A feasible direction interior point algorithm for nonlinear semidefinite programming - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

A feasible direction interior point algorithm for nonlinear semidefinite programming

Résumé

We present a new algorithm for nonlinear semide nite programming. It is based on the iterative solution, in the primal and dual variables, of Karush- Kuhn-Tucker rst order optimality conditions. This method generates a decreasing feasible sequence. At each iteration, two linear systems with the same coe cient matrix are solved and an inexact line search is then performed. A proof of global convergence is given in the convex case. Some numerical tests involving nonlin- ear programming problems as well linear and nonlinear matrix inequalities are described. We also solve structural topology optimization problems employing a mathematical model based on semide nite programming. The results suggest e - ciency and high robustness of the proposed method.
Fichier principal
Vignette du fichier
versionHal-02.pdf (478.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00758803 , version 1 (29-11-2012)

Identifiants

  • HAL Id : hal-00758803 , version 1

Citer

Miguel Aroztegui, Jose Herskovits, Jean Rodolphe Roche. A feasible direction interior point algorithm for nonlinear semidefinite programming. 2012. ⟨hal-00758803⟩
263 Consultations
514 Téléchargements

Partager

More