Hardy-Littlewood series and even continued fractions - Archive ouverte HAL
Article Dans Une Revue Journal d'analyse mathématique Année : 2015

Hardy-Littlewood series and even continued fractions

Tanguy Rivoal

Résumé

For any $s\in (1/2,1]$, the series$F_s(x)=\sum_{n=1}^{\infty} e^{i\pi n^2 x}/n^s$ converges almost everywhere on $[-1,1]$ by a result of Hardy-Littlewood, but not everywhere. However, there does not yet exist an intrinsic description of the set of convergence for $F_s$. In this paper, we define in terms of even or regular continued fractions certain subsets of points of $[-1,1]$ of full measure where the series converges. Our method is based on an approximate function equation for $F_s(x)$. As a by-product, we obtain the convergence of certain series defined in term of the convergents of the even continued fraction of an irrational number.
Fichier principal
Vignette du fichier
rivseudef.pdf (367.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00756399 , version 1 (22-11-2012)

Identifiants

Citer

Tanguy Rivoal, Stéphane Seuret. Hardy-Littlewood series and even continued fractions. Journal d'analyse mathématique, 2015, 125, pp.175-225. ⟨10.1007/s11854-015-006-4⟩. ⟨hal-00756399⟩
153 Consultations
189 Téléchargements

Altmetric

Partager

More