈ = 1

2P
2
r sin(2(θ − Pa)).

Due to invariance by rototranslations, the initial condition on the q variable can be fixed to be
(xin, yin, θin) = (0, 0, 0), without loss of generality. The initial condition on the p variable is such
that H(0) = 1/2. Hence p(0) must belong to the cilinder

C = {(p1, p2, p3) | p2
1 + p2

3 = 1}. (16) cilinder

In the following we use the notation of [18, 24, 25]. Introduce coordinates (ν, c) on C as follows:

sin(ν/2) = p1 cos θ + p2 sin θ, cos(ν/2) = −p3, c = 2(p2 cos θ − p1 sin θ), (17) betac

with ν = 2θ + π ∈ 2S1. Here 2S1 = R/(4πZ) is the double covering of the standard circle
S1 = R/(2πZ).

In these coordinates, the Hamiltonian system reads as follows:

ν̇ = c, ċ = − sin ν, (ν, c) ∈ (2S1
ν)× Rc, (18) ham_vert

ẋ = sin ν
2 cos θ, ẏ = sin ν

2 sin θ, θ̇ = − cos ν2 . (19) ham_hor
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Note that the curvature of the curve (x(.), y(.)) is equal to

K =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
= − cot(ν/2). (20) eq-k

We now define cusps for geodesics of (PMEC). Recall that both the geodesics and the corresponding
controls are analytic.

Definition 21 Let q(.) = (x(·), y(·), θ(·)) be a geodesic of (PMEC), parameterized by sR-arclength.
We say that Tcusp is a cusp time for q(.) (and q(Tcusp) a cusp point) if u(.) changes its sign at
Tcusp. We say that the restriction of q(·) to an interval [0, T ] has no internal cusps if no t ∈]0, T [
is a cusp time.

Given a curve q(.) with a cusp point at Tcusp, we have that its projection on the plane x(·), y(·)
has a planar cusp at Tcusp as well, see Figure 4. More precisely, we have the following lemma.

〈l-cusps〉Lemma 22 A geodesic γ (without angular cusps) has a cusp at Tcusp if and only if limt→Tcusp |K(t)| =
∞.

Proof. First observe that γ has an internal cusp at Tcusp if, for t → Tcusp, it holds u(t) → 0 and
v(t) 6→ 0, i.e. using (19) one has u(t) = sin(ν/2)→ 0 and v(t) = − cos(ν/2) 6→ 0. This is equivalent
to K(t) = − cot(ν/2)→∞, by using (20). �

Also observe that one can recover inflection points of the planar curve x(·), y(·) from the ex-
pression of q(.). Indeed, at an inflection point of the planar curve, we have that the corresponding
q(.) satisfies K = 0 and ν = π + 2πn, with n ∈ Z.

4.2 Qualitative form of the geodesics

〈s-qualitative〉Equation (18) is the pendulum equation

ν̈ = − sin ν, ν ∈ 2S1 = R/(4πZ), (21) eq-pend

whose phase portrait is shown in Figure 5.

Figure 5: Phase portraits of the pendulum equation, with the 5 types of trajectories.
〈fig:phase〉

There exist 5 types of geodesics corresponding the different pendulum trajectories.

14



1. Type S: stable equilibrium of the pendulum: ν ≡ 0. For the corresponding planar trajectory,
in this case we have (x(t), y(t)) ≡ (0, 0). These are the only geodesics with angular cusps.

2. Type U: unstable equilibria of the pendulum: ν ≡ π or ν ≡ −π. For the corresponding
planar trajectory, in this case we have (x(t), y(t)) = (t, 0) or (x(t), y(t)) = (−t, 0), i.e. we get
a straight line.

3. Type R: rotating pendulum. For the corresponding planar trajectory, in this case we have
that (x(t), y(t)) has infinite number of cusps and no inflection points (Fig. 6). Note that in
this case θ is a monotone function.

4. Type O: oscillating pendulum. For the corresponding planar trajectory, in this case we have
that (x(t), y(t)) has infinite number of cusps and infinite number of inflection points (Fig. 7).
Observe that between two cusps we have an inflection point, and between two inflection points
we have a cusp.

5. Type Sep: separating trajectory of the pendulum. For the corresponding planar trajectory,
in this case we have that (x(t), y(t)) has one cusps and no inflection points (Fig. 8).

The explicit expression of geodesics in terms of elliptic functions are recalled in Appendix A.

Figure 6: Trajectory of type R.
〈fig:xyC1〉

Figure 7: Trajectory of type O.
〈fig:xyC2〉

Figure 8: Trajectory of type Sep.
〈fig:xyC3〉

Recall that, for trajectories of type R, O and Sep, the cusp occurs whenever ν(t) = 2πn, with
n ∈ Z, since in this case one has from Lemma 22 that K(t)→∞ for t→ Tcusp.

