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HARDY-LITTLEWOOD SERIES AND

EVEN CONTINUED FRACTIONS

TANGUY RIVOAL AND STÉPHANE SEURET

Abstract. For any s ∈ (1/2, 1], the series Fs(x) =
∑∞

n=1 e
iπn2x/ns converges almost

everywhere on [−1, 1] by a result of Hardy-Littlewood concerning the growth of the sums∑N
n=1 e

iπn2x, but not everywhere. However, there does not yet exist an intrinsic descrip-
tion of the set of convergence for Fs. In this paper, we define in terms of even continued
fractions a subset of points of [−1, 1] of full measure where the series converges.

As an intermediate step, we prove that, for s > 0, the sequence of functions

N∑

n=1

eiπn
2x

ns
− esign(x)i

π

4 |x|s− 1

2

⌊N |x|⌋∑

n=1

e−iπn2/x

ns

converges when N → ∞ to a function Ωs continuous on [−1, 1] \ {0} with (at most) a

singularity at x = 0 of type x
s−1

2 (s 6= 1) or a logarithmic singularity (s = 1). We provide
an explicit expression for Ωs and the error term.

Finally, we study thoroughly the convergence properties of certain series defined in
term of the convergents of the even continued fraction of an irrational number.

1. Introduction

The famous lacunary Fourier series

∞∑

k=1

sin(πk2x)

k2
(1.1)

was proposed by Riemann in the 1850’s as an example of continuous but nowhere differ-
entiable function. Since then, this series has drawn much attention from many mathe-
maticians (amongst them, Hardy and Littlewood), and its complete local study was finally
achieved by Gerver in [7] and Jaffard in [10]. In particular, its local regularity at a point x
depends on the Diophantine type of x, and it is differentiable only at rationals p/q where
p and q are both odd.

In this article, we study the series defined for (x, t) ∈ R2 and s ∈ R+ by

Fs(x, t) =

∞∑

k=1

eiπk
2x+2iπkt

ks
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and we denote by Fs,n(x, t) =
∑n

k=1
eiπk2x+2iπkt

ks
its n-th partial sum. Both are periodic

functions of period 2 in x and 1 in t. For s = 2 and t = 0 the imaginary part of is (1.1).
For any fixed t, if s > 1/2, Fs is in L2(−1, 1) and it converges almost everywhere by
Carleson’s theorem. It is not everywhere convergent however. One of the aim of this paper
is to understand better the convergence of Fs(x, t) especially when t = 0.

We set ρ = exp(iπ/4), σ(x) = 1, resp. −1 if x > 0, resp. x < 0, and σ(0) = 0. We define
log(z) = ln |z| + i arg(z) with −π < arg(z) ≤ π. We denote by ⌊x⌋ and {x} the integer
part and fractional part respectively of a real number x. For x > 0, t ∈ R and s ≥ 0, we
set

Is(x, t) =

1/2+ρ∞∫

1/2−ρ∞

eiπz
2x+2iπz{t}

zs(1− e2iπz)
dz

+ ρxs

∞∫

−∞

e−πxu2

( ∞∑

k=1

e−iπ(k−{t})2/x
(

1

(ρxu+ k − {t})s −
1

ks

))
du. (1.2)

This function is well-defined and if s = 0, the second integral is equal to 0 (because the
series vanishes). We then define a function Ωs(x, t) as follows:

Ωs(x, t) =





Is(x, t) when x > 0,

Is(−x,−t) when x < 0.

For simplicity, given a function f(x, t), we will write f(x) for f(x, 0). The function Ωs(x, t)
will be particularly important in this paper.

1.1. Statement of our main results. Our first result is a consequence of the celebrated
“approximate functional equation for the theta series” of Hardy and Littlewood (Proposi-
tion 3 in Section 3), which corresponds exactly to the case s = 0 in our Theorem 2 below;
see [1] where many references and historical notes are given.

Theorem 1. Let x be an irrational number in (0, 1) whose (regular) continued fraction is
denoted by (Pk/Qk)k≥0, and let t ∈ R.

(i) If s ∈ (1
2
, 1) and

∞∑

k=0

Q
1−s
2

k+1

Q
s/2
k

< ∞, (1.3)

then Fs(x, t) is absolutely convergent.
(ii) If s = 1 and

∞∑

k=0

log(Qk+1)√
Qk

< ∞, (1.4)

then F1(x, t) is absolutely convergent.
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Conditions (1.3) and (1.4) hold for Lebesgue-almost all x. It is possible to prove a
quantitative version of Therorem 1. We need to introduce more notations. We introduce
the two transformations

G(x) =

{
1

x

}
, G̃(x, t) =

{
1

2

[
1

x

]
− t

x

}
.

Then, for all x satisfying at least the conditions (1.3) or (1.4), it can be proved (1) that

Fs(x, t) =
∞∑

j=0

e
iπ
8
(1+(−1)j−1)+iπ

∑
1≤ℓ≤j

(−1)ℓĜℓ(x,t)

(xG(x) · · ·Gj−1(x))s−
1
2Ωj,s(G

j(x), G̃j(x, t)),

(1.5)

where Ωj,s(x, t) = Ωs(x, t) if j is even, Ωj,s(x, t) = Ωs(x, t) if j is odd, and

G̃0(x, t) = x, Ĝ0(x, t) = t, G̃1(x, t) = G̃(x, t), Ĝ1(x, t) =
t2

x

G̃j+1(x, t) = G̃1(T
j(x), G̃j(x, t)), Ĝj+1(x, t) = Ĝ1(T

j(x), G̃j(x, t)) (j ≥ 0).

Eq. (1.5) holds very generally, the right-hand side converges quickly and the appearence of
Gauss’ transform G is a nice feature. But this is at the cost of the simultaneous appearance

of the operator G̃ and this makes (1.5) looks very complicated, even when t = 0 because

G̃j(x, 0) 6= 0 in general.

However, the underlying modular nature of Fs(x, t) implies that the transformation of
[−1, 1] \ {0} given by

T (x) = −1

x
mod 2

is more natural than Gauss’ in this specific study, and in particular it leads to another
expression (i.e, (1.26) below) for Fs(x, t) which is formally similar to (1.5) but simpler.
The comparison of both approaches is one of our motivations.

Our next theorem below explains what we mean by “the modular nature of Fs(x, t)”
and the subsequent theorems are devoted to convergence conditions of Fs(x, t) (mainly
when t = 0) in terms of series defined by the operator T , as well as their relations with
Theorem 1.

Theorem 2. (i) For any x ∈ [−1, 1] \ {0}, t ∈ R, s ≥ 0, we have the estimate

Fs,n(x, t)− eσ(x)i
π
4 e−iπ

{σ(x)t}2

x |x|s− 1
2Fs,⌊n|x|⌋

(
− 1

x
,
{σ(x)t}

x

)

= Ωs(x, σ(x)t) +O
(

1

ns
√
x

)
. (1.6)

when n tends to infinity. The implicit constant depends on s and t, but not on x.

1The details will not be given here because the process is similar to that leading to Theorem 3 and this
would add nearly ten more pages to the paper.
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Figure 1. Plot of Im(F0.7,100(x)) on [0, 2]

(ii) When 0 ≤ s ≤ 1, the function Ωs(x) is continuous on R \ {0}, differentiable at any
rational number p/q with p, q both odd, and

Ωs(x)−
ρ1−sΓ(1−s

2
)

2π
1−s
2

|x| s−1
2 (0 ≤ s < 1) and Ω1(x)− log(1/

√
|x|)

are bounded on R.
(iii) When s > 1, the function Ωs(x) is differentiable on R \ {0} and continuous at 0.

Remark. The function Ω0(x) is the same as the one used by Cellarosi [3] and Fedotov-
Klopp [6]. When s > 1, the proof of item (ii) yields only that Ωs is bounded around
0.

See Figures 1 and 2 for an illustration of Theorem 2.

