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Abstract We present a new algorithm for nonlinear semidefinite programming.
It is based on the iterative solution, in the primal and dual variables, of Karush-
Kuhn-Tucker first order optimality conditions. This method generates a decreasing
feasible sequence. At each iteration, two linear systems with the same coefficient
matrix are solved and an inexact line search is then performed. A proof of global
convergence is given in the convex case. Some numerical tests involving nonlin-
ear programming problems as well linear and nonlinear matrix inequalities are
described. We also solve structural topology optimization problems employing a
mathematical model based on semidefinite programming. The results suggest effi-
ciency and high robustness of the proposed method.

Keywords nonlinear, semidefinite programming, feasible directions, interior-
point methods.

1 Introduction

This paper proposes a new technique to solve the following non-linear semidefinite
programming problem (SDP),

min
x∈

f(x)

s.t. G(x) 4 0
(1)
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where f : Rn → R and G : Rn → Sm are smooth functions. We denote Sm the
set of real symmetric matrices of size m×m. The constraint G(x) 4 0 is a matrix
inequality which means that G(x) is negative semidefinite. We call Ω = {x ∈
Rn;G(x) 4 0} the set of feasible solutions and int(Ω), its interior.

Applications in a wide range of areas lead to semidefinite programming prob-
lems. For example, combinatorial optimization [3], nonconvex quadratic program-
ming [16], eigenvalue optimization [25], systems control theory [12], matrix comple-
tion problems [28], problems in statistics [15] and structural design [2]. In partic-
ular SDP was considered to solve free material problems in structural mechanical
design, see for example [37], [24], [35], [34] and [38]. Some of this problems are
considered in our numerical examples.

When f is linear and G depends affinely on the variables, problem (1) is convex
and many efficient algorithms were developed. Duality theory and the central path
concept were extended from linear programming to semidefinite programming.
Nesterov and Nemirovsky [8] and Alizadeh [3] introduce interior point techniques
based on path-following and potential-reduction approaches. In Todd, [36], can be
found a deep historical overview.

On the other hand, when f or G are nonlinear functions, problem (1) is called a
Nonlinear Semidefinite Programing problem (NSDP). In general, a NSDP problem
is nonconvex. Nowadays, there are several methods for NSDP problems. We men-
tion the extension of a primal predictor-corrector interior point method of Jarre
[21], the sequentially linear SDP method of Correa and Ramirez [13], which is a
generalization of the method presented by Fares, Noll and Apkarian [14] and the
augmented Lagrangian approach of Kočvara and Stingl [33]. Also Kanzow, Nagel,
Kato and Fukushima [22] presented a successive linearization method with a trust
region-type globalization.

A crucial result for semidefinite programming is the characterization of Karush
- Kuhn - Tucker (KKT) optimality conditions presented by Shapiro, [31] and [32].

In this paper, we present an interior point algorithm which extends to semidefi-
nite programming the Feasible Direction Interior Point Algorithm, FDIPA. FDIPA
is a general technique for smooth nonlinear inequality and equality constrained op-
timization [17] [18] [29] [19]. The present algorithm, defines first at each interior
point a feasible and descent direction with respect to the semidefinite constraints.
Then, makes a line search in that direction to obtain a new interior point with a
lower objective. A Newton or quasi - Newton and first order versions of presented
algorithm can be obtained. The present method is simple to code, does not re-
quire the solution of quadratic programs and it is not a penalty neither a barrier
method. It merely requires the solution of two linear systems with the same matrix
per iteration.

The paper is organized as follows. In sub-section 1.1 we introduce some no-
tations and basic concepts about symmetric matrices, the symmetric Kronecker
product and the Lagrangian of the problem. In sub-section 1.2 we present some
definitions and technical results. Following [31] and [32] we recall first order opti-
mality conditions adapted to semi-definite programming. In section 2 we describe
the main ideas of the algorithm. We show how the search direction is built to give
a feasible and descent direction. At the end of this section we introduce the general
statement of the presented algorithm. The global convergence to a critical point
of the considered optimization method is proved in section 3. Details of the imple-
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mentation of the presented algorithm are shown in section 4. Numerical examples
are presented in section 6. The last section is dedicated to conclusions.

1.1 Notation

We introduce some notation concerning the matrix spaces. Let Rm×n denote the
space of m× n real matrices. Let Sn denote the space of real symmetric matrices.
The set of symmetric positive semidefinite and positive definite matrices of size
m×m are denoted Sm+ and Sm++, respectively. In an analog way the set of negative
semidefinite and negative definite matrix of size m are denoted Sm− and Sm−−,
respectively. The symbol 4 defines the negative semidefinite order, that is, A 4 B
means that A−B is negative semidefinite. Similarly, the symbol ≺,< and � defines
the negative definite, positive semidefinite and positive definite order, respectively.

The symmetric part of M ∈ Rn×n is indicated by sym(M) and the skew part
as skw(M). We denote ker(A) as the null space of the matrix A ∈ Rm×n.

The (i, j)th entry of a matrix A ∈ Rm×n is referred to by aij . The transpose
of A is written as A>. Let In denote the identity matrix in Rn×n.

Given A ∈ Sm, then m = 1
2m(m + 1) is the number of upper diagonal com-

ponents of A. To introduce the symmetric Kronecker product, we define the two
following maps:

svec : Sm → Rm

svec(A) =
[
a11
√

2a12 a22
√

2a13
√

2a23 a33 ... amm
]>

and smat : Rm → Sm the inverse of svec, see [23].
Then, the inner product

〈A,B〉 = tr(A>B) = svec(A)>svec(B), forA,B ∈ Sm.

The symmetric Kronecker product of two matrices A,B ∈ Rm×n is represented
by A~B and verifies for any matrix C ∈ Sn the following equality:

(A~B)svec(C) = svec (sym (BCA)) (2)

It is proved that, [23]:

1. (A~B)svec(C) = (B ~ C)svec(A)
2. A~B = B ~A
3. (A~B)(C ~D) = 1

2 (AC ~BD +AD ~BC)

4. (P ~ P )−1 = P−1 ~ P−1

5. If A,B < 0 then, A~B < 0.
6. If A < 0 and B 4 0 then, A~B 4 0.

(3)
where A,B,C ∈ Sm and P is a non singular matrix.

The partial derivatives of G(x) with respect to xp is denoted by
∂G

∂xp
(x), with

components
∂gij(x)

∂xp
, i, j = 1,m.
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Then, we can define the following matrix in Rn×m,

∇G(x) =


svec

(
∂G

∂x1
(x)

)>
...

svec

(
∂G

∂xn
(x)

)>

 . (4)

The derivative of G in the direction d ∈ Rn at x, denoted by DG(x)d, verifies:

DG(x)d =
n∑
p=1

dp
∂G

∂xp
(x) (5)

In view of (4), the matrix equation (5) can be expressed in a vector format

svec (DG(x)d) = ∇G(x)>d (6)

The Lagrangian function of problem (1) is defined as L : Rn × Sm → Rn such
that

L(x,Λ) = f(x) + 〈G(x), Λ〉.