4.3 Optimality of geodesics

Let q(.) = (x(.), y(.), θ(.)) be a geodesic parameterized by sub-Riemannian arclength t ∈ [0, T ].
Consider the following two mappings of geodesics7:

S,T : q(.) 7→ qS(.), qT(.), with q(.) : [0, T ]→ R2 × S1

7Such mappings are denoted by ε2, ε5 in [18, 24, 25], respectively.
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where

θS(t) = θ(T )− θ(T − t),
xS(t) = − cos θ(T )(x(T )− x(T − t))− sin θ(T )(y(T )− y(T − t)),
yS(t) = − sin θ(T )(x(T )− x(T − t)) + cos θ(T )(y(T )− y(T − t)),

and

θT(t) = θ(T − t)− θ(T ),

xT(t) = cos θ(T )(x(T − t)− x(T )) + sin θ(T )(y(T − t)− y(T )),

yT(t) = − sin θ(T )(x(T − t)− x(T )) + cos θ(T )(y(T − t)− y(T )).

Modulo rotations of the plane (x, y), the mapping S acts as reflection of the curve (x(.), y(.)) in the
middle perpendicular to the segment that connects the points (x(0), y(0)) and (x(T ), y(T )); the
mapping T acts as reflection in the midpoint of this segment. See Figures 9 and 10.

Figure 9: Action of S on t 7→ (x(t), y(t)).
〈fig:eps2〉

Figure 10: Action of T on t 7→ (x(t), y(t)).
〈fig:eps5〉

A point q(t) of a trajectory q(.) is called a Maxwell point corresponding to the reflection S if
q(t) = qS(t) and q(·) 6≡ qS(·). The same definition can be given for T. Examples of Maxwell points
for the reflections S and T are shown at Figures 11 and 12.

The following theorem proved in [18, 24, 25] describes optimality of geodesics.

Theorem 23 A geodesic q(.) on the interval [0, T ], is optimal if and only if each point q(t), t ∈
(0, T ), is neither a Maxwell points corresponding to S or T, nor the limit of a sequence of Maxwell
points.

Notice that if a point q(t) is a limit of Maxwell points then it is a Maxwell point or a conjugate
point.

Denote by Tpend the period of motion of the pendulum (21). It was proved in [25] that the cut
time satisfies the following:

• Tcut = 1
2Tpend for geodesics of type R,

• Tcut ∈ (1
2Tpend, Tpend) for geodesics of type O,
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Figure 11: Maxwell point for reflection S.
〈fig:Max2〉

Figure 12: Maxwell point for reflection T.
〈fig:Max5〉

• Tcut = +∞ = Tpend for geodesics of types S, U and Sep.

〈corr:cuspcut〉Corollary 24 Let q(.) be a geodesic. Let Tcusp, and Tcut be the first cusp time and the cut time
(possibly +∞).Then Tcusp ≤ Tcut.

〈c-1〉

Proof. For geodesics of types R and O it follows from the phase portrait of pendulum (21) that
there exists t ∈ (0, 1

2Tpend) such that ν(t) = 2πn. This implies that K(t) → +∞, and, by Lemma
22, we have a cusp point for such t. Then Tcusp ≤ 1

2Tpend ≤ Tcut.
For geodesics of types S, U and Sep, the inequality Tcusp ≤ Tcut is obvious since Tcut = +∞. �

〈nonapofantic〉Corollary 25 Let q(.) defined on [0, T ] be a minimizer having an internal cusp. Then any other
minimizer between q(0) and q(T ) has an internal cusp.

Proof. It was proved in [25] that for any points q0, q1 ∈ R2 × S1, there exist either one or two
minimizers connecting q0 to q1. Moreover, if there are two such minimizers q(.) and q̃(·), then q̃(·)
is obtained from q(.) by a reflection S or T. So if q(.) has an internal cusp, then q̃(·) has an internal
cusp as well. �

5 Equivalence of problems

〈s-problems〉 In this section, we state precisely the connections between minimizers of problems (Pcurve), (Pprojective)
and (PMEC) defined above. The problems are recalled in Table 1 for the reader’s convenience. We
also prove that there exists minimizers of (Pcurve) that are absolutely continuous but not Lispchitz.
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Notation

q =

 x
y
θ

 , X1 =

 cos θ
sin θ

0

 , X2 =

 0
0
1

 ,

here x := (x, y) ∈ R2 and θ ∈ S1 or P 1 as specified below. We denote with s the plane-arclength
parameter and with t the sR-arclength parameter. In all problems written below we have the following:

• initial and final conditions (xin, yin, θin), (xfin, yfin, θfin) are given;
• the final time T (or length `) is free.