As n → +∞, the left hand side of (1.6) tends to Ωs(x, t) when x > 0. The resulting
“modular” equation

Fs(x, t)− ei
π
4 e−iπ t2

x xs− 1
2 Fs

(
− 1

x
,
t

x

)
= Ωs(x, t) (1.7)

holds a priori at least almost everywhere for x ∈ (0, 1) for any fixed s ≥ 0 and t ∈ [0, 1),
and Theorem 2 shows in which sense we can say it holds everywhere. For other examples
of this phenomenon, see [2, 14] for instance. Of course, if s > 1, (1.7) holds for all x.
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Figure 2. Plot of Im(F0.7,1000(x)− eiπ/4x0.2F0.7,⌊1000x⌋(−1/x)) on [0, 2]

In fact, we will obtain a more precise estimate for the error term in (1.6), uniform in
x ∈ [−1, 1] \ {0}, n ≥ 0 and t ∈ R:

O
(

1

ns
√
x

)
= O

(
|x|s− 1

2(
⌊n|x| + σ(x)t⌋ + 1− σ(x)t

)s
)

+





O
(
min

(
1

(n+1)s
√

|x|
, 1

|x|
1−s
2

))
(s 6= 1)

O
(
min

(
1

(n+1)
√

|x|
, 1 +

∣∣ log
(
(n+ 1)

√
|x|
)∣∣
))

(s = 1),
(1.8)

where the constants in the O on the right-hand side depend now at most on s and are
effective. We need this refinement to prove Theorem 3 below.

Theorem 2 will be used to get informations of the convergence of Fs(x) in terms of
the diophantine properties of x. In the sequel Tm(x) denotes the m-th iterate of x by
T . By 2-periodicity of T , Eq. (1.6) can be rewritten as follows (when t = 0): for any
x ∈ [−1, 1] \ {0}, s > 1

2
and integer n ≥ 0,

Fs,n(x) = eσ(x)i
π
4 |x|s− 1

2Fs,⌊n|x|⌋
(
T (x)

)
+ Ωs(x)

+





O
(
min

(
1

(n+1)s
√

|x|
, 1

|x|
1−s
2

))
(s 6= 1)

O
(
min

(
1

(n+1)
√

|x|
, 1 +

∣∣ log
(
(n+ 1)

√
|x|
)∣∣
))

(s = 1).
(1.9)

(When t = 0, the error term |x|s− 1
2 ·
(
⌊n|x|+ σ(x)t⌋+ 1− σ(x)t

)−s
in (1.8) is absorbed by

the error term in (1.9), for some constant that depends only on s; this is enough for the
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application we have in mind.) The second sum Fs,⌊n|x|⌋
(
T (x)

)
in (1.9) involves less terms

than the first one for any irrational number in (−1, 1), because ⌊n|x|⌋ < n. Hence for any
fixed n and x, we can iterate (1.9) because T (x) ∈ (−1, 1). After a finite number of steps
(say ℓ, which depends on x), we get an empty sum Fs,0(T

ℓ(x)) = 0 on the right hand side
together with a finite sum defined in terms of iterates of Ωs(x) and a quantity we expect
to be an error term (i.e., that tends to 0 as n tends to infinity under suitable condition
on x).

We prove the following result.

Theorem 3. Let x ∈ (−1, 1) be an irrational number.
(i) If s ∈ (1

2
, 1) and if

∞∑

j=0

|xT (x) · · ·T j−1(x)|s− 1
2

|T j(x)| 1−s
2

< ∞, (1.10)

then Fs(x) is also convergent and the following identity holds:

Fs(x) =

∞∑

j=0

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)
|xT (x) · · ·T j−1(x)|s− 1

2 Ωs

(
T j(x)

)
. (1.11)

(ii) If

∞∑

j=0

√
|xT (x) · · ·T j−1(x)| < ∞ (1.12)

and
∞∑

j=0

√
|xT (x) · · ·T j−1(x)| log

( 1

|T jx|
)
< ∞, (1.13)

then F1(x) is also convergent and the following identity holds:

F1(x) =
∞∑

j=0

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)√
|xT (x) · · ·T j−1(x)|Ω1

(
T j(x)

)
. (1.14)

The series in (1.10), (1.12) and (1.13) do not converge everywhere. It was an open
question whether such series converge Lebesgue-almost everywhere. Note that the results
in the cited papers of Cellarosi [3], Kraaikamp-Lopes [11], Schweiger [15, 16], and Sinai [17]
give estimates for the average behavior of |xT (x) · · ·T j−1(x)| when j tends to infinity, but
these estimates are not sharp enough (2) to guarantee the almost everywhere convergence.
It would be interesting to know if F1(x) converges under the assumption of convergence
of (1.13) only.

2It is known that T is ergodic with respect to a measure ν supported on [−1, 1] but, in contrast with
the ergodic theory of Gauss’ transformation G, the measure ν is infinite. As a consequence, the analogue
of Birkoff’s ergodic theorem is not known and one must content with “convergence in probability” results
(see [3]), which are not well suited to our study.
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1.2. More results around Theorem 3. We now precise the diophantine content of
Theorem 3.

Theorem 4. Let α > 0, β ≥ 0, and set βα =

√
α2 + 4− 1

2
.

(i) If 0 ≤ β < βα, then the series

∞∑

j=0

|xT (x) · · ·T j−1(x)|α
|T j(x)|β (1.15)

converges if
∞∑

n=1

Qβ+1
n+1

Qα+β+1
n

< ∞. (1.16)

(ii) If β > βα, then the series (1.15) converges if

∞∑

n=1

Qβ
n+2

Qα+β
n

< ∞ (1.17)

(iii) If β = βα, then (1.16) and (1.17) impose the convergence of (1.15).
(iv) If α ≥ 0 and

∞∑

n=1

(
log(Qn+1)

Qα
n−1

+
Qn+1 log(Qn+1)

2

Q1+α
n

)
< ∞, (1.18)

then the series
∞∑

j=0

|xT (x) · · ·T j−1(x)|α log
(

1

T j(x)

)

converges.

The condition (1.16) can be simplified according to the values of α and β, in terms of
the irrationality exponent µ(x) of an irrational x ∈ R, defined as

µ(x) = sup

{
µ ≥ 1 :

∣∣∣∣x− p

q

∣∣∣∣ <
1

qµ
for infinitely many integers q ≥ 1

}
.

It is well-known that µ(x) = 2 for almost every real numbers x. When s = 1, choosing
α = 1

2
, β = 0, one sees that (1.18) implies (1.16). When s ∈ (1

2
, 1), putting α = s− 1

2
and

β = 1−s
2
, a simple computation shows that β < βα in Theorem 4.

Corollary 1. (i) If 1/2 < s < 1 and

∞∑

n=1

Q
3−s
2

n+1

Q
1+ s

2
n

(1.19)

is convergent, then the identity (1.11) holds true. The series (1.19) converges for every x
such that µ(x) < 1 + 2+s

3−s
.
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(ii) If
∞∑

n=1

(
log(Qn+1)√

Qn−1

+
Qn+1 log(Qn+1)

2

Q
3/2
n

)
(1.20)

converges, then the equality (1.14) holds true. The series (1.20) converges for every x such
that µ(x) < 5

2
.

Corollary 1 is not entirely satisfying, since the series Fs(x) converges (even absolutely)
when a weaker condition on the standard convergents of x holds (Theorem 1, conditions
(1.3) and (1.4)). The main reason for this discrepency is the factor exp(iπ

4

∑
0≤ℓ<j σ(T

ℓx)):

it is present in (1.11) but not in (1.10), respectively in (1.14) but not in (1.12)-(1.13). Our
next result shows that the role of this factor is very important, even though its modulus
is 1. We explain after the theorem why we are not able to keep track of it in our proof of
Theorem 3.