Alternatively, the Lagrangian can be written in the form L : Rn ×Rm → Rn such
that

L(x, λ) = f(x) + 〈svec(G(x)), λ〉

where λ = svec(Λ).
Therefore the gradient of the Lagrangian with respect to x can be written as

∇xL(x, λ) = ∇f(x) +∇G(x)λ, (7)

see [32] and [10].

1.2 Basic definitions and technical results

The following three definitions are related with first order optimality conditions
for semidefinite programming analyzed in [31] and [32].

We call {b1(x), . . . , bp(x)} an orthonormal basis of kerG(x) and define the
matrix E0(x) = [b1(x) . . . bp(x)] ∈ Rm×p.

Definition 1 A point x is a regular point of problem (1) if the vectors of the set


b>i

∂G

∂x1
(x)bj

...

b>i
∂G

∂xn
(x)bj

 such that i 6 j, i, j = 1, . . . , p


are linearly independent.
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Definition 2 A regular point x is a stationary point of problem (1) if there exist
Λ ∈ Sm such that the following requirements are verified:

∇xL(x,Λ) = 0

ΛG(x) = 0

G(x) 4 0

(8)

Definition 3 A Karush-Kuhn-Tucker point of problem (1) is a stationary point
and Λ < 0.

Definition 4 The vector d ∈ Rn is a feasible direction of Ω at x ∈ Ω if there
exists τ > 0 such that x+ td ∈ Ω when t ∈ [0, τ ].

Definition 5 The vector field d(x) defined on Ω ⊆ Rn is said to be an uniformly
feasible direction field of Ω if there exists τ > 0 such that, x + td(x) ∈ Ω for all
x ∈ Ω
and t ∈ [0, τ ].

When the vector field d(x) is a uniformly feasible direction field of Ω, the
segment [x, x+ τd(x)] is included in Ω for all x ∈ Ω. When x is in the interior of
Ω, all direction are feasible.

Definition 6 d ∈ Rn is a descent direction of a real function f at x ∈ Rn if there
exist some δ > 0 such that::
f(x+ td) < f(x) for all t ∈ (0, δ].

It is possible to prove that if f is differentiable at x and d>∇f(x) < 0 then d
is a descent direction of f at x.

Now we introduce some technical result useful to describe and prove the con-
vergence of the studied algorithm.

Lemma 1 A ∈ Sm− and B ∈ Sm+ , the following equalities are equivalent

AB = 0
tr(AB) = 0

sym(AB) = 0
(9)

Proof The proof for AB = 0⇐⇒ tr(AB) = 0 can be found in [33].
Here we show AB = 0⇐⇒ sym(AB) = 0.
(⇒) Obvious.
(⇐) By hypothesis, sym(AB) = 0 and since tr(skw(AB)) = 0, the trace of

AB is null. Since A ∈ Sm− and B ∈ Sm+ , there exist P,Q ∈ Sm such that A = −PP
and B = QQ. Then we have

0 = tr(AB) = −tr(PPQQ) = −tr(QPPQ) = (10)

= −〈PQ,PQ〉 = −‖PQ‖2. (11)

Then PQ = 0. As a result, PPQQ = 0 and AB = 0. ut

Lemma 2 If A,B ∈ Sm, A � 0 and AB +BA ≺ 0 then B ≺ 0.
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Proof Suppose that there exist an eigenvalue λ > 0 of B with an eigenvector v.
Then,

v>(AB +BA)v = v>ABv + v>BAv = 2λv>Av

Since A is positive definite, λv>Av > 0 therefore, v>(AB + BA)v > 0, and we
conclude that AB+BA is not negative definite, which is a contradiction with the
hypothesis. ut

The proof of following lemma is similar as above.

Lemma 3 If A,B ∈ Sm, A � 0 and AB +BA 4 0 then B 4 0.

Lemma 4 If A,B ∈ Sm and A � 0, the matrix AB has real eigenvalues and the
same inertia as B. See [20].

Lemma 5 If A ∈ Sm++ and B ∈ Sm− and they commute, then

y>ABy = 0⇐⇒ By = 0.

Proof (⇒): In view of lemma 4, all eigenvalues of AB are non positive. Let
λ1, . . . , λm and {b1, . . . , bm} be the eigenvalues and the orthonormal eigenvec-
tors of AB, respectively. Let y be a not null vector in Rm such that y>(AB)y = 0.
Then,

y =
m∑
j=1

αjbj

and

0 = y>(AB)y = 〈y, (AB)y〉 (12)

=
m∑
j=1

m∑
i=1

αiαjλi 〈bi, bj〉 =
m∑
i=1

α2
iλi (13)

Since, y 6= 0, there exist αi 6= 0. In view of the last equation, λi must be null,
therefore y ∈ ker(AB), but A ∈ Sm++ then y ∈ ker(B). ut

Lemma 6 If A ∈ Sm− and B ∈ Sm then,

AB2 = 0⇐⇒ sym(AB) = 0

Proof (⇒): A ∈ Sm− then there exist Q ∈ Sm such that A = −QQ.
0 = tr(AB2) = tr(BAB) = −tr(BQQB) = −‖BQ‖2, then BQ = 0 and −BQQ =
BA = 0.

(⇐): AB+BA = 0⇔ AB = −BA⇒ AB2 = −BAB ⇔ A and B2 are simulta-
neously diagonalizable and AB2 4 0. On the other hand, −BAB = B(−A)B < 0.
Then, 0 4 −BAB = AB2 4 0. Then, we conclude that AB2 = 0. ut

Lemma 7 If we assume A ∈ Sm++ and B ∈ Sm− and they commute then,

(A~ I)−1(B ~ I) ∈ Sm− .
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Proof Since A � 0 and B 4 0 and commute then there exist a regular matrix
P ∈ Rm×m such that

A = PDAP
−1

B = PDBP
−1

In view of symmetric Kronecker product properties, see for example lemma E.1.2
in [23] :

A~ I = PDAP
−1

B ~ I = PDBP
−1

where P = P ~ P , DA = DA ~ I e DB = DB ~ I. DA e DB are diagonal matrices
and P is orthonormal. Therefore

(A~ I)−1(B ~ I) = PDADBP
> ∈ Sm−

ut

Lemma 8 Let B ∈ Sm− and {b1, . . . , bp} be an orthonormal basis of ker(B) and
E0 = [b1, . . . , bp] ∈ Rm×p. The following sets are equal:

C1 = {A ∈ Sm : 〈A,B〉 = 0, A < 0, B 4 0}
C2 =

{
E0θE

>
0 : θ ∈ Sp, θ < 0

}
Proof First we prove C1 ⊂ C2. If A ∈ C1, A < 0. By hypothesis B 4 0 and
〈A,B〉 = tr(AB) = 0. Using proposition 1, AB = 0, consequently A and B are
simultaneously diagonalizable, then

A = [E0 E⊥]

[
DA 0
0 0

]
[E0 E⊥]> = E0DAE

>
0

where DA < 0 is a diagonal matrix and the columns of E⊥ are eigenvectors of B
in ker(B)⊥, then, A ∈ C2.