Problem (Pcurve):

q ∈ R2 × S1 q̇ = X1 + vX2,

∫ `

0

√
ξ2 + v2 ds =

∫ `

0

√
ξ2 +K(s)2ds→ min

Problem (PMEC):

q ∈ R2 × S1 q̇ = uX1 + vX2,

∫ T

0

√
ξ2u2 + v2 dt→ min

Problem (Pprojective):

q ∈ R2 × P 1 q̇ = uX1 + vX2,

∫ T

0

√
ξ2u2 + v2 dt =

∫ T

0
‖ẋ‖

√
ξ2 +K(t)2 dt→ min

Table 1. The different problems we study in the paper.

First notice that the problem (PMEC) admits a solution, as shown in [18, 24, 25]. The same
arguments apply to (Pprojective), for which existence of a solution is verified as well, see [6].

Also recall that the definitions of (Pprojective) and (PMEC) are very similar, with the only
difference that θ ∈ P 1 or θ ∈ S1, respectively. This is based on the fact that R2 × S1 is a double
covering of R2 × P 1. Moreover, both the dynamics and the infinitesimal cost in (PMEC) are
compatible with the projection R2 × S1 → R2 × P 1. Thus, the geodesics for (Pprojective) are the
projection of the geodesics for (PMEC). Then, locally the two problems are equivalent. If we look
for the minimizer for (Pprojective) from (xin, yin, θin) to (xfin, yfin, θfin), then it is the shortest
minimizer between the minimizing geodesics for (PMEC):

minimizing geodesic q1(.) : connecting (xin, yin, θin) to (xfin, yfin, θfin);

minimizing geodesic q2(.) : connecting (xin, yin, θin + π) to (xfin, yfin, θfin);

minimizing geodesic q3(.) : connecting (xin, yin, θin) to (xfin, yfin, θfin + π);

minimizing geodesic q4(.) : connecting (xin, yin, θin + π) to (xfin, yfin, θfin + π);

In reality, these four minizing geodesics are coupled two by two: indeed, q1 and q4 are geometri-
cally the same curve, as well as q2 and q3. This is a direct consequence of the fact that one can
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reparametrize a geodesic backward in time, and as a consequence boudary conditions are trans-
formed from θ to θ+π. More precisely, there exists the following symmetry of geodesics for (PMEC):
(x(t), y(t), θ(t)) 7→ (x(t), y(t), θ(t) + π), by replacing (u(t), v(t)) with (−u(t), v(t)). See Figure 13.

(xin, yin)

θin

θin
+ π

(xfin, yfin)

θ
fin

θ
fin +

π

q1
(.)
' q

4
(.)

q2(.) ' q3(.)

Figure 13: Minimizing geodesic for (Pprojective) from minimizing geodesics for (PMEC).
〈fig:2sol〉

It is also easy to prove that a minimizer of (PMEC) without cusps is also a minimizer of (Pcurve).
Indeed, take a minimizer q(.) of (PMEC) without cusps, thus with ‖ẋ(τ)‖ > 0 for τ ∈ [0, T ]. Then,
reparametrize the time to have a spatial arclength parametrization, i.e. u = ‖ẋ‖ ≡ 1 (this is
possible exactly because it has no cusps). This new parametrization of q(.) satisfies the dynamics
for (Pcurve) and the boundary conditions. Assume now by contradiction that there exists a curve
q̃(.) satisfying the dynamics for (Pcurve) and the boundary conditions with a cost that is smaller
that the cost for q(.). Then q̃(.) also satisfies the dynamics for (PMEC) and boundary conditions,
with a smaller cost, hence q(.) is not a minimizer. Contradiction.

5.1 Connection between curves of (Pcurve) and (PMEC)

〈s-genpmp〉 In this section, we study in more detail the connection between curves of (Pcurve) and (PMEC).
First of all, observe that (Pcurve) and (PMEC) are defined on the same manifold SE(2). Moreover,
each curve Γ(.) = (x(.), y(.), θ(.)) satisfying the dynamics for (Pcurve) with a certain control v(.),
also satisfies the dynammics for (PMEC) with controls u(.) ≡ 1 and v(.). For simplicity of notation,
we give the following definition.

Definition 26 Let Γ(.) = (x(.), y(.), θ(.)) be a curve in SE(2) satisfying the dynamics for (Pcurve)
with a certain control v(.). We define the corresponding curve q(.) for (PMEC) as the same
parametrized curve (x(.), y(.), θ(.)), and the corresponding pair as the pair trajectory-control
(q(.), (u(.), v(.))) with u(.) ≡ 1.

