Linear complex polarization propagator in a four-component Kohn-Sham framework.
Résumé
An algorithm for the solution of the linear response equation in the random phase approximation is presented. All entities including frequency arguments, matrices, and vectors, are assumed to be complex, and it represents the core equation solver needed in complex polarization propagator approaches where nonstimulated relaxation channels are taken into account. Stability and robustness of the algorithm are demonstrated in applications regarding visible, ultraviolet, and x-ray spectroscopies. An implementation of the algorithm at the level of four-component relativistic, noncollinear, density functional theory for imaginary (but not complex) frequency arguments has been achieved and is used to determine the electric dipole dispersion interaction coefficients for the rubidium and cesium dimers. Our best estimates for the C(6) coefficients of Rb(2) and Cs(2) are equal to 14.0x10(3) and 21.9x10(3) a.u., respectively.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...