Now we proceed to prove C2 ⊂ C1. If A ∈ C2, A = E0θE
>
0 for some θ < 0. On

the other hand, 〈A,B〉 = tr(E0θE
>
0 B) = 0 because E>0 B = 0. Then, A ∈ C1. ut

2 Description of the algorithm

In this section, we introduce the main ideas of the present algorithm.
For a real number a, we denote

Ωa = {x ∈ Ω such that f(x) 6 a}

and introduce the following assumptions about f and G:

Assumption 1 There exist a real number a such that Ωa is compact and
int(Ωa) 6= φ.

Assumption 2 If x ∈ int(Ωa) then G(x) ≺ 0.

Assumption 3 f and G are C1 in Ωa and ∇f and
∂G

∂xp
for p = 1, ..., n are

Lipschitz functions.
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Assumption 4 Any KKT point x is a regular point of problem (1).

The present algorithm makes iterations in the primal and dual variables (x,Λ)
to solve the equalities in KKT conditions. The method is modified in such a way
to satisfy the inequalities at each point. That is, the primal variables are feasible
and the dual variables, positive at each iteration.

Many approaches have been proposed to handle the complementarity condition
ΛG(x) = 0, see [4] and [36]. The complementarity condition ΛG(x) = 0 is not
appropriate for a Newton iteration since the product of two symmetric matrices is
not, in general, a symmetric matrix. Instead of ΛG(x) = 0 in our case we consider
sym (ΛG(x)) = 0. Since our algorithm generates points (x,Λ) such that G(x) ≺ 0
and Λ � 0, Lemma 1 ensures that ΛG(x) = 0 is equivalent to sym(ΛG(x)) = 0.

Then, the equalities of the stationary point conditions (8) can be rewritten in
the following form:

∇f(x) +∇G(x)λ = 0

svec (sym (ΛG(x))) = 0
(14)

where λ = svec (Λ).
In order to obtain the linear system to be solved at each Newton iteration we

define a vectorial function ψ : Rn+m → Rn+m, given by the equalities in (14)

ψ(x, λ) =

[
ψl(x, λ)
ψc(x, λ)

]
=

[
∇f(x) +∇G(x)λ
svec(sym(ΛG(x)))

]
Using the Kronecker product we observe that

ψc(x, λ) = svec(sym(IΛG(x)) = [I ~G(x)]svec(Λ)

and also,
ψc(x, λ) = svec(sym(ΛG(x)I) = [Λ~ I]svec(G(x))

therefore, the Jacobian of ψ is:

∇ψ(x, λ) =

[
∇xψl(x, λ) ∇λψl(x, λ)
∇xψc(x, λ) ∇λψc(x, λ)

]
(15)

=

[
∇xxL(x, λ) ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

]
In a similar way as in [19], instead of computing the Hessian of the Lagrangian

∇xxL(x, λ), we can employ a quasi-Newton matrix or the identity matrix that we
denote B.

Given a starting point (x,Λ) ∈ int(Ωa) × Sm++, a new estimative (x0, λ0) ∈
Rn × Rm is obtained by solving the following linear system[

B ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

] [
x0 − x
λ0 − λ

]
(16)

= −
[
∇f(x) +∇G(x)λ
svec(sym(ΛG(x)))

]
where λ = svec (Λ) and λ0 = svec (Λ0). We denote W (x,B,Λ) the matrix of the
system (16).

Calling d0 = x0 − x we have,
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Bd0 + ∇G(x)λ0 = −∇f(x)

(Λ~ I)∇G(x)>d0 + (I ~G(x))λ0 = 0
(17)

Note that, if d0 = 0 equation (17) becomes,

∇f(x) +∇G(x)λ0 = 0 (18)

and

(I ~G(x))λ0 = 0 (19)

Since G(x) ≺ 0, the matrix I ~ G(x) is nonsingular and then, equation (19)
makes Λ0 = smat(λ0) = 0. This proves that Λ0G(x) = 0. Now, looking at equation
(18) with λ0 = 0 we have ∇f(x) = 0. Then, x is an stationary point of problem
(1).

On the other hand, if d0 6= 0, we prove in this paper that d0 is a descent
direction however we can not ensure that d0 is a feasible direction when x is on
the boundary of Ω.

To obtain a feasible direction, as in [19], we define another linear system in
(d, λ) ∈ Rn×Rm with the same matrix and an appropriate negative definite right
hand side:

Bd + ∇G(x)λ = −∇f(x)

(Λ~ I)∇G(x)>d + (I ~G(x))λ = −ρλ (20)

where ρ is a positive real number and λ = svec(Λ). In view of the equation (2)
and (6), the second equation of (20) is equivalent to

sym
(
ΛDG(x)(d) + ΛG(x)

)
= −ρΛ (21)

where Λ = smat(λ).
If x is in the interior of Ω, all direction d is a feasible direction.
In the sequel we introduce the following assumption.

Assumption 5 At every iteration Λ and G(x) commute.

Thanks to this last assumption and (21) it will be able to prove that d is a
feasible direction for all x ∈ Ωa.

In view of (20), d converges to d0 if ρ goes to zero. Since d0 is a descent
direction, it verifies d>0 ∇f(x) < 0, then imposing an upper bound for ρ such that

d>∇f(x) 6 ξdT0∇f(x) ξ ∈ (0, 1) (22)

the feasible direction d is also a descent direction.
The pair (d, λ) obtained by the linear system (20) can also be computed solving

Bd1 + ∇G(x)λ1 = 0

(Λ~ I)∇G(x)>d1 + (I ~G(x))λ1 = −λ (23)

and taking,

d = d0 + ρd1 (24)

λ = λ0 + ρλ1. (25)
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Imposing (22) to the search direction d defined in (24) we have a precise upper
bound for ρ. If d>1 ∇f(x) > 0, take

ρ 6 (ξ − 1)
d>0 ∇f(x)

d>1 ∇f(x)
.

Otherwise, we choose
ρ 6 ϕ‖d0‖2,

for some fixed parameter ϕ > 0.
Once we have computed a descent and feasible direction d, we can determine

the next point in the sequence, xk+1, performing a line search along the search
direction d to get feasibility and an appropriate reduction of the objective function.

Before starting a new iteration, matrix B can be updated with a new positive
definite matrix. Also, matrix Λ must be updated with a new positive definite
matrix that commutes with G(xk+1).

2.1 The statement of the algorithm

In this section we state the algorithm under study based on the descent and feasible
direction obtained in the previous section.