We define the corresponding reparametrized pair (q1(.), (u1(.), v1(.))) for (PMEC) the
time-reparametrization of the corresponding pair (q(.), (u(.), v(.))) by sR-arclength, and the corre-
sponding reparametrized curve as the curve q1(.).

Recall that the time-reparametrization by sR-arclength of an admissible curve for (PMEC) is
always possible. A detailed explanation for time-reparametrization of a curve with controls in L1

to have controls in L∞ is given in [6, Section 2.1.1].
We now focus on solutions of the Pontryagin Maximum Principle (PMP). For (Pcurve), one

cannot apply the standard PMP since one cannot guarantee a priori that optimal controls are in
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L∞. For this reason, we apply a generalized version of the PMP which holds for L1 controls (see
[28, Thm 8.2.1]). We have the following result.

〈t-equiv〉Theorem 27 Let Γ(.) be a solution of the generalized PMP for (Pcurve). Then the corresponding
reparametrized curve is a solution of the standard PMP for (PMEC).

The proof of this Theorem is given in Appendix B. Here we recall the main steps of the proof:

STEP 1: we prove that if (Γ(.), v(.)) is a solution of the generalized Pontryagin Maximum Principle
for (Pcurve), then, the corresponding pair (q(.), (u(.), v(.))) for (PMEC) is a solution of the
generalized Pontryagin Maximum Principle.

STEP 2: we prove that the corresponding reparametrized pair is a solution of the standard PMP.

We are now ready to discuss the connection between geodesics for (Pcurve) and (PMEC).

〈p-geodesic〉Proposition 28 Let Γ(.) be a geodesic for (Pcurve). Then the corresponding reparametrized curve
is a geodesic for (PMEC).

Proof. Let Γ(.) be a geodesic for (Pcurve). By definition, for every sufficiently small interval its
restriction is a global minimizer. Then it is a solution of the generalized PMP for (Pcurve). Hence,
applying the previous Theorem 27, we have that the corresponding reparametrized trajectory is a
solution of the standard PMP for (PMEC). This implies that it is a geodesic for (PMEC), due to
Proposition 12. �

5.2 (Pcurve) admits minimizers which are absolutely continuous but not Lips-
chitz

〈ch:lav〉
We now show that the problem (Pcurve) exhibits an interesting phenomenon: there exist absolutely
continuous minimizers that are not Lipschitz. Other examples are given in [27].

Consider a geodesic of (PMEC) defined on [0, T ] having no internal cusp and corresponding
to controls u(·) and v(·). From Corollary 24 it follows that it is optimal. Assume now that this
geodesic has a cusp at T . Then, by Lemma 22, we have that for t → T it holds u(t) → 0 and
K(t) → ∞. Notice that

√
u(τ)2 + v(τ)2 is integrable on [0, T ], since its integral is exactly the

Carnot-Caratheodory distance (11), that is finite, see e.g. [18]. Since the cost of (PMEC) and

(Pcurve) coincide, we have that
∫ `

0

√
1 +K2(s) ds is finite. In particular, K(.) is a L1 function that

is not L∞. Reparametrize time to have an admissible curve Γ(.) for (Pcurve), with control ṽ(.).
Since ṽ(s) coincides with K(s), then ṽ(.) is a L1 function that is not L∞. This means moreover
that the trajectory Γ(.) for (Pcurve) has unbounded control and it is not Lipschitz.

This phenomenon is extremely interesting in optimal control. Indeed, direct application of
standard techniques for the computation of local minimizers, such as the Pontryagin Maximum
Principle, would provide local minimizers in the “too small” set of controls L∞([0, T ],R). In
other words, the absolutely continuous minimizers that are not Lipschitz are not detected by the
Pontryagin Maximum Principle. For this reason, we were obliged to use the generalized PMP for
(Pcurve) in Theorem 27.

Instead, the auxiliary problem (PMEC) does not present this phenomenon, since by re-parametrization
one can always reduce to the set L∞([0, T ],R).
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6 Existence of minimizing curves

〈s-main〉 In this section we prove the main results of this paper, proving Theorem 2. We characterize the set
of boundary conditions for which a solution of (Pcurve) exists. We show that the set of boundary
conditions for which a solution exists coincides with the set of boundary conditions for which
a local minimizer exists. Moreover, such set coincides with the set of boundary conditions for
which a geodesics joining them exists. We also give some properties of such set.

After this theoretical result, we show explicitly the set of initial and final points for which a
solution exists, computed numerically. For more details on this subject, see [10].

From the following result, Theorem 2 follows.

〈th:main〉Theorem 29 (main result) Fix an initial and a final condition qin = (xin, yin, θin) and qfin =
(xfin, yfin, θfin) in R2 × S1 . Let q(.) be a minimizer for the problem (PMEC) from qin to qfin.
The only two possible cases are:

1. q(.) has neither internal cusps nor angular cusps. Then q(.) is a solution for (Pcurve) from
qin to qfin.