Theorem 5. (i) Let Ω be a bounded function, differentiable at x = 1 and x = −1 (in
particular, if Ω ≡ 1). Then for any α > 0 and any irrational number x ∈ (0, 1), the series

∞∑

j=1

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)
|xT (x) · · ·T j−1(x)|αΩ

(
T j(x)

)
(1.21)

converges.
(ii) For any α > 0, any β ∈ R and any irrational number x ∈ (0, 1), the series

∞∑

j=0

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx) |xT (x) · · ·T j−1(x)|α
|T j(x)|β (1.22)

converges if
∞∑

n=1

Qβ
n+1

Qα+β
n

< ∞. (1.23)

(iii) For any α > 0 and any irrational number x ∈ (0, 1), the series

∞∑

j=0

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)
|xT (x) · · ·T j−1(x)|α log

(
1

T j(x)

)
(1.24)

converges if
∞∑

n=1

log(Qn+1)

Qα
n

< ∞. (1.25)

These convergence properties are essentially optimal. They are very different from the
absolute convergence properties (which are also essentially optimal), as stated in Theo-
rem 3.

In fact, in our proof of Theorem 3, only one technical detail impedes us to prove that
formulas (1.11) and (1.14) hold true when conditions (1.3) and (1.4) are satisfied (and not
only when the more constraining conditions in (i) and (ii) of Corollary 1 hold). Indeed, we
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show that the convergence of the series (1.11) and (1.14) is equivalent to the convergence
of three auxiliary simpler series (see equations (6.3) and (6.8)). For two of these series,
their convergence follows from Theorem 5, and the convergence conditions are optimal
(i.e., when conditions (1.3) and (1.4) are satisfied). For the third series, which contains
heuristically a sort of ”error” term, we do not have an estimate precise enough to apply
Theorem 5, and we can only use Theorem 4 and the conditions ensuring absolute conver-
gence of the series (1.24) and (1.22), which are stronger. Nevertheless, we do believe that
conditions (1.3) and (1.4) imply the identities (1.11) and (1.14) respectively.

1.3. Some further remarks. For t not necessarily an integer, the iteration of (1.6) leads
to an identity, for which we have to introduce the following sequences of operators:

T̃0(x, t) = x, T̂0(x, t) = t, T̃1(x, t) =

{{σ(x)t}
x

}
, T̂1(x, t) =

{σ(x)t}2
x

T̃j+1(x, t) = T̃1(T
j(x), T̃j(x, t)), T̂j+1(x, t) = T̂1(T

j(x), T̃j(x, t)) (j ≥ 0).

Then, for any fixed t ∈ [0, 1] and s > 1
2
, the following identity (3) holds for almost every x:

Fs(x, t) =
∞∑

j=0

e
iπ

j−1∑
ℓ=0

( 1
4
σ(T ℓx)−T̂ℓ+1(x,t))|xT (x) · · ·T j−1(x)|s− 1

2 Ωs

(
T j(x), T̃j(x, t)

)
. (1.26)

This new representation of Fs(x, t) is similar to Identity (1.5) displayed after Theorem 1.

For x unspecified, Eq. (1.26) is simpler than (1.5) when t = 0, because T̃j(x, 0) = T̂j(x, 0) =

0 for all j while neither G̃j(x, 0) nor T̂j(x, 0) necessarily vanish. Finally, it is easy to see
that when x has even partial quotients and t = 0, then the summands of (1.26) and (1.5)
are equal. The simplicity of (1.26) (relatively to (1.5)) when t = 0 was our motivation
to make the detailed study of various series defined in term of the operator T , for which
apparently nothing was done in the direction of our results.

Finally, when s > 1, the series Fs(x, t) obviously converges absolutely for any real
numbers x and t. It turns out that Identities (1.5) and (1.26) hold for any t and any
irrational number x, and with minor modification for any rational number x as well. On
the one hand, this is not difficult to prove for (1.5), whose right hand side converges very
quickly. On the other hand, the convergence of the right-hand side of (1.26) for all irrational
x is a consequence of Theorem 5(i) applied with α = s − 1

2
because for s > 1, Ωs(x) is

bounded on [−1, 1] and differentiable at x = ±1 by Theorem 2(iii).
We note that T is closely related to the Theta group, a subgroup of SL2(Z) of the

matrices
(
a b
c d

)
with a ≡ d mod 2, b ≡ c mod 2; see [11]. This relation has been used in the

papers [5, 9] to study the (non)-derivability of Riemann series Im(F2(x)), culminating with
Jaffard’s determination of its spectrum of singularities [10]. It would be very interesting

3This could be precisely described as in Theorem 3 but, again, we skip the details to shorten the length
of the paper.
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1.2657
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Figure 3. The “non-differentiable” Riemann function Im(F2(x)) on [0, 2]

to know if Jaffard’s results can be recovered by a direct study of (1.26) in the case s = 2
and t = 0, which reads

F2(x) =
∞∑

k=1

eiπk
2x

k2
=

∞∑

j=0

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)
|xT (x) · · ·T j−1(x)| 32 Ω2

(
T j(x)

)
,

where Ω2(x) is differentiable on [−1, 1] \ {0}, and continuous at 0.

The paper is organized as follows. We start by recalling some facts on regular and even
continued fractions in Section 2. Then, in Section 3, we prove Theorem 1. Section 4, which
is rather long, contains the proof of the approximate functional equation for Fs,n (part (i)
of Theorem 2). The second part (ii) of Theorem 2, i.e. the regularity properties of the
functions Ωs, is dealt with in Section 5. Theorem 3 and the Diophantine identities (1.11)
and (1.14) are proven in Section 6. Finally, the standard and absolute convergence prop-
erties of the series (1.24) and (1.22) (Theorems 5 and 4) are studied in Sections 7 and 8.

2. Basic properties of regular and even continued fractions

The regular theory of continued fractions is well-known, and is related to Gauss dynam-
ical system G : x ∈ (0, 1] 7→ 1/x mod 1. In the following, we use capital letters when we
refer to the regular convergent Pn/Qn of an irrational number x ∈ R. We set

Pn

Qn

:= ⌊x⌋ + 1

A1 +
1

A2 +
1

.. . +
1

An

with An =

⌊
1

Gn(x)

⌋
, (2.1)
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where Gn is the n-th iterate of G. We write the RCF (Regular Continued Fraction) of x
as

x = ⌊x⌋ + [A1, A2, ....]R.

Recall that one has the recurrence relations

Pn+1 = An+1Pn + Pn−1 and Qn+1 = An+1Qn +Qn−1.

It is also classical that in this case, for every irrational x ∈ [0, 1],
∣∣xG(x)G2(x) · · ·Gn(x)

∣∣ ≤ |Qnx− Pn| ≤ (Qn+1)
−1. (2.2)

This guarantees the convergence for every α > 0 and x ∈ R of the series
∑

n≥1

∣∣xG(x)G2(x) · · ·Gn(x)
∣∣α . (2.3)

In Theorems 3 and 4, the natural underlying dynamical system is the one generated by
the map T : [−1, 1] \ {0} 7→ [−1, 1] defined by T (x) = −1/x mod 2. As is classical with
the Gauss map G, using this transformation T one can associate with each irrational real
number x ∈ [−1, 1] \ {0} a kind of continued fraction: for every j ≥ 1, denote by aj the
unique even number such that T j(x)− aj ∈ (−1, 1), and set ej = σ(T j(x)). Then one has
the unique decomposition called the even continued fraction (ECF) expansion (see [11] for
instance)

x =
e1

a1 +
e2

a2 +
e3

a3 + ...

. (2.4)

The difference with the RCF expansion (2.1) is twofold: first, only even integers (aj)j≥1

are allowed in the decomposition, and second the integers e1, e2, etc, may take the values
1 and −1 (not only 1). For compactness, we write for x ∈ (−1.1)

x = [(e1, a1), (e2, a2), ....]E . (2.5)

Now, given the ECF (2.4), we define the n-th convergent and the n-th remainder respec-
tively as

pn
qn

:=
1

a1 +
e1

a2 +
e2

. . . +
en−1

an

and xn :=
en

an+1 +
en+1

an+2 +
en+2

. . .

.