Input. x ∈ int(Ωa)
Parameters. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0 and ν ∈ (0, 1).
Data. B ∈ Sn++, Λ ∈ Sm++ commuting with G(x).
Step 1. Computation of the search direction d.
(i) Solve the following linear system in d0 ∈ Rn and λ0 ∈ Rm[

B ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

] [
d0
λ0

]
=

[
−∇f(x)

0

]
(26)

If d0 = 0, stop.
(ii) Solve the following linear system in d1 ∈ Rn and λ1 ∈ Rm[

B ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

] [
d1
λ1

]
=

[
0
−λ

]
(27)

(iii) Compute the parameter ρ such that

ρ = min

{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇f(x)

d>1 ∇f(x)

}
(28)

if d>1 ∇f(x) > 0. Otherwise:
ρ = ϕ‖d0‖2. (29)

(iv) Compute the search direction d as

d = d0 + ρd1. (30)

Step 2. Line Search.
Find t, the first element of {1, v, v2, v3 . . . } such that

f(x+ td) 6 f(x) + tηd>∇f(x) (31)
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and

G(x+ td) ≺ 0. (32)

Step 3. Updates.

(i) Take the new point x := x+ td.
(ii) Define new value for B ∈ Sn++.
(iii) Define new value for Λ ∈ Sm++ commuting with G(x).
(iv) Go to Step 1.

�
In the previous algorithm we employ Armijo’s line search adapted to constraint

optimization problems. Extensions of Wolfe or Goldstein line search criteria [27]
could be also employed in step 2.

We must consider additional assumption on B and Λ defined by the previous
algorithm in order to prove global convergence.

Assumption 6 There exist positive numbers λI and λS such that

λII 4 Λ 4 λSI

Assumption 7 There exist positive numbers σ1 and σ2 such that

σ1I 4 B 4 σ2I

3 Global convergence

In this section we prove for any initial point x0 ∈ int(Ω), the present algorithm
generates a sequence of points converging to a stationary point of problem (1).
First we prove that the algorithm is well defined and in particular that the matrix
W (x,B,Λ) given in (16) is nonsingular. At each iteration d0 and d are descent
directions of f at x and d(x) is an uniformly feasible directions field in Ωa. Finally
we state that any sequence generated by the algorithm converges to a stationary
point of (1).

Theorem 1 Assume that x ∈ Ωa is a regular point of problem (1), B ∈ Sn++,
Λ ∈ Sm++ and Λ and G(x) commute. Then, the matrix W (x,B,Λ) defined in (16)
is nonsingular.

Proof We have to prove that, if for some v ∈ Rn+m it is W (x,B,Λ)v = 0, then
v = 0. Let v> = [r>, y>], r ∈ Rn, y ∈ Rm, then

r = −B−1∇G(x)y

My = 0

where

M = ∇G(x)>B−1∇G(x)− (Λ~ I)−1(G(x)~ I).

To finish the proof, we must conclude that M is nonsingular.
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Performing the product y>My we have

y>My = y>
(
∇G(x)>B−1∇G(x)

)
y (33)

− y>(Λ~ I)−1(G(x)~ I)y

Since B−1 is positive definite,

y>
(
∇G(x)>B−1∇G(x)

)
y > 0 (34)

By hypothesis and lemma 7

−y>(Λ~ I)−1(G(x)~ I)y > 0 (35)

concluding that y>My > 0.
Now, suppose that y>My = 0. We must prove that y = 0. From (33), (34) and

(35) we have

0 6 y>
(
∇G(x)>B−1∇G(x)

)
y (36)

= y>(Λ~ I)−1(G(x)~ I)y 6 0

Then,
y>∇G(x)>B−1∇G(x)y = 0 (37)

and
y>(Λ~ I)−1(G(x)~ I)y = 0. (38)

Since B is positive definite, from equation (37) we have

∇G(x)y = 0. (39)

Due to lemma 5 and from equation (38),

(G(x)~ I)y = 0. (40)

By definition of ∇G(x), equation (39) is equivalent to〈
∂G

∂xi
(x), Y

〉
= 0, i = 1, . . . , n (41)

where Y = smat(y).
Since (G(x) ~ I)y = svec(sym(G(x)Y )), in view of lemma 6 and proposition

1, equation (40) can be rewritten as

〈Y 2, G(x)〉 = 0 (42)

The matrix Y 2 is positive semidefinite and matrix G(x) is negative semidefinite,
then applying lemma 8 we have

Y 2 = E0θE
>
0 , θ ∈ Sp, θ < 0 (43)

where E0 = [b1, . . . , bp] ∈ Rm×p and the set of vectors {b1, . . . , bp} is an orthonor-
mal base of ker(G(x)). Taking the square root of Y 2 in (43), we obtain

Y = E0θ
1/2E>0 , θ

1/2 ∈ Sp (44)
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Replacing Y by E0θ
1/2E>0 in equation (41), follows〈
∂G

∂xi
(x), E0θ

1/2E>0

〉
= 0, i = 1, . . . , n

which is equivalent to〈
E>0

∂G

∂xi
(x)E0, θ

1/2

〉
= 0, i = 1, . . . , n

and also equivalent to the following linear system,

V svec(θ1/2) = 0 (45)

where

V =



[
svec

(
E>0

∂G

∂x1
(x)E0

)]>
...[

svec

(
E>0

∂G

∂xn
(x)E0

)]>

 .

We identify in the columns of matrix V , vectors of the form

c

[
b>i

∂G

∂xi
(x)bj . . . b

>
i
∂G

∂xn
(x)bj

]>
with c =

√
2 when i = j and c = 1 when i 6= j where i, j = 1, . . . , p and i 6 j. By

hypothesis, x is a regular point of problem (1), then the columns of V are linearly
independent. Then, the linear system (45) has the unique solution svec(θ1/2) = 0.
Consequently, Y = smat(y) = E0θ

1/2E>0 = 0. ut

As an additional result of the proof of theorem 1, we have that M is positive
definite.

Since Ωa, Λ and B are bounded, it follows from theorem 1 that d0, λ0, d1 and
λ1 are also bounded.

When d0 = 0 is obtained in step 1, the algorithm stops. In fact, since G(x) ≺ 0,
G(x) ~ I ≺ 0 then the solution of (26) is λ0 = 0. Thus, ∇f(x) = 0 and we have
that x is a KKT point associated with a null Lagrangian multiplier matrix.

In what follows we consider the case where, at every iteration, d0 6= 0.

Lemma 9 The direction d0 computed by the algorithm satisfies

d>0 ∇f(x) 6 −d>0 Bd0.

Proof Multiplying the first equation of (17) by d>0 ,

d>0 ∇f(x) = −d>0 Bd0 − d>0 ∇G(x)λ0.

In view of the second equation of (17),

−d>0 ∇G(x)λ0 = λ>0 (G(x)~ I)(Λ~ I)−1λ0.
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Then,
d>0 ∇f(x) = −d>0 Bd0 + λ>0 (G(x)~ I)(Λ~ I)−1λ0.

