A parabolic free boundary problem modeling electrostatic MEMS - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2014

A parabolic free boundary problem modeling electrostatic MEMS

Joachim Escher
  • Fonction : Auteur
  • PersonId : 862452
Christoph Walker
  • Fonction : Auteur
  • PersonId : 872673

Résumé

The evolution problem for a membrane based model of an electrostatically actuated microelectromechanical system (MEMS) is studied. The model describes the dynamics of the membrane displacement and the electric potential. The latter is a harmonic function in an angular domain, the deformable membrane being a part of the boundary. The former solves a heat equation with a right hand side that depends on the square of the trace of the gradient of the electric potential on the membrane. The resulting free boundary problem is shown to be well-posed locally in time. Furthermore, solutions corresponding to small voltage values exist globally in time while global existence is shown not to hold for high voltage values. It is also proven that, for small voltage values, there is an asymptotically stable steady-state solution. Finally, the small aspect ratio limit is rigorously justified.
Fichier principal
Vignette du fichier
MEMS_Parabolic_221112.pdf (218.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00757167 , version 1 (26-11-2012)

Identifiants

Citer

Joachim Escher, Philippe Laurencot, Christoph Walker. A parabolic free boundary problem modeling electrostatic MEMS. Archive for Rational Mechanics and Analysis, 2014, 211, pp.389-417. ⟨10.1007/s00205-013-0656-2⟩. ⟨hal-00757167⟩
117 Consultations
78 Téléchargements

Altmetric

Partager

More