We use small letters for ECF, and capital letters for RCF.

ECF expansions are obtained from the RCF expansions via the following iterative
method. Observe that for any positive integers (An, An+1, An+2) and any positive real
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number γ, one has

An +
1

An+1 +
1

An+2 + γ

= (An + 1) +
−1

2 +
−1

2 + ....+
−1

2 +
−1

(An+2 + 1) + γ

, (2.6)

where the term
−1

2 + ...
appears exactly An+1 − 1 times.

The procedure is then as follows: Write the RCF expansion of a real number x =
[A1, A2, ...]R as x = [(1, A1), (1, A2), ...]E , which looks like an ECF expansion, except that
all en are 1 and some integers An may be odd.

If all An are even, then this expansion is indeed the ECF of x.
Otherwise, consider the smallest index n such that An is odd, and apply (2.6) to trans-

form

x = [(1, A1), ..., (1, An), (1, An+1), (1, An+2), (1, An+3), ...]E

into

[(1, A1), ..., (1, An + 1), (−1, 2), ..., (−1, 2), (−1, An+2 + 1), (1, An+3), ...]E.

The odd number An has been removed, and one iterates the procedure with this new ECF-
like expansion, whose coefficients before An+2 + 1 are even. By uniqueness of the ECF
expansion for irrational numbers, the expansion obtained as a limit is indeed the ECF
expansion of x.

From the above construction, one also derives some useful properties between the even
and the regular convergents. Next Proposition is contained in [11].

Proposition 1. Let x be an irrational number in (0, 1).
(i) For any n ≥ 1, if the regular convergent Pn/Qn is not an even convergent pj/qj, then

necessarily Pn+1/Qn+1 is an even convergent.
(ii) If the regular convergent Pn/Qn is equal to the even convergent pj/qj for some j ≥ 1,

and if Pn+1/Qn+1 is also an even convergent, then pj+1/qj+1 = Pn+1/Qn+1.
(iii) If the regular convergent Pn/Qn is equal to the even convergent pj/qj for some j ≥ 1,

and if Pn+1/Qn+1 is not an even convergent, then for every m ∈ {1, ..., An+2},
pj+m

qj+m
=

mPn+1 + Pn

mQn+1 +Qn
.

In particular,
pj+An+2

qj+An+2

=
Pn+2

Qn+2
.

Hence, amongst two consecutive regular convergents, there is at least one even conver-
gent, and an even convergent pj/qj is either a principal or a median convergent of the
regular continued fraction. This will be useful to prove Theorem 4.

The next proposition gathers some useful informations about even continued fraction
(references include [11, p. 307], [17, p. 2027, eq. (1.13)], and [15, 16]).
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Proposition 2. For every irrational x ∈ [0, 1] and every j ≥ 1, we have

qj+1 > qj, lim
n→+∞

(qn+1 − qn) = +∞

and

1

2qj+1
≤ |xT (x) · · ·T j(x)| = 1

|qj+1 + ej+1xj+1qj |
≤ 1

qj+1 − qj
. (2.7)

(We will freely use these properties without necessarily quoting Proposition 2.) Un-
fortunately there is no uniform convergence rate for this sequence that guarantees the
convergence of series of the form (1.22) for every x. This is in sharp contrast with the
classical continued fractions and equation (2.3). Nevertheless we have found some optimal
condition to guarantee the convergence of the sum

∑
j≥0 |xT (x) · · ·T j(x)|α, see Theorem 4.

3. Proof of Theorem 1

In this section, we obtain sufficient conditions of convergence of Fs(x, t) expressed in term
of the usual regular continued fraction of x. These conditions are simple consequences of
the following proposition, due to Hardy and Littlewood [8]. At the end of this section, we
present an identity which, in principle, would be a qualitative version of Theorem 1.

Proposition 3. For any irrational number x in (0, 1) with regular continued fraction
(Pk/Qk)k≥0 and any t ∈ R, we have

N∑

k=1

eiπk
2x+2iπkt = O

(
N√
Qr

+
√
Qr

)
(3.1)

for any integers N, r ≥ 0, where the implicit constant is absolute.

Eq. (3.1) is a corollary of the approximate functional equation of Hardy-Littlewood for
the theta series, which is exactly the case s = 0 of our Theorem 2. In this case, the error
term reduces to O(1/

√
x) where the constant is absolute. The most precise version of the

functional equation is given in [4]. We do not reproduce the proof of (3.1): it is obtained
by iteration of (1.6), see [1].

We now prove Theorem 1. Fix an integer N ≥ 2. By Abel summation,

Fs,N(x, t) =

N−1∑

k=1

(
1

ks
− 1

(k + 1)s

) k∑

j=1

eiπj
2x+2iπjt +

1

N s

N∑

k=1

eiπk
2x+2iπkt.

We set Bm = ⌈√QmQm−1 ⌉ and let r be the unique integer such that Br ≤ N < Br+1. We
denote by |F |s,N(x, t) the sum of the modulus of the summands of Fs,N(x, t). Then, for
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some constant c independent of N ,

|F |s,N(x, t) ≤ c+

r∑

ℓ=1

Bℓ+1−1∑

k=Bℓ

∣∣∣∣∣

(
1

ks
− 1

(k + 1)s

) k∑

j=1

eiπj
2x+2iπjt

∣∣∣∣∣+
1

N s

∣∣∣∣∣
N∑

k=1

eiπk
2x+2iπkt

∣∣∣∣∣

≪ c +

r∑

ℓ=1

Bℓ+1−1∑

k=Bℓ

k√
Qℓ

+
√
Qℓ

ks+1
+

N√
Qr

+
√
Qr

N s

≪ c +

r∑

ℓ=1

1√
Qℓ

Bℓ+1−1∑

k=Bℓ

1

ks
+

r∑

ℓ=1

√
Qℓ

Qℓ+1−1∑

k=Qℓ

1

ks+1
+

Q
1−s
2

r+1

Q
s/2
r

.

For any s > 1
2
,

Bℓ+1−1∑

k=Bℓ

1

ks+1
≪ 1

Bs
ℓ

≪ 1

(QℓQℓ−1)s/2

but the behavior of
∑Bℓ+1−1

k=Bℓ

1
ks

depends on whether s = 1 or s < 1.
If s = 1, then

Bℓ+1−1∑

k=Bℓ

1

ks
≪ log(Bℓ+1) ≪ log(Qℓ+1)

so that

|F |s,N(x, t) ≪ c+

r∑

ℓ=1

log(Qℓ+1)√
Qℓ

+

r∑

ℓ=1

1√
Qℓ

+
1√
Qr

and the condition
∞∑

ℓ=0

log(Qℓ+1)√
Qℓ

< ∞

ensures the absolute convergence of F1(x, t).
If 1

2
< s < 1, then

Bℓ+1−1∑

k=Bℓ

1

ks
≪ B1−s

ℓ+1 ≪ (Qℓ+1Qℓ)
1−s
2 .

Hence,

|F |s,N(x, t) ≪ c+
r∑

ℓ=1

Q
1−s
2

ℓ+1

Q
s/2
ℓ

+
r∑

ℓ=1

Q
1−s
2

ℓ

Q
s/2
ℓ−1

+
Q

1−s
2

r+1

Q
s/2
r

and the condition
∞∑

ℓ=0

Q
1−s
2

ℓ+1

Q
s/2
ℓ

< ∞

ensures the absolute convergence of Fs(x, t).
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Remark. Our choice Bm = ⌈√QmQm−1 ⌉ is not arbitrary. Indeed, it is such that

∞∑

ℓ=1

1√
Qℓ

Bℓ+1−1∑

k=Bℓ

1

ks
and

∞∑

ℓ=1

√
Qℓ

Bℓ+1−1∑

k=Bℓ

1

ks+1

both converge/diverge simultaneously when 1/2 < s < 1. Its importance is lesser when
s = 1 where we could simply take Bm = Qm.