Thanks to assumption 5 and 7, (Λ~ I)−1(G(x)~ I) ∈ Sm− and B ∈ Sn++ then,

d>0 ∇f(x) 6 −d>0 Bd0.

ut

As a consequence, if the direction d0 6= 0, it is a descent direction of f at x.

Lemma 10 The search direction d computed by the algorithm satisfies

d>∇f(x) 6 ξd>0 ∇f(x). (46)

Proof In view of (30),

d>∇f(x) = d>0 ∇f(x) + ρd>1 ∇f(x).

If d>1 ∇f(x) > 0, using (28),

ρd>1 ∇f(x) 6 (ξ − 1)d>0 ∇f(x).

If d>1 ∇f(x) 6 0, using (29),
ρ 6 ϕ‖d0‖2.

Both cases verifies (46) with ξ ∈ (0, 1). ut

Since d0 is a descent direction of f at x, then d>0 ∇f(x) < 0. Lemma 10 implies
that d is also a descent direction of f at x.

Lemma 11 The search direction d and the parameter ρ computed by the algorithm
verifies:

ϕ0‖d0‖2 6 ρ 6 ϕ‖d0‖2 (47)

and
‖d‖ 6 δ‖d0‖, (48)

for some δ > 1 and ϕ0 > 0.

Proof Looking at (28) and (29), we see that ρ 6 ϕ‖d0‖2. By lemma 9 and assump-
tion 7,

−d>0 ∇f(x) > σ1‖d0‖2.
If d>1 ∇f(x) > 0 and in view of (28) we have,

min

{
ϕ,

(1− ξ)σ1
d>1 ∇f(x)

}
‖d0‖2 6 ρ.

Since d1 is bounded and (29), there exist ϕ0 > 0 such that

ϕ0‖d0‖2 6 ρ.

and then (47) is proved.
Now using (24) and the triangular property,

‖d‖ = ‖d0 + ρd1‖ 6 ‖d0‖+ ρ‖d1‖

and using condition (47),

‖d‖ 6 ‖d0‖+ ϕ‖d0‖2‖d1‖ = δ‖d0‖,

where δ = 1 + ϕ‖d0‖‖d1‖ > 1. ut
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As a consequence of (47) and (48), ρ and ‖d‖2 has the same order of magnitude,
in particular,

ϕ0‖d(x)‖2 6 ρ(x) 6 ϕ‖d(x)‖2, x ∈ Ωa. (49)

Lemma 12 It follows from assumption (3) that there exists a positive real number
L such that

G(y) 4 G(x) +DG(x)(y − x) + L‖y − x‖2I (50)

where x, y ∈ Ω.

Proof Since G is C1 we can apply the Mean Value Theorem [26]

G(y) = G(x) +
n∑
i=1

(yi − xi)
∂G

∂xi
(x+ ξ(y − x)) (51)

for some ξ ∈ (0, 1). We have also that

(yi − xi)
∂G

∂xi
(x+ ξ(y − x)) 4 (yi − xi)

∂G

∂xi
(x)

+

∥∥∥∥ ∂G∂xi (x+ ξ(y − x))− ∂G

∂xi
(x)

∥∥∥∥ ‖y − x‖I. (52)

Since
∂G

∂xi
verify the Lipschitz condition, there exist Li > 0 such that

∥∥∥∥ ∂G∂xi (x+ ξ(y − x))− ∂G

∂xi
(x)

∥∥∥∥ 6 Li‖ξ(y − x)‖ = Liξ‖y − x‖. (53)

Then, using (53), (52) and (51), we have,

G(y) 4 G(x) +
n∑
i=1

(yi − xi)
∂G

∂xi
(x) + L‖y − x‖2I

where L = ξ
∑n
i=1 Li. ut

Due to assumption (1) the sequence {xk}k∈N ∈ int(Ωa) generated by the algo-
rithm have an accumulation point x∗ ∈ Ωa. It follows that there exist K1 ⊂ N such
that {d(xk), ρ(xk), Λ(xk), G(xk)}k∈K1

converges to {d(x∗), ρ(x∗), Λ(x∗), G(x∗)}.
In [19], was proved the existence of a lower bound τf > 0 such that at any

x ∈ Ωa, condition (31) is verified for any t ∈ [0, τf ].

Proposition 1 For all x ∈ Ωa such that ‖d(x)‖ ≥M there exist τ > 0 such that:

G(x+ td(x)) 4 0 (54)

for all t ∈ [0, τ ].



16 Miguel Aroztegui et al.

Proof Thanks to lemma 12, there exist L > 0 such that

G(x+ td(x)) 4 G(x) + tDG(x)d+ t2L‖d(x)‖2I (55)

Let F (t, x) be the matrix in the right hand side of (55), then,

G(x+ td(x) 4 F (t, x). (56)

We are going to prove the existence of τ > 0 such that

sym(ΛF (t, x)) 4 0, t ∈ [0, τ ], (57)

and since Λ � 0, lemma 3 tell us that,

F (t, x) 4 0, t ∈ [0, τ ], (58)

and then condition (54) is true.
Taking the symmetric part of ΛF (t, x) and considering (21), we can write,

sym(ΛF (t, x)) = sym
((
Λ− tΛ

)
G(x)

)
+ (59)

+ t
(
tL‖d(x)‖2 − ρ(x)

)
Λ

where Λ = smat(λ) is given in (25).
Since ρ verifies (49), we have,

ρ(x) 6 ϕ0‖d(x)‖2. (60)

Then for all v such that ‖v‖ = 1

vt(ΛF (t, x))v ≤ vtΛG(x)v (61)

− t(vt(ΛG(x))v + ϕ0‖d(x)‖2λI) +

+ t2 L‖d(x)‖2λS

The right hand side is non-positive when t = 0 then, let us consider the following
second order equation:

vtΛG(x)v − t(vt(ΛG(x))v + ϕ0‖d(x)‖2λI) + (62)

+ t2 L‖d(x)‖2λS = 0

where x ∈ Ωa, ‖d(x)‖ ≥M and v such that ‖v‖ = 1.
Let t(x, v) be the positive solution of (62):

t(x, v) = (
vt(ΛG(x))v

2L ‖d(x)‖2λS +
ϕ0λ

I

2LλS
)+ (63)

+

√
(
vt(ΛG(x))v

2L ‖d(x)‖2λS +
ϕ0λI

2LλS
)2 − vtΛG(x)v

L ‖d(x)‖2λS

Since vtΛG(x)v ≤ 0,
φ0λ

I

2LλS
> 0 and considering lemma 5 it can be shown that

t(x, v) is positive in the compact

S = Ωa ∩ {x : ‖d(x)‖ ≥M} × {v ∈ Rn : ‖v‖ = 1},

then there exist τ > 0 such that G(x+ td(x)) 4 0 for all t ∈ [0, τ ]. ut
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A consequence of proposition 1 is that if x∗ ∈ Ωa, is an accumulation point of a
sequence {xk}k∈N generated by the algorithm then ‖d(x∗)‖ = 0.

