A Root Isolation Algorithm for Sparse Univariate Polynomials - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

A Root Isolation Algorithm for Sparse Univariate Polynomials

Maria Emilia Alonso
  • Fonction : Auteur
  • PersonId : 872139
André Galligo
  • Fonction : Auteur
  • PersonId : 835184

Résumé

We consider a univariate polynomial f with real coefficients having a high degree $N$ but a rather small number $d+1$ of monomials, with $d\ll N$. Such a sparse polynomial has a number of real root smaller or equal to $d$. Our target is to find for each real root of $f$ an interval isolating this root from the others. The usual subdivision methods, relying either on Sturm sequences or Moebius transform followed by Descartes's rule of sign, destruct the sparse structure. Our approach relies on the generalized Budan-Fourier theorem of Coste, Lajous, Lombardi, Roy and the techniques developed in some previous works of Galligo. To such a $f$ is associated a set of $d + 1$ $\mathbb{F}$-derivatives. The Budan-Fourier function $V_f(x)$ counts the sign changes in the sequence of $\mathbb{F}$-derivatives of the $f$ evaluated at $x$. The values at which this function jumps are called the $\mathbb{F}$-virtual roots of $f$, these include the real roots of $f$. We also consider the augmented $\mathbb{F}$-virtual roots of $f$ and introduce a genericity property which eases our study. We present a real root isolation method and an algorithm which has been implemented in Maple. We rely on an improved generalized Budan-Fourier count applied to both the input polynomial and its reciprocal, together with Newton like approximation steps.
Fichier principal
Vignette du fichier
11-AlonsoGalligoIssac12.pdf (186.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00762295 , version 1 (07-12-2012)

Identifiants

  • HAL Id : hal-00762295 , version 1

Citer

Maria Emilia Alonso, André Galligo. A Root Isolation Algorithm for Sparse Univariate Polynomials. International Conference on Symbolic and Algebraic Computation (ISSAC), Jul 2012, Grenoble, France. pp.35-42. ⟨hal-00762295⟩
236 Consultations
803 Téléchargements

Partager

More