In the introduction, we presented Identity (1.26) obtained by iteration of (1.6) with the
operator T . It is also possible to iterate (1.6) with Gauss’ operator G. Let us assume that
x ∈ (0, 1), t ∈ [0, 1], s > 1

2
are such that Fs(x, t) is convergent. Then, letting n → +∞

in (1.6), we obtain

Fs(x, t) = ei
π
4 e−iπ t2

x xs− 1
2 Fs

(
− 1

x
,
t

x

)
+ Ωs(x, t)

= ei
π
4 e−iπ t2

x xs− 1
2 Fs

(
G(x), G̃(x, t)

)
+ Ωs(x, t), (3.2)

with

G̃(x, t) =

{
1

2

[
1

x

]
− t

x

}
.

Skipping all the details, it can be proved that the iteration of (the finite version of) (3.2)
yields the identity (1.5) stated in the introduction, which holds for all x satisfying at least
the conditions (1.3)-(1.4).

4. Proof of Theorem 2, part (i)

The proof is rather long and intricate. We define the following functions, which are
building blocks of the function Ωs(x, t):

Us(x, t) =

1/2+ρ∞∫

1/2−ρ∞

eiπz
2xe2iπz{t}

zs(1− e2iπz)
dz, x > 0, t ∈ R, s ≥ 0 (4.1)

Vs(x, t) = ρxs−1/2
∞∑

k=1

e−iπ(k−{t})2/x
( 1

(k − {t})s −
1

ks

)
, x > 0, t ∈ R, s ≥ 0 (4.2)

Ŵs(x, t, u) =

∞∑

k=1

e−iπ(k−{t})2/x
(

1

(ρxu+ k − {t})s −
1

(k − {t})s
)
,

x > 0, t ∈ R, s ≥ 0, u ∈ R

and

Ws(x, t) = ρxs

∞∫

−∞

e−πxu2

Ŵs(x, t, u), x > 0, t ∈ R, s ≥ 0. (4.3)
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Due to the identity
∞∫

−∞
e−πx2udu = 1/

√
x (x > 0), it is easy to see that

Vs(x, t) +Ws(x, t) = ρxs

∞∫

−∞

e−πxu2
∞∑

k=1

e−iπ(k−{t})2/x
(

1

(ρxu + k − {t})s −
1

ks

)
du. (4.4)

4.1. Structure of the proof.

In this section, we present all the details of the proof of the theorem except the proofs
of four lemmas, which are postponed to Section 4.2. Throughout, we assume that x > 0
and explain in the end how to get the case x < 0. The method is borrowed to Mordell [13]
in the version presented in [1].

We introduce the parameters ξ = t− ⌊(n− 1
2
)x+ t⌋ and λ = ⌊(n− 1

2
)x+ t⌋ − ⌊t⌋. Note

that λ ≥ 0 and ξ + λ = {t} ∈ [0, 1).
Let us define the function

gs(z) =
1

zs
eiπz

2x+2iπzξ

which is holomorphic as a function of z in C \ (−∞, 0].

Lemma 1. For all n ≥ 1, s ≥ 0, x > 0 and t ∈ R, we have

Fs,n−1(x, t) =

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + 1)

1− e2iπz
dz −

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

1− e2iπz
dz.

We focus on the first integral in Lemma 1, i.e.

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + 1)

1− e2iπz
dz

We have

gs(z + 1)

1− e2iπz
=

λ−1∑

k=0

gs(z + 1)e2iπkz +
e2iπλz

1− e2iπz
gs(z + 1), (4.5)

where the assigned value of λ is in fact irrelevant. If λ = 0, the sum is empty, equal to 0
and (4.5) is a tautology; to avoid talking about empty sums, we assume from now on that
λ ≥ 1 but the results also hold when λ = 0. Now

Jk : =

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + 1)e2iπkzdz =

1/2+ρ∞∫

1/2−ρ∞

gs(z)e
2iπkzdz =

1/2+ρ∞∫

1/2−ρ∞

1

zs
eiπz

2x+2iπ(k+ξ)zdz

= ρe−iπ(ξ+k)2/x

∞∫

−∞

eiπx(ρu+
1
2
+ ξ+k

x
)2

(ρu+ 1
2
)s

du = ρ1−se−iπ(ξ+k)2/x

∞∫

−∞

e−πx(u+ ρ
2
+ρ ξ+k

x
)2

(u+ ρ
2
)s

du.
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We set v = ρ
2
+ ρ ξ+k

x
. We have that ξ + k < 0 for each integer k ∈ {0, . . . λ− 1}, so that

Jk = ρ1−se−iπ(ξ+k)2/x

v+∞∫

v−∞

e−πxu2

(u− ρ ξ+k
x
)s
du

= ρ1−se−iπ(ξ+k)2/x

∞∫

−∞

e−πxu2

(u− ρ ξ+k
x
)s
du (4.6)

where the second equality holds by Cauchy theorem because ρ ξ+k
x

is never in the closed
horizontal strip defined by the lines Im(z) = 0 and Im(z) = Im(v). (Indeed, we have
simultaneously Im(ρ ξ+k

x
) > Im(v) and Im(ρ ξ+k

x
) > 0.)

We now rewrite (4.6) as

Jk = ρe−iπ(ξ+k)2/x

(
− x

ξ + k

)s
∞∫

−∞

e−πxu2

du

+ ρ1−se−iπ(ξ+k)2/x

∞∫

−∞

e−πxu2

(
1

(u− ρ ξ+k
x
)s

− 1

(−ρ ξ+k
x
)s

)
du

= ρe−iπ(ξ+k)2/x xs−1/2

(−ξ − k)s
+ J̃k,

where J̃k is the integral on the second line. We observe here that

|J̃k| ≪
1

∣∣Im(ρ ξ+k
x
)
∣∣s+1 ·

∞∫

−∞

|u|e−πxu2

du ≪ xs

|ξ + k|s+1

where the implicit constant is absolute.
Integrating (4.5), we thus obtain

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + 1)

1− e2iπz
dz

= ρxs−1/2

λ−1∑

k=0

e−iπ(ξ+k)2/x

(−ξ − k)s
+

λ−1∑

k=0

J̃k +

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + 1)e2iπλz

1− e2iπz
dz. (4.7)

We will treat the three expressions in (4.7) separately.
The third term is simple because our choice of λ = ⌊(n− 1

2
)x+ t⌋ − ⌊t⌋ ensures that

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + 1)e2iπλz

1− e2iπz
dz =

1/2+ρ∞∫

1/2−ρ∞

eiπz
2xe2iπz{t}

zs(1− e2iπz)
dz
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is independent of n and is equal to the function Us(x, t) defined in (4.1).
To study the first term in (4.7), we change the summation index k to λ− k:

ρxs−1/2
λ−1∑

k=0

e−iπ(ξ+k)2/x

(−ξ − k)s
= ρxs−1/2

λ∑

k=1

e−iπ({t}−k)2/x

(k − {t})s

= ρxs−1/2e−iπ{t}2/xFs,λ

(
− 1

x
,
{t}
x

)

+ ρxs−1/2
λ∑

k=1

e−iπ(k−{t})2/x
( 1

(k − {t})s −
1

ks

)
.

The sum is a partial sum of the series Vs(x, t) defined in (4.2). If s = 0, then the summand
is equal to 0. If s > 0, we need the following lemma.

Lemma 2. For all N ≥ 0, s > 0, x > 0 and t ∈ R, we have

Vs(x, t) = ρxs−1/2
N∑

k=1

e−iπ(k−{t})2/x
(

1

(k − {t})s −
1

ks

)
+O

(
xs− 1

2

(N + 1− {t})s

)

where the implicit constant is absolute.