Proposition 2 If ‖d(x∗)‖ = 0 there exists δ > 0 and τ > 0 such that if xk ∈
B(x∗, δ) ∩Ωa,

G(xk + td(xk)) 4 0 (64)

for all t ∈ [0, τ ].

Proof Since ‖d(x∗)‖ = 0 thanks to the continuity of d(x), ‖d(xk)‖ goes to zero. It
follows from (59) that if

max{v>(Λk − tΛk)G(xk)v, v ∈ Rm, ‖v‖ = 1} 6 0. (65)

then (64) is verified.
Since Λk and G(xk) commute and are symmetric real matrices then there exist

an orthonormal matrix Pk such that

Λk = P tkD
k
λPk (66)

G(xk) = P tkD
k
gPk (67)

where Dkλ is the diagonal matrix of eigenvalues of Λk and Dkg is the diagonal matrix

of eigenvalues of G(xk).

Let Λ
k

= PkΛ
k
P tk then we need to prove that there exist δ > 0 and τ > 0 such

that if xk ∈ B(x∗, δ) ∪Ωa we have

v>((Dkλ − tΛ
k
)Dkg )v 6 0. (68)

for all v ∈ Rm, ‖v‖ = 1.

Let Λ
k

= D∗λ +Mk, where Mk = PkΛ
k
P tk −D∗λ. Since Λ

k
converges to D∗λ for

all ε > 0 there exist δ1 such that for all xk ∈ B(x∗, δ1)∩Ωa, |v>(MkG(xk))v| < ε.
Since the eigenvalues of Dkλ are between λI and λS by hypothesis and the

eigenvalues of Λ∗ are bounded, due to theorem of Weyl [20], there exist τ > 0 such
that the eigenvalues of Dkλ − tD∗λ are positive for all t ∈ [0, τ ].

Then for a sufficiently small ε:

v>((Dkλ − tD∗λ)Dkg )v − t v>(MkG(xk))v 6 0. (69)

for all v ∈ Rm, ‖v‖ = 1 and t ∈ [0, τ ]. ut

Theorem 2 Any accumulation point x∗ of the sequence {xk} generated by the
algorithm is a stationary point of problem (1).

Proof Let {xk}k∈K with K ⊂ N be a sequence converging to x∗.
Since Λk, Bk, dk and ρk are bounded, there exist K1 ⊂ K such that

{xk, Λk, Bk, ρk, dk}k∈K1

converges to x∗, Λ∗, B∗, ρ∗, d∗.
The search direction is a continuous function of x, Λ, B and ρ. Then, the

sequence {dk}k∈K1
converges to d∗ and d∗ = d(x∗, Λ∗, B∗, ρ∗)

Let {tk}k∈K2
where K2 ⊂ K1 be a sequence converging to t∗.
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The limit ‖d(x∗)‖ = 0. If not we suppose that ‖d∗‖ > ηd > 0 and thanks to
proposition 1 we conclude that t∗ > 0.

From the line search condition (31),

f
(
xfol(k)

)
6 f(xk) + η.tk.(dk)>∇f(xk).

where fol(k) is the element that follows k in K2. Taking the limits for k →∞,

f(x∗) 6 f(x∗) + η.t∗.(d∗)>∇f(x∗).

Then, 0 6 (d∗)>∇f(x∗).

Using lemma 10 and taking the limit for k →∞,

(d∗)>∇f(x∗) 6 ξ(d∗0)>∇f(x∗).

Using lemma 9 and taking the limit for k →∞,

(d∗0)>∇f(x∗) 6 −(d∗0)>B∗d∗0.

Since B∗ is positive definite, d∗0 = d∗ = 0. But this is contradictory with ‖d∗‖ >
ηd > 0, then, the unique possibility is d∗ = 0.

Considering equation (17), we have that (x∗, λ∗0) verifies the following equa-
tions:

∇f(x∗) +∇G(x∗)λ∗0 = 0 (70)

(G(x∗)~ I)λ∗0 = 0. (71)

Equation (70) is the first equation of (2). It remains to proof the complementary
condition G(x∗)Λ∗0 = 0.

If x∗ ∈ int(Ωa), then G(x∗) ≺ 0. Consequently G(x∗) ~ I is non singular and
the linear system (71) has the unique solution λ∗0 = 0. Then, Λ∗0 = smat(λ∗0) = 0
and the complementarity condition holds.

Now consider the case when x∗ /∈ int(Ωa). We must prove that G(x∗)Λ∗0 =
0. Since equation (71), sym(G(x∗)Λ∗0) = 0. To finish the proof, we show that
skw(G(x∗)Λ∗0) = 0 or, equivalently, that all eigenvalues of G(x∗)Λ∗0 are real.

Let k ∈ K2. Firstly, the matrix Λk0 is symmetric. Secondly, the point xk is in
the interior of Ωa then, G(xk) ≺ 0. In view of lemma 4, G(xk)Λk0 has real eigen-
values. On the other hand, the sequence {G(xk)Λk0}k∈K2

converges to G(x∗)Λ∗0.
Since the eigenvalues are continuous functions, we conclude that G(x∗)Λ∗0 has real
eigenvalues. ut

The last result proves that the presented algorithm globally converges to the
solution of the problem in the convex case.
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4 Numerical Implementation

In this section we include implementation details of the introduced algorithm.

We code the algorithm of section 2.1 in a MATLAB function. The parameters
are fixed with the following values: ξ = 0.8, η = 0.1, ϕ = 1, ν = 0.7. Those values
are commonly used in the “Feasible Direction Interior Point Algorithm” (FDIPA)
[19]. Matrix B and Λ are initialized with the identity matrix.

Initially, the present algorithm takes as input, an interior point x. In order
to mount the system matrix of (26), we compute f(x), G(x), ∇f(x), ∇G(x),
Λ ~ I and I ~ G(x). The symmetric Kronecker products are computed with the
help of a MATLAB function used in SDPPACK [5]. Our actual implementation
is appropriated for G(x) of limited size. This limitation comes from the fact that
we do not explore the sparsity of G(x) and the size of the system matrix is n +
1
2m(m+ 1).

Since the linear systems (26) and (27) are the same, we performs a single
factorization per iteration of the algorithm.

Solving (26) we obtain d0(x) ∈ Rn and Λ0(x) ∈ Sm. Let TOL a positive
constant. The optimization process stops if ‖d0‖ < TOL is verified. For small
TOL, the condition ‖d0‖ < TOL means, in view of (17) and (18), that x is near
to a stationary point.

In order to accept the step length t in Armijo’s line search, we compute the
maximum eigenvalue of G(x+ td).

In step 3 matrix B must be taken to verify assumption 7. We use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) updating rule with Powell’s correction to en-
sure positive definiteness of B [30].