2. q(.) has at least an internal cusp or an angular cusp. Then (Pcurve) from qin to qfin does
not admit neither a global nor a local minimum nor a geodesic.

?〈t-strong〉?

Proof. We use the notation q(.) to denote trajectories for (PMEC), and Γ(.) for trajectories for
(Pcurve). Recall the results of Section 5. Given a Γ(.) = (x(.), y(.), θ(.)) trajectory of (Pcurve),
this gives naturally a q(.) = (x(.), y(.), θ(.)) trajectory of (PMEC). On the converse, a q(.) =
(x(.), y(.), θ(.)) trajectory of (PMEC) without cusps gives naturally a Γ(.) trajectory of (Pcurve),
after reparametrization.

Fix an initial and a final condition qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin). Take a
solution q(.) of (PMEC). If q(.) has no cusps, then one can reparametrize time to have a curve Γ(.)
solution of (Pcurve). If q(.) has cusps at boundaries, then the same re-parametrization (that can
be applied, as explained in Section 5.1) gives the corresponding Γ(.), that is a solution of (Pcurve).
The first part is now proved.

We prove the second part by contradiction. If q(.) has an internal cusp, then any other solution
of (PMEC) from qin to qfin has an internal cusp, as proved in Corollary 25. By contradiction,
assume that there exists Γ̄(.), either a solution (i.e. a global minimizer) of (Pcurve) from qin to
qfin, or a local minimizer, or a geodesic. In the three cases, the corresponding reparametrized curve
on SE(2) of (PMEC), that we denote by q̄1(.), has no cusps.

We first study the case of geodesics. Let Γ̄(.) be a geodesic of (Pcurve). Then q̄1(.) is a geodesic
of (PMEC) between the same boundary conditions of Γ̄(.), due to Proposition 28. Then, two cases
are possible:

• Let q̄1(.) be a solution, i.e. a global minimizer, for (PMEC). Then both q(.) and q̄(.) are
minimizers, one with cusps and the other without cusps. This yelds a contradiction with
Corollary 25.

• Let q̄1(.) be a geodesic for (PMEC) that is not a global minimizer. We denote with [0, T ]
the time-interval of definition of q̄1(.). Then there exists a cut time tcut < T for q̄1(.). Then
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there exists a cusp time tcusp ≤ tcut < T for q̄1(.), see Corollary 24. Then q̄1(.) has a cusp.
Contradiction.

We have a contradiction in both cases. Thus, if q(.) has a internal cusp, there exists no geodesic of
(Pcurve) from qin to qfin.

We now study the case of local minimizers. Let Γ̄(.) be a local minimizer for (Pcurve).
Then, it is a solution of the generalized Pontryagin Maximum Principle [28, Thm 8.2.1]. Applying
Theorem 27, we have that the corresponding reparametrized curve q̄1(.) is a solution of the standard
Pontryagin Maximum Principle for (PMEC), and then it is a geodesic by Proposition 12. Since
Γ̄(.) has no cusps, then q̄1(.) has no cusps either, thus it is a global minimizer. Then both q(.) and
q̄1(.) are global minimizers, one with cusps and the other without cusps. This yelds a contradiction
with Corollary 25.

Since global minimizers are special cases of local minimizers, we have the result for global
minimizers too.

If instead q(.) has an angular cusp, then (xin, yin) = (xfin, yfin), see Remark 3. In this case,
assume that there exists Γ̄(.) either a solution of (Pcurve) (i.e. a global minimizer), or a local
minimizer, or a geodesic. In the three cases, the corresponding reparametrized trajectory of (PMEC)
q̄1(.) must be of Type S, since there are no other geodesics steering qin to qfin with (xin, yin) =
(xfin, yfin). By construction, the solution of (Pcurve) is Γ̄(.) = (xin, yin, θ(.)). Observing the
dynamics for (Pcurve) in (2), one has that x, y constant implies that the planar length is ` = 0,
then we must have θin = θfin. �

Remark 30 Observe that, as a corollary, we have proved that global minimizers, local minimizers
and geodesics for (Pcurve) coincide.

Remark 31 The last part of the proof has its practical interest. It shows the non-existence of a
solution of (Pcurve) in the case of (xin, yin) = (xfin, yfin). This means that, under this condi-
tion, it is possible to construct a sequence of planar curves γn(.), each steering (xin, yin, θin) to
(xin, yin, θfin) and such that the sequence of the costs of γn(.) converges to the infimum of the cost,
but that the limit trajectory γ∗(.) is a curve reduced to a point, for which the curvature K is not
well-defined. See Figure 14.