Therefore,

ρxs−1/2
λ−1∑

k=0

e−iπ(ξ+k)2/x

(−ξ − k)s

= ρxs−1/2e−iπ{t}2/xFs,λ

(
− 1

x
,
{t}
x

)
+ Vs(x, t) +O

(
xs− 1

2

(λ+ 1− {t})s

)
(4.8)

where the implicit constant depends on s.
To study the second term in (4.7), we do similar formal manipulations and obtain the

representation

λ−1∑

k=0

J̃k = ρxs

∞∫

−∞

e−πxu2

(
λ∑

k=1

e−iπ(k−{t})2/x
( 1

(ρxu+ k − {t})s −
1

(k − {t})s
))

du,

where the sum in the integrand is a partial sum of Ŵs(x, t, u). If s = 0, then the summand
is equal to 0. If s > 0, we need the following lemma.

Lemma 3. For all N ≥ 0, s > 0, x > 0 and t ∈ R, we have

Ŵs(x, t, u) =

N∑

k=1

e−iπ(k−{t})2/x
(

1

(ρxu + k − {t})s −
1

(k − {t})s
)
+O

( |ux|
(N + 1− {t})s

)
,

where the implicit constant is effective and depends at most on s.
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It follows that

λ−1∑

k=0

J̃k = Ws(x, t) +O


 xs+1

(λ+ 1− {t})s

∞∫

−∞

|u|e−πxu2

du




= Ws(x, t) +O
(

xs

(λ+ 1− {t})s
)

(4.9)

because
∞∫

−∞

|u|e−πxu2

du =
1

πx
.

We now use the estimates (4.5), (4.8), (4.9) in (4.7) together with Lemma 4. This gives
us

Fs,n−1(x, t) = ρxs− 1
2 e−iπ{t}2/xFs,λ(−1/x, t) + Us(x, t) + Vs(x, t) +Ws(x, t)

+

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

e2iπz − 1
dz +O

(
xs− 1

2

(λ+ 1− {t})s

)
+O

(
xs

(λ+ 1− {t})s
)
.

Since 0 < x < 1, the first error term absorbs the second one. We also want to replace
Fs,λ(−1/x, {t}/x) by Fs,⌊(n−1)x⌋(−1/x, {t}/x). This can be done at the cost of an error

xs− 1
2

λ∑

k=1+⌊(n−1)x⌋

1

ks
≤ 2xs− 1

2

(1 + ⌊(n− 1)x⌋)s

because ⌊(n− 1)x⌋ ≤ λ ≤ ⌊(n− 1)x⌋ + 2. Hence

Fs,n−1(x, t) = ρxs− 1
2 e−iπ{t}2/xFs,⌊(n−1)x⌋(−1/x, {t}/x) + Us(x, t) + Vs(x, t) +Ws(x, t)

+

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

e2iπz − 1
dz +O

(
xs−+

2

(λ+ 1− {t})s

)
+O

(
xs− 1

2

(1 + ⌊(n− 1)x⌋)s

)
.

It remains to deal with the second integral in Lemma 1. For this, we have to distinguish
between the case s = 1 and the case s 6= 1.

Lemma 4. If s ≥ 0, s 6= 1, for any n ≥ 1, x > 0, t ∈ R, we have
∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

g(z + n)

1− e2iπz
dz

∣∣∣∣∣∣∣
≪ min

( 1

ns
√
x
,

1

x
1−s
2

)

where the implicit constant depends on s.
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If s = 1, for any n ≥ 1, x > 0, t ∈ R, we have
∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

g(z + n)

1− e2iπz
dz

∣∣∣∣∣∣∣
≪ min

( 1

n
√
x
, 1 + | log(n

√
x)|
)

where the implicit constant is absolute.

In the case s 6= 1, the threshold n
√
x = 1 determine which bound is the best.

We now replace n by n+ 1 and set Is(x, t) = Us(x, t) + Vs(x, t) +Ws(x, t). We get

Fs,n(x, t) = ρxs− 1
2 e−iπ{t}2/xFs,⌊nx⌋(−1/x, {t}/x) + Is(x, t)

+O
(

xs− 1
2

(⌊(n + 1
2
)x+ t⌋ + 1− t)s

)
+O

(
xs− 1

2

(1 + ⌊nx⌋)s

)

+




O
(
min

(
1

(n+1)s
√
x
, 1

x
1−s
2

))
if s ≥ 0, s 6= 1

O
(
min

(
1

(n+1)
√
x
, 1 + | log((n + 1)

√
x)|
))

if s = 1.
(4.10)

For any x > 0, any n ≥ 0 and any t ∈ R, ⌊(n + 1
2
)x + t⌋ + 1 − t and ⌊nx⌋ + 1 are both

≥ ⌊nx+ t⌋ + 1− t so that we can simplify the error term in (4.10) to just

O
(

xs− 1
2

(⌊nx+ t⌋+ 1− t)s

)
+




O
(
min

(
1

(n+1)s
√
x
, 1

x
1−s
2

))
if s ≥ 0, s 6= 1

O
(
min

(
1

(n+1)
√
x
, 1 + | log((n+ 1)

√
x)|
))

if s = 1.

To deal with the case x < 0, we simply take the complex conjugate of both sides of (4.10)
and change x to −x and t to −t. We finally deduce from all this discussion that for any
x ∈ (−1, 1), x 6= 0, any t ∈ R, any s ≥ 0 and any n ≥ 0, we have

Fs,n(x, t) = ρ|x|s− 1
2 e−iπ{σ(x)t}2/xFs,⌊n|x|⌋

(
− 1

x
,
{σ(x)t}

x

)
+ Ωs(x, t)

+O
(

|x|s− 1
2

(⌊n|x|+ σ(x)t⌋ + 1− σ(x)t)s

)

+





O
(
min

(
1

(n+1)s
√

|x|
, 1

|x|
1−s
2

))
if s ≥ 0, s 6= 1

O
(
min

(
1

(n+1)
√

|x|
, 1 + | log((n+ 1)

√
|x|)|

))
if s = 1.

where Ωs(x, t) = Is(x, t) is x > 0 and Ωs(x, t) = Is(−x,−t) if x < 0. The implicit constants
are effective and depend at most on s. We obtain the expression for Is(x, t) given in the
introduction by means of the expression (4.4) for Vs(x, t) +Ws(x, t).

4.2. Proofs of the lemmas.
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4.2.1. Proof of Lemma 1.
We follow Mordell’s method as it is presented in the book [1]. We define

fs(z) =
1

e2iπz − 1

n−1∑

k=1

gs(z + k).

and we integrate it over the parallelogram ADCB (positively oriented) defined by A =
1
2
+ ρd, B = 1

2
− ρd, C = −1

2
− ρd, D = −1

2
+ ρd and d > 0 is a parameter. Clearly,

∫

ABCD

f(z)dz = 2iπRes(fs(z), z = 0) =

n−1∑

k=1

gs(k) = Fs,n−1(x, t).

If z is on CB = {−1
2
+ ρdu,−d ≤ u ≤ d} or AD = {u+ ρd,−1

2
≤ u ≤ 1

2
}, we have

Re(iπ(z + k)2 + 2iπ(z + k)t) = −πd2x±
√
2π · d((u+ k)x+ t) = −πd2x+O(d) (4.11)

where the implicit constant does not depend on u. Moreover, |e2iπz| = eσ
√
2πd with σ = 1

on CB and σ = −1 on AD, so that

lim
d→+∞

|e2iπz − 1| =
{
+∞, z ∈ CB

1, z ∈ AD.
(4.12)

It follows from (4.11) and (4.12) that

lim
d→+∞

∫

CB∪AD

fs(z)dz = 0.

Thus

Fs,n−1(x, t) =

∫

BA

fs(z)dz −
∫

CD

fs(z)dz + o(1),

where o(1) is for d → +∞. We observe that BA = CD + 1, so that

Fs,n−1(x, t) =

∫

CD

fs(z + 1)dz −
∫

CD

fs(z)dz + o(1)

=

∫

CD

(fs(z + 1)− fs(z)) dz + o(1)

=

∫

CD

gs(z + n)− gs(z + 1)

e2iπz − 1
dz + o(1).

We now let d → +∞ to get the lemma.

4.2.2. Proof of Lemma 2.
By definition of Vs(x, t), the point is to estimate the series

ρxs−1/2
∞∑

k=N+1

e−iπ(k−{t})2/x
(

1

(k − {t})s −
1

ks

)
,
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the modulus of which is obviously bounded by

xs−1/2

∞∑

k=N+1

∣∣∣∣
1

(k − {t})s −
1

ks

∣∣∣∣ .

We observe that, since {t} ∈ [0, 1) and N ≥ 0,

∞∑

k=N+1

∣∣∣∣
1

(k − {t})s −
1

ks

∣∣∣∣ =
∞∑

k=N+1

(
1

(k − {t})s −
1

ks

)

≤
∞∑

k=N+1

(
1

(k − {t})s −
1

(k + 1− {t})s
)

=
1

(N + 1− {t})s .

The lemma follows.

4.2.3. Proof of Lemma 3.
We want to estimate the modulus of

∞∑

k=N+1

e−iπ(k−{t})2/x
(

1

(ρxu + k − {t})s −
1

(k − {t})s
)
,

which is bounded above by
∞∑

k=1

∣∣∣∣
1

(ρxu + k +N − {t})s −
1

(k +N − {t})s
∣∣∣∣

This problem is similar to the one we dealt with in the proof of Lemma 2 but this is a bit
more difficult here because ρxu is not real. We set M = N − {t}. We observe that
∣∣∣∣

1

(ρxu+ k +M)s
− 1

(k +M)s

∣∣∣∣ =
∣∣∣∣

1

(ρxu+ k +M)s
·
(
1−

(
1 +

ρxu

k +M

)s)∣∣∣∣

≪





|xu|
|k +M + ρxu|s(k +M)

if |xu| ≤ k +M

|xu|s
|k +M + ρxu|s(k +M)s

if |xu| ≥ k +M

where the implicit constant depends on s only. Hence

∞∑

k=1

∣∣∣∣
1

(ρxu + k +M)s
− 1

(k +M)s

∣∣∣∣

≪
∞∑

k=1

|xu|≤k+M

|xu|
|k +M + ρxu|s(k +M)

+
∞∑

k=1

|xu|≥k+M

|xu|s
|k +M + ρxu|s(k +M)s

.
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We denote by S1 and S2 these two series and we write ρxu =
√
2
2
(v + iv) for some v ∈ R.

(Note that |xu| = |v|.)
If v ≥ 0, then

0 ≤ S1 ≤
∞∑

k=1

v

(k +M + v/
√
2)s(k +M)

≤
∞∑

k=1

v

(k +M)s+1
≪ v

(M + 1)s

for some implicit constant that depends only on s. Moreover,

0 ≤ S2 ≤
∑

1≤k≤v

vs

(k +M + v/
√
2)s(k +M)s

≪
∑

1≤k≤v

vs

(k +M)2s
≤ vs+1

(M + 1)2s

for some implicit constant that depends only on s. Adding the two upper bounds for S1

and S2, we get
∞∑

k=1

∣∣∣∣
1

(ρxu+ k +M)s
− 1

(k +M)s

∣∣∣∣≪
|xu|

(M + 1)s

which proves the lemma in this case.
Let us now consider the case v ≤ 0. If |v| ≤ k +M , then

|k +M + ρxu| ≥ (k +M − |v|/
√
2) ≥ (1− 1/

√
2)(k +M)

so that

0 ≤ S1 ≪
∞∑

k=1

|v|
(k +M)s+1

≪ |xu|
(M + 1)s

for some implicit constants that depend only on s. If |v| ≥ k+M , then |k+M + ρxu|2 ≥
w2/2 ≥ (k +M)2/2 so that again

0 ≤ S2 ≪
∑

1≤k≤|v|

|v|s
(k +M)2s

≪ |xu|s+1

(M + 1)2s

for some implicit constants that depend on s. We conclude exactly as above.

4.2.4. Proof of Lemma 4.
Again, we follow Mordell’s method in the book [1]. For any s ≥ 0 and z = −1

2
+ ρu ∈

−1
2
+ ρR, we have ∣∣∣∣

gs(z + n)

e2iπz − 1

∣∣∣∣ =
e−πxu2

|u+ ρ(n− 1
2
)|s ·

e−
√
2πuθ

|e2iπz − 1|
with θ = (n− 1

2
)x+ t + ξ. By definition of ξ, we have 0 ≤ θ ≤ 1 and it follows that

e−
√
2πuθ

|e2iπz − 1| = O(1)

for any u ∈ R. Moreover, for any u ∈ R and any n ≥ 1, we have

1

|u+ ρ(n− 1
2
)|s ≪ 1

|u+ ρn|s
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for some effective constant that depends only on s. Hence, for any s ≥ 0,∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

e2iπz − 1
dz

∣∣∣∣∣∣∣
≪

+∞∫

−∞

e−πxu2

|u+ ρn|sdu

where the implicit constant depends on s. Since ρ 6∈ R, we readily deduce that∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

e2iπz − 1
dz

∣∣∣∣∣∣∣
≤ c1(s)

ns

+∞∫

−∞

e−πxu2

du =
c1(s)

ns
√
x
.

for some effective constant c1(s).
To get the second upper bound, we need to distinguish the case s = 1 and the case

s 6= 1.

Case s ≥ 0, s 6= 1. We assume for the moment that 0 ≤ n
√
x ≤ 1 and explain below how

to remove this assumption. We set y = n
√

x/2; with v =
√
xu, we get

+∞∫

−∞

e−πxu2

|u+ ρn|sdu ≤
√
2x

s−1
2

+∞∫

−∞

e−πv2

(|v + y|+ y)s
dv

≤
√
2x

s−1
2

+∞∫

0

e−πv2

(v + y)s
dv +

√
2x

s−1
2

+∞∫

0

e−πv2

(|v − y|+ y)s
dv.

First,

+∞∫

0

e−πv2

(v + y)s
dv ≤

1∫

0

dv

(v + y)s
+

1

(1 + y)s

+∞∫

1

e−πv2dv

≤ (1 + y)1−s − y1−s

1− s
+

1

(1 + y)s
≤ c2(s)

for some effective constant c2(s) because 0 ≤ y ≤
√
2/2. Second,

+∞∫

0

e−πv2

(|v − y|+ y)s
dv ≤

y∫

0

dv

(2y − v)s
+

∫ y+1

y

dv

vs
+

1

(1 + y)s

+∞∫

1

e−πv2dv

≤ 21−s − 1

1− s
y1−s +

(1 + y)1−s − y1−s

1− s
+

1

(1 + y)s
≤ c3(s)

for some effective constant c3(s) because 0 ≤ y ≤
√
2/2. Hence,

+∞∫

−∞

e−πxu2

|u+ ρn|sdu ≤ c4(s)x
s−1
2 .
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with c4(s) =
√
2(c2(s) + c3(s)).

In summary, we have obtained so far:
∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

e2iπz − 1
dz

∣∣∣∣∣∣∣
≤
{

c1(s)
ns

√
x
for all n ≥ 1, x > 0

c4(s)x
s−1
2 if 0 ≤ n

√
x ≤ 1.

With c(s) = max(c1(s), c4(s)) and since 1/(ns
√
x) ≥ x

s−1
2 when 0 ≤ n

√
x ≤ 1, we deduce

that ∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

gs(z + n)

e2iπz − 1
dz

∣∣∣∣∣∣∣
≤ c(s)min

( 1

ns
√
x
,

1

x
1−s
2

)

for all n ≥ 1, x > 0. This completes the proof in this case.

Case s = 1. We set y = n
√

x/2 ≥ 0 for simplicity. We then have (with v =
√
xu)

+∞∫

−∞

e−πxu2

|u+ ρn|du ≪
+∞∫

0

e−πv2

v + y
dv +

0∫

−∞

e−πv2

|v + y|+ y
dv.

First,

0 ≤
+∞∫

0

e−πv2

v + y
dv ≤

1∫

0

dv

v + y
+

1

1 + y

+∞∫

1

e−πv2dv

≤ log(y + 1)− log(y) +

∞∫

0

e−πv2dv

= log(1 + n
√

x/2)− log(n
√

x/2) + 1.

Second,

0 ≤
0∫

−∞

e−πv2

y + |v + y|dv =

+∞∫

0

e−πv2

y + |v − y|dv

≤
y∫

0

dv

2y − v
+

y+1∫

y

dv

v
+

1

y + 1

∞∫

y+1

e−vdv

≤ log(2) + log(y + 1)− log(y) + 1

= log(1 + n
√

x/2)− log(n
√
x/2) + 1 + log(2).
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Collecting both estimates, we obtain
∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

g(z + n)

e2iπz − 1
dz

∣∣∣∣∣∣∣
≪ | log(n

√
x)|+ log(1 + n

√
x/2) + 1

for some absolute constant. If n
√
x ≥ 1, then log(1 + n

√
x/2) ≤ log(n

√
x) + 1 and if

0 < n
√
x ≤ 1, then log(1 + n

√
x/2) ≤ log(1 + 1/

√
2). Consequently, there exists an

absolute constant c such that∣∣∣∣∣∣∣

−1/2+ρ∞∫

−1/2−ρ∞

g(z + n)

e2iπz − 1
dz

∣∣∣∣∣∣∣
≤ c(| log(n

√
x)|+ 1)

for any n ≥ 1 and any x > 0.

5. Proof of Theorem 2, part (ii)

In this section, we prove that

• the function Ωs(x) is continuous on R \ {0} for any s ≥ 0.
• the function Ωs(x) is differentiable at any rational number p/q with p, q both odd,
for any s ≥ 0.

• the function Ωs(x)− ρ1−sΓ( 1−s
2

)

2π
1−s
2

|x| s−1
2 is bounded on R when 0 ≤ s < 1.

• the function Ω1(x)− log(1/
√
|x|) is bounded on R.

• the function Ωs(x) is differentiable on R \ {0} and continuous at x = 0 for any
s > 1.

Given the definition of Ωs(x) by means of the function Is(x) (see (1.2)), it is enough to
prove these facts for x ≥ 0.

5.1. Continuity and differentiability of Ωs(x) on (0,+∞).
Note that Vs(x, 0) = 0 and thus Is(x) = Us(x) +Ws(x) where

Us(x) =

1/2+ρ∞∫

1/2−ρ∞

eiπz
2x

zs(1− e2iπz)
dz

and

Ws(x) = ρxs

∞∫

−∞

e−πxu2

( ∞∑

k=1

e−iπk2/x

(
1

(ρxu+ k)s
− 1

ks

))
du.

It is clear that Us(x) defines a differentiable function on (0,+∞). The series

Ŵs(x, u, 0) =
∞∑

k=1

e−iπk2/x

(
1

(ρxu+ k)s
− 1

ks

)
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defines a continuous function of (u, x) on R×(0,+∞). Moreover, by Lemma 3 applied with

N = 0, we have |Ŵs(x, u, 0)| ≪ |ux|. This guarantees the continuity Ws(x) on [0,+∞),
and that Ws(x) = O(xs) on [0,+∞). Hence, Ωs(x) is continuous on (0,+∞).

To prove that Ωs(x) is differentiable at any rational number x = p/q with p, q both odd,
it remains to prove that this is the case of Ws(x). Integrating by parts, we get

Ws(x) = ρxs

∞∫

−∞

ue−πxu2

( ∞∑

k=1

e−iπk2/x 1

u
·
(

1

(ρxu+ k)s
− 1

ks

))
du

=
xs−1

2π

∞∫

−∞

e−πxu2

( ∞∑

k=1

e−iπk2/x d

du

(
1

u
·
( 1

(ρxu+ k)s
− 1

ks

)))
du,

where differentiation under the sum is allowed by uniform convergence of Ŵs(x, u, 0). We
observe that

d

du

(
1

u
·
( 1

(ρxu+ k)s
− 1

ks

))
=

−sρx

u(k + ρxu)s+1
− 1

u2(k + ρxu)s
+

1

u2ks

=
cs(ρx)

2

ks+2
+O

(
1

ks+3

)

for some constant cs > 0 independent of k and x. Therefore,

Ws(x) =
xs−1

2π

∞∫

−∞

e−πxu2

( ∞∑

k=1

e−iπk2/x

(
d

du

(
1

u
·
( 1

(ρxu + k)s
− 1

ks

))
− cs(ρx)

2

ks+2

))
du

+
c(s)ρ3xs+1

2π

∫ ∞

−∞
e−πxu2

du ·
∞∑

k=1

e−iπk2/x

ks+2
. (5.1)

On the one hand, the series
∞∑

k=1

e−iπk2/x

(
d

du

(
1

u
·
( 1

(ρxu+ k)s
− 1

ks

))
− cs(ρx)

2

ks+2

)

can be termwise differentiated with respect to x and it follows easily that the first term on
the right hand side of (5.1) is differentiable for any x > 0.

On the other hand, the second term on the right hand side of (5.1) is

csρ
3xs+1/2

2π
·

∞∑

k=1

e−iπk2/x

ks+2
. (5.2)

A result of Luther [12] ensures that the series
∑∞

k=1
eiπk2x

kξ
is differentiable at any rational

number x = p/q, p, q odd, for any fixed ξ > 3/2 (and this is no longer true when ξ ≤
3/2). Since s ≥ 0, this result is more than needed to complete the proof that Ws(x) is
differentiable at any rational number x = p/q, p, q odd.
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Moreover, when s > 1, the series (5.2) is everywhere differentiable (except at 0) by
uniform convergence, hence Ωs(x) is differentiable on (0,+∞).

5.2. Local behavior of Ωs(x) around x = 0.
It was proved above that Ws(x) = O(xs) on [0,+∞) and Us(x) is continuous on (0,+∞).

We will now establish that

• Us(x) is continuous at x = 0 for any s > 1.

• Us(x) =
ρ1−sΓ( 1−s

2
)

2π
1−s
2

x
s−1
2 +O(1) on (0,+∞) for any 0 ≤ s < 1.

• U1(x) = log(1/
√
x) +O(1) on (0,+∞).

The case s > 1 is easy because

lim
x→0+

Us(x) = Us(0) =

1/2+ρ∞∫

1/2−ρ∞

1

zs(1− e2iπz)
dz

is finite, by Lebesgue dominated convergence theorem. This implies that Ωs(x) is contin-
uous at x = 0 when s > 1.

We assume from now on that s ∈ [0, 1]. The change of variable z = 1
2
+ ρu gives

Us(x) = ρeiπx/4
∞∫

−∞

e−πxu2
eiρπxu

(1
2
+ ρu)s(1 + e2iρπu)

du.

If u ≤ 0, then since e2iρπu = ei
√
2πue−

√
2πu we have

∣∣∣∣∣g(u) :=
1

1 + e2iρπu
=

e−i
√
2πue

√
2πu

1 + e−i
√
2πue

√
2πu

∣∣∣∣∣≪ eπ
√
2u

and thus ∣∣∣∣∣
e−πxu2

eiρπxu

(1
2
+ ρu)s(1 + e2iρπu)

∣∣∣∣∣≪
e
√
2πu

|1
2
+ ρu|s .

Since the integral
0∫

−∞

e
√
2πu

|1
2
+ ρu|s du

is convergent, by Lebesgue dominated convergence theorem, we get that

lim
x→0+

1/2∫

1/2−ρ∞

eiπz
2x

zs(e2iπz − 1)
dz =

1/2∫

1/2−ρ∞

dz

zs(e2iπz − 1)
=: αs.
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If u ≥ 0, g(u) → 1 when u → +∞ and we cannot invoke Lebesgue’s theorem because
1/|1

2
+ ρu|s is not integrable over [0,+∞). However,

g(u)− 1 = − e2iπρu

1 + e2iπρu

so that |g(u)− 1| ≪ e−