On the other hand matrix Λ must satisfy assumptions 5 and 6. In order to
verify assumptions 6, we use the following “Λ0-update” rule:

1. Compute λ0min, the minimum eigenvalue of Λ0.
2. If λ0min > λI then, set Λ = Λ0.
3. Else, set Λ = Λ0 +

(
λI − λ0min

)
I.

When Λ0 is not positive definite, the effect of this rule is to obtain a matrix Λ with
all the eigenvalues of Λ0 shifted to the right such that the minimum eigenvalue of
Λ be equal to λI . Since Λ0 is bounded, this rule generates Λ verifying assumption
6. Unfortunately, when x is not a stationary point, Λ0 do not commute with G(x) .
Then, Λ generated with the Λ0−update rule do not commutes with G(x). However,
in practice, using this approach, the system matrix (26) have a bounded condition
number.

5 Applications in Structural Optimization

In this section an overview of three semidefinite models of truss topology optimiza-
tion are presented: the minimum compliance problem, the robust truss topology
design and the problem of maximizing the minimal eigenvalue. We present numer-
ical examples of those models in section 6.
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5.1 Minimum compliance problem

Consider a two or a three-dimensional truss with b bars. Let l be the degrees of
freedom of the truss. The design variables of the our problems are the volumes of
the bars denoted by xj , j = 1, . . . , b. We define the worst possible compliance of
the structure for the set of loadings S ⊂ Rl as,

φS(x) = sup{2u>p− u>K(x)u : u ∈ Rl, p ∈ S}, (72)

where K(x) is the reduced stiffness matrix.
A typical model is the minimum compliance problem, also called Truss Topol-

ogy Design (TTD) [9]. This problem considers structures submitted to a finite
set of nodal loads called “primary” loads, and looks for the volume of each bar
that minimizes the structural compliance. The structural topology changes if the
volume of some of the bars are zero in the solution. Let consider the set of primary
load cases as,

P = {p1, . . . , ps}, (73)

where pi ∈ Rl is the i-th load case. We can write the problem of minimum com-
pliance as:

min
x,τ

τ

s.t. φP (x) 6 τ,∑b
j=1 xj 6 V ,

x > 0,

(74)

where V is a prescribed value for the total volume of the truss. Using the following
equivalence proved in [6],

φP (x) 6 τ ⇐⇒
[
τ p>

p K(x)

]
< 0, p ∈ P, (75)

it is possible to rewrite (74) as the following semidefinite program:

(TTD)



min
x,τ

τ

s.t.

[
τ p>

p K(x)

]
< 0, p ∈ P,∑b

j=1 xj 6 V ,
x > 0.

(76)

5.2 Robust truss topology design

The following development was proposed by Ben-Tal and Nemirovsky [7]. In the
robust truss topology problem the structure is “robust” if it is reasonable rigid
when any set of small possible uncertain loads act on it. In additional to the
primary loads, we includes a set of “secondary” loads that are uncertain in size
and direction and can act over the structure. The compliance to be minimized is
the worst possible one, considering “primary” and “secondary” load cases.

Let M be the ellipsoid of loading conditions defined as follows:

M = {Qe : e ∈ Rq, e>e 6 1}, (77)
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where

Q = [p1 . . . ps re1 . . . req−s] ∈ Rl×q. (78)

The vectors re1, . . . , req−s are called “secondary” load cases. The set
{e1, . . . , eq−s} must be chosen as an orthonormal basis of a linear subspace or-
thogonal to the linear span of P . The value r is a prescribed magnitude.

The robust truss topology problem (TTD) is obtained replacing P by M in
(74). In a similar way, using an equivalence similar to (75) proved in [7], it is
possible to rewrite the robust truss topology model as the following semidefinite
programming problem:

(RTT )



min
x,τ

τ

s.t.

[
τI Q>

Q K(x)

]
� 0,∑b

j=1 xj 6 V ,
x > 0,

(79)

where Q is defined in (78).

5.3 Structural topology optimization with eigenvalues

This subsection uses theorical results and semidefinite programming problems pre-
sented in [1] and [2].

The eigenvalues of a truss are governed by the following equation:

K(x)v = λM(x)v (80)

where M(x) is the reduced mass matrix of the structure and (λ, v) ∈ R×Rm is an
eigenvector-eigenvalue pair. The well-defined smallest eigenvalue of problem (80),
as explained in [1] and [2], is:

λmin : X → R ∪ {+∞}
λmin(x) = sup{λ : K(x)− λM(x) < 0} (81)

where X = {x ∈ Rb : x > 0, x 6= 0}.
The constraint λmin(x) > λ is equivalent to the semidefinite constraint K(x)−

λM(x) < 0, see [1]. Then, the topology optimization problem of minimum volume
subject to constraints in the minimum eigenvalue and compliance is

(MV )



min
x,V

V

s.t.
K(x)− λM(x) < 0,[

γ p>

p K(x)

]
< 0, p ∈ P,∑b

j=1 xj 6 V,

x > 0,

(82)

where λ is a lower bound to the minimum eigenvalue and γ an upper bound to
the compliance.
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In a similar way, the problem of minimum compliance subject to constraints
in the minimum eigenvalue and volume is

(MC)



min
x,γ

γ

s.t.
K(x)− λM(x) < 0,[

γ p>

p K(x)

]
< 0, p ∈ P,∑b

j=1 xj 6 V ,

x > 0,

(83)

where V is an upper bound to the volume of the structure.
Finally, the problem of maximizing the minimum eigenvalue with compliance

and volume constraints is

(MF )



max
x,λ

λ

s.t.
K(x)− λM(x) < 0,[

γ p>

p K(x)

]
< 0, p ∈ P,∑b

j=1 xj 6 V ,

x > 0.

(84)

In this paper we solve (MF ), (MV ) and (MC) and show its interrelation as
in the example 4.1 of [1].

Problems (TTD), (RTT ), (MV ) and (MC) are convex optimization problems
since the matrix constraint depends affinely on the design variables. On the other
hand, problem (MF ) is non convex since the constraint K(x)−λM(x) < 0 depends
linearly on the both design variables x and λ.

6 Numerical examples

Examples 1 and 2 are applications of the present algorithm to problems (TTD)
and (RTT ), respectively. In example 3 we apply the present algorithm to solve the
problems (MV ), (MC) and (MF ). The structures of examples 1 and 2 are taken
from [7] and the example 3 is from [1]. In all numerical tests, the optimization
process stops when ‖d0‖ < 10−6.

Recall that all problems solved here are first converted to the general format
(1). Then, n is the dimension of x and represents the number of design variables
and m×m is the size of G(x) the constraint matrix.
Example 1. Consider the ground structure as shown in figure 1. In this example a
single “primary” load P = {p} is considered and the magnitude of each component
of the load p is 2.0. The length of each of the horizontal and vertical bars is 1.0. The
secondary loadings have a magnitude r = 0.4 and define a basis of the orthogonal
complement of the linear span of P in the linear space of all the degrees of freedoms
of the structure.

Figure 2-left shows the final topology obtained with model (TTD). The re-
sulting truss is unstable since, for example, arbitrarily small non-horizontal force
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Fig. 1 Truss of Example 1.

applied to node 4 will produce infinite compliance. On the other hand, figure
2-right shows the final topology obtained with the robust model (RTT ).

Fig. 2 Results of example 1. Left=(TTD). Right=(RTT ).

Table 1 shows results obtained with the present algorithm. The row n1 : n2 is
the volume percentage of the bar connecting node n1 and n2. Vertical bars 3 : 4
and 1 : 2 are omitted since their volumes are null.

Table 1 Results of example 1. Bar volumes (%).

TTD RTT
3 : 5 25 24.482
1 : 3 12.5 11.954
4 : 6 25 24.483
2 : 4 12.5 11.954
4 : 5 0 1.2644
3 : 6 0 1.2644
2 : 3 25 23.679
1 : 4 0 0.9196

The results presented in figure 2 and in table 1 are similar to the results shown
in [7].

Example 2. This example consists of a three-dimensional truss with fixed nodes
on the horizontal plane z = 0 and free nodes on the horizontal plane z = 2. The
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structure has 8 nodes of coordinates,cos(2πi/4)
sin(2πi/4)

0

 , i ∈ {1, 2, 3, 4},
1

2 cos(2πj/4)
1
2 sin(2πj/4)

2

 , j ∈ {5, 6, 7, 8},
(85)

All the possible edges between free-free or free-fixed nodes are considered. A
single load case P = {p} is defined. The components of p acting at the nodes on
the plane z = 2 are given by,

pj =
1√

4(1 + ρ2)

 sin(2πj/4)
− cos(2πj/4)

−ρ

 , j ∈ {5, 6, 7, 8}, (86)

where ρ = 0.001. The secondary loadings were built in the same way as in example
1.

Figure 3-left and right shows the optimal result with model (TTD) and (RTT ),
respectively. The resulting structures of figure 3 differs only in the thickness of the
“top” horizontal bars. The truss in figure 3-left has bars approximately 80 times
smaller in volume than the right one. This result is also obtained in [7]

Fig. 3 Results of example 2. Left=(TTD). Right=(RTT ).

Table 2 summarizes the executions of the present algorithm with example 1
and 2. The rows n, m and iter are the number of design variables, the size of the
constraint matrix G(x) and the number of iterations, respectively. The resulting
structure in both examples attains the maximum volume of V = 1.0.

Table 2 Results of example 1 and 2.

example model n m iter

1
TTD 11 20 22
RTT 11 27 28

2
TTD 23 36 19
RTT 23 47 21
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Example 3.
Consider the planar structure with 3 × 3 nodes in figure 4-left. The nodes in

the left side are fixed in all directions and a horizontal force of magnitude 1.0 is
applied in the middle node of the right side. The length of each of the horizontal
and vertical bars is 1.0 and the Young’s module of the material is 1.0. The initial
structure has all bars with sectional area of 0.01.

We consider the minimum volume problem (MV ) with γ = 1 and λ = 0.05. Our
algorithm obtains the optimal design (x∗, V ∗) with V ∗ = 4.73. The optimal design
x∗ shown in figure 4-right. Since the optimal structure found is symmetric, only
four components of x∗ are non-null and different each other. Those components
are 1.58318, 1.48329, 1.57589× 10−1 and 6.75687× 10−1.

Considering the minimum compliance problem (MC) with V = V ∗ = 4.731
and λ = 0.05, we obtain the optimal design (x∗, γ∗) with optimal compliance
γ∗ = γ = 1.

Finally, when solving the problem of maximization the minimum eigenvalue
(MF ) with V = V ∗ = 4.731 and γ = 1, we obtain the optimal design (x∗, λ∗)
with λ∗ = λ = 0.05.

This result is also obtained in example 4.1 of [1].

Fig. 4 Truss of example 3. Our algorithm obtains the same x∗ when applied to problems
(MV ), (MC) and (MF ).

Test problems from SDPLIB and COMPleib
Here we present some results with test problems of SDPLIB [11]. SDPLIB

is a collection of linear semidefinite programming test problems. In this case the
constraint matrix G(x) is an affine combination of symmetric matrices and the
objective function f(x) is linear.

The test problems do not provide feasible points, then we first obtain a feasible
point by solving the following auxiliary problem,

min
x∈Rn,z∈R

z

s.t. G(x)− zI 4 0
(87)

where z is a new variable. Making iteration with our algorithm to solve (87), a
feasible point x0 is obtained once z becomes negative. Then, x0 is taken as the
starting point to solve (1).

The results presented in table 3, were solved by our algorithm using the same
default parameters indicated in section 4. The algorithm stops when ‖d0‖ < 10−6.
In column iter we write, iter1 + iter2, where iter1 is the number of iterations to
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solve (87) to obtain feasible point x0 and iter2 is the number of iterations to solve
problem (1) starting with x0. Finally, in column f is the value of the objective
function obtained.

Table 3 Numerical results, SDPLIB.

Problem n m iter f
control1 21 15 5 + 18 17.7848
control2 66 30 6 + 30 8.3001
control3 136 45 5 + 38 13.6334
control4 231 60 6 + 27 19.7944
hinf1 13 14 6 + 39 2.0326
hinf2 13 16 15 + 57 10.9671
hinf3 13 16 22 + 39 56.9425
hinf4 13 16 17 + 22 274.766
hinf5 13 16 25 + 52 362.2963
hinf6 13 16 18 + 37 448.9428
hinf7 13 16 8 + 41 390.8164
hinf8 13 16 14 + 405 116.1638
hinf9 13 16 18 + 38 236.2511
hinf10 21 18 12 + 41 108.7538
hinf11 31 22 15 + 66 65.899
hinf12 43 24 4 + 110 2.0251
hinf14 73 34 18 + 137 12.9927
qap5 136 26 6 + 20 −435.9962
qap6 229 37 3 + 207 −381.4346
theta1 104 50 3 + 12 23.0002
truss1 6 13 4 + 15 −9
truss3 27 31 5 + 32 −9.1099
truss4 12 19 4 + 16 −9.0099

Looking at table 3, we can see that the numbers of iterations are comparable
to the size of of the problem (except for hinf8, hinf14 and qap6) and the value
of the objective function is similar to the values published in [11].

7 Conclusions

In this paper, a new approach for nonlinear semidefinite programming is presented
and supported by strong theoretical results. In particular, global convergence was
proved for the convex case.

The present technique computes feasible and descent directions based on
Newton-like iterations to solve KKT optimality conditions.

To obtain a search direction only two linear system with the same coefficient
matrix are solved. The present technique is very robust and does not require tuning
of parameters w.r.t. the considered application.

A set of numerical tests was performed with the same set of parameters.

Tests on non-convex problems show that the algorithm is still convergent.
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