6.1 Characterization of the existence set

In this section, we characterize the set of boundary conditions for which a solution of (Pcurve)
exists, answering the second part of question Q2. We recall that we just proved that the existence
set does not change if we consider global or local minimizers or geodesics.

We prove here some topological properties of such set, and give some related numerical results.

Proposition 32 Let S ⊆ R2 × S1 be the set of final conditions qfin = (xfin, yfin, θfin) for which
a solution of (Pcurve) exists, starting from e := (0, 0, 0). We have that S is closed, arc-connected,
non-compact.

Proof. Arc-connectedness and non-compactness of S are evident. For arc-connectedness, let qa, qb ∈
S. This means that there exist two curves q1(.), q2(.) steering e to qa, qb, respectively. Then the
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Figure 14: Non-existence of a solution of (Pcurve) for (xin, yin) = (xfin, yfin).
〈fig:unpunto〉

concatenation of curves (with reversed time for q1(.)) steers qa to e to qb. For non-compactness,
observe that all points on the half-line (t, 0, 0) are in S.

We now prove that S is closed. Let xn → x∗ be a sequence of points in S converging to
x∗ ∈ R2 × S1. For each xn, let (pn, tn) be a pair covector-time such that qn(.) := Expe(p

n, .) is
a geodesic connecting e to xn at time tn (i.e. xn = Expe(p

n, tn)) and without internal cusp, i.e.
tn ≤ Tncusp, where Tncusp is the cusp time for qn(.). Such pair (pn, tn) exists because xn ∈ S. The idea
of the proof is to pass to a limit pair (p∗, t∗) that gives a geodesic without internal cusp steering
e to x∗. The main problem is to prove that pn is a bounded sequence in the unbounded space
Λe, so that a limit p∗ exists (eventually passing to a subsequence). This will be a consequence of
optimality of qn(.) up to tn.

Observe that, due to Theorem 29, since qn(.) has no internal cusps, then it is globally optimal,
and in particular the sub-Riemannian distance d given in Definition 9 on the whole R2×S1 satisfies
d(e, xn) = tn. Since the distance is continuous, then d(e, x∗) = limn→∞ d(e, xn) = limn→∞ t

n. In
particular, tn is a converging sequence. If such limit is 0, then d(e, x∗) = 0 implies x∗ = e ∈ S.
If instead the limit is finite but non-zero, we prove that the sequence of the corresponding pn is
bounded. For each pn, consider its three coordinates pn1 , p

n
2 , p

n
3 with respect to the basis described

in Section 4.1. Since (pn1 )2 + (pn3 )2 = 1 in Λe, then pn is unbounded if and only if pn2 is. We prove
that pn2 is bounded by contradiction. Take a subsequence pn2 → ∞: using coordinates (νn, cn)
for Λe recalled in (17), we have that sin(νn/2) bounded for all n ∈ N implies sin(θn) → 0, that
in turn implies cn unbounded. By passing to a subsequence, we have cn → ±∞. Without loss
of generality, we choose +∞. In particular, for each N > 0, one can find M such that, for all
n > N it holds cn(0) > M . Take now the dynamics ν̇n = cn, ċn = − sin(νn) given in (18): Since
|ċn| ≤ 1, then ν̇n ≥ M − t, then νn(t)− νt(0) ≥ Mt− t2/2. Recall that νn = 2πk on cusp points,
and denote with Tncusp the first cusp point for the trajectory qn(.). With a simple estimation, for

M > 2
√
π one has that there exists t ∈

[
0,M −

√
M2 − 4π

]
such that νn(t) − νt(0) ≥ 2π, then

there exists a cusp time Tncusp ≤M −
√
M2 − 4π. Observe now that for N →∞ one has M →∞,

thus M −
√
M2 − 4π → 0. Since tn ≤ Tncusp because of optimality, we have tn → 0. Contradiction.
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Thus pn is a bounded sequence. Passing to a subsequence, we have that (pn, tn) → (p∗, t∗). By
continuous dependence of the solution of the Hamiltonian systems with respect to the initial datum
p and the time t, we have that x∗ = Expe(p

∗, t∗).
We are left to prove that x∗ = Expe(p

∗, t∗) ∈ S, in particular proving that the cusp time
T ∗cusp for Expe(p

∗, .) satisfies t∗ ≤ T ∗cusp. The convergence of pn also implies the convergence of
νn, cn, since they are coordinates8 on the cylinder (16). Without loss of generality, we assume
ν ∈ [0, 2π]. Since a trajectory has a cusp when ν reaches 2πk and qn(.) has no internal cusps, then
νn((0, tn)) ⊂ (0, 2π), hence ν∗([0, t∗]) ⊂ [0, 2π]. If ν∗((0, t∗)) ⊂ (0, 2π), then q∗(.) has no internal
cusps, thus x∗ ∈ S. We now prove that the other possibility does not occur, by contradiction.
Assume that there exists t̄∗ < t∗ such that q∗(.) has a cusp in t̄∗. Linearize the dynamics (18)
around t̄∗, that gives ν̇ = c, ċ = −ν and apply the implicit function theorem: this gives a sequence
t̄n → t̄∗ such that νn(t̄n) = 0 or 2π, hence qn has a cusp point in t̄n. Since t̄∗ < t∗, then for n
sufficiently large we have t̄n < tn, i.e. qn(.) is a trajectory with an internal cusp. Contradiction.
�

Other properties of S (which are evident numerically9) are the following:

1. all points of S satisfy xfin ≥ 0;

2. if qfin ∈ S satisfies θfin = π, then it also satisfies xfin = 0; similarly, if qfin ∈ S satisfies
xfin = 0, then it also satisfies θfin = π. The solutions of a problem with qfin = (0, yfin, π)
have a cusp in qfin.

Figure 15: Geodesics reaching x = 0, upper plane.
?〈fig:x1iszero〉?

Remark 33 The characterization of S is, in some sense, the continuation of the main results of
the authors in [6]. There, we proved that there exist boundary conditions such that (Pcurve) did
not admit a minimizer, i.e. that S is not the whole space SE(2). Here we have described in bigger

8More precisely, since ν is an angle, we can always choose a sequence νn that is converging.
9Formal proofs are given in [10].
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detail the set of boundary conditions S such that (Pcurve) admits a minimizer, together with proving
that, given boundary conditions, the existence of a minimizer is equivalent to the existence of a local
minimizer or a geodesic.
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A Explicit expression of geodesics in terms of elliptic functions

〈app:A〉 In this section, we recall the explicit expressions of the geodesics for (PMEC). They were first
computed in [18].

The geodesics are expressed in sub-Riemannian arc-length t, and they are written in terms of
Jacobian functions cn , sn , dn , E . For more details, see e.g. [29]. Here (ν, c) are the variables for
the pendulum equation (18) and (ϕ, k) are the corresponding action-angle coordinates that rectify
its flow: ϕ̇ = 1, k̇ = 0. See detailed explanations in [18, Sec. 4].

Since (PMEC) is invariant via rototranslations, we give geodesics starting from (0, 0, 0) only.
Recall that we have classified geodesics of (PMEC) via the classification of trajectories of the

pendulum Eq. (21), see Section 4.2. We have the following 5 cases.

• The geodesic of type S has the simple expression q(t) = (0, 0, t). The projection on the plane
gives the line reduced to the point (0, 0).

• The geodesic of type U has the simple expression q(t) = (t, 0, 0). The projection on the plane
is the straight half-line (t, 0).

• Geodesics of type R have the following expression :

cos θ(t) = cnϕcn (ϕ+ t) + snϕsn (ϕ+ t),

sin θ(t) = sgn (cos(ν/2))(snϕcn (ϕ+ t)− cnϕsn (ϕ+ t)),

x(t) =
sgn (cos(ν/2))

k
[cnϕ(dnϕ− dn (ϕ+ t)) + snϕ(t+ E (ϕ)− E (ϕ+ t))],

y(t) = (1/k)[snϕ(dnϕ− dn (ϕ+ t))− cnϕ(t+ E (ϕ)− E (ϕ+ t))].

• Geodesics of type O have the following expression :

cos θ(t) = k2sn (ϕ/k)sn (ϕ+ t)/k + dn (ϕ/k)dn (ϕ+ t)/k,

sin θ(t) = k(sn (ϕ/k)dn (ϕ+ t)/k − dn (ϕ/k)sn (ϕ+ t)/k),

x(t) = sgn (c)k[dn (ϕ/k)(cn (ϕ/k)− cn (ϕ+ t)/k) + sn (ϕ/k)(t/k + E (ϕ/k)− E ((ϕ+ t)/k)],

y(t) = sgn (c)[k2sn (ϕ/k)(cn (ϕ/k)− cn (ϕ+ t)/k)− dn (ϕ/k)(t/k + E (ϕ/k)− E (ϕ+ t)/k)].
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• Geodesics of type Sep have the following expression :

cos θ(t) = 1/(coshϕ cosh(ϕ+ t)) + tanhϕ tanh(ϕ+ t),

sin θ(t) = sgn (cos(ν/2))(tanhϕ/ cosh(ϕ+ t)− tanh(ϕ+ t)/ coshϕ),

x(t) = sgn (cos(ν/2))sgn (c)[(1/ coshϕ)(1/ coshϕ− 1/ cosh(ϕ+ t)) + tanhϕ(t+ tanhϕ− tanh(ϕ+ t))],

y(t) = sgn (c)[tanhϕ(1/ coshϕ− 1/ cosh(ϕ+ t))− (1/ coshϕ)(t+ tanhϕ− tanh(ϕ+ t))].

Pictures of geodesics of type R, O, Sep are given in Figures 6, 7 and 8, respectively.

B Proof of Theorem 27
〈a-pmp〉

In this appendix, we prove Theorem 27. The structure of the proof is given in Section 5.1. We are
left to prove STEP 1 and STEP 2.

STEP 1: If (Γ(.), v(.)) is a solution of the generalized Pontryagin Maximum Principle for (Pcurve),
then, the corresponding pair (q(.), (u(.), v(.))) is a solution of the generalized Pontryagin Maximum
Principle for (PMEC).

Proof. Without loss of generality, we provide the proof for ξ = 1.
Apply the generalized PMP both to problems (Pcurve) and (PMEC). For (PMEC), the unmax-

imised Hamiltonian isHM := p1 cos(θ)u+p2 sin(θ)u+p3v+λ
√
u2 + v2. For (Pcurve), replace u with

1: we denote such Hamiltonian with HC . We denote the maximised Hamiltonians with HM , HC ,
respectively. Recall that we study free time problems, thus both the maximised Hamiltonians
satisfy HM ≡ 0 and HC ≡ 0, see [4, Sec. 12.3].

We observe that for both problems there are no strictly abnormal extremals (i.e. solutions with
λ = 0). Indeed, for (Pcurve) abnormal extremals are straight lines, that can be realized as normal
extremals too. The same holds for (PMEC). Thus we fix from now on λ = −1 without loss of
generality.

Let now (Γ̄(.), p̄(.), v̄(.)) be a trajectory vector-covector-control satisfying the generalized PMP
for (Pcurve). We prove that the corresponding trajectory vector-covector-controls (q̄(.), p̄(.), (1, v̄(.)))
satisfies the generalized PMP for (PMEC). The main point here is that HM depends on two param-
eters (u, v), while HC depends on v only. Thus, to maximise Hamiltonians, one has more degrees
of freedom for HM than for HC . We need to prove that such additional degree of freedom u does
not improve maximisation of the Hamiltonian.

We first prove that, if v̄(.) maximises10 HC(q̄(.), p̄(.), v(.)), then the choice u(.) ≡ 1, v(.) = v̄(.)
maximises the Hamiltonian HM (q̄(.), p̄(.), (u(.), v(.))). First observe that both HM and HC are C∞

(except for HM in (0, 0)), and concave with respect to variables u, v and v, respectively. Moreover,
we have no constraints on the controls. Thus, maximisation of the Hamiltonian is equivalent to
have ∇uH = 0.

We are reduced to prove that ∂HM
∂u = ∂HM

∂v = 0 when evaluated in (q̄(.), p̄(.), (1, v̄(.))). Observe

that ∂HM
∂v = ∂HC

∂v for u = 1; thus, since v̄(.) maximises HC , then ∂HC
∂v = 0. Hence ∂HM

∂v = 0. A

simple computation also shows that ∂HM
∂u evaluated in u(.) ≡ 1, v(.) = v̄(.) is p̄1 cos(θ̄) + p̄2 sin(θ̄)−

1√
1+v̄2

, whose expression coincides with HC when replacing p3 with its expression with respect to

10i.e., it maximises HC along the trajectory (q̄(.), p̄(.)).
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the optimal control, that is p3 = v̄√
1+v̄2

. Since HC = 0, then ∂HM
∂u = 0, hence HM is maximised by

u(.) ≡ 1, v(.) = v̄(.).
Thus we have that HM = HC on this trajectory. Then, since HC = 0, then it clearly holds

HM (q̄(.), p̄(.), (1, v̄(.))) ≡ 0 and it is also clear that (q̄(.), p̄(.)) is a solution of the Hamiltonian
system with Hamiltonian HM . Then, (q̄(.), p̄(.)) is a solution of the generalized PMP for (PMEC).
�

STEP 2: Let (q(.), (u(.), v(.))) with u(.) ≡ 1 be a solution of the generalized Pontryagin Maximum
Principle for (PMEC). Then, the curve reparametrized by sR-arclength is a solution of the standard
Pontryagin Maximum Principle.

Proof. Recall that for (PMEC) one can always reparametrize curves by sR-arclength. This also
transforms trajectoires with L1 controls in trajectories with L∞ controls without changing the cost,
as explained in Remark 11. Choose such reparametrization.

As a consequence, a solution to the generalized PMP can be reparametrized to have controls
in L∞. Since the expression of the equations are the same for the standard and generalized PMP,
then this reparametrized curve is a solution to the standard PMP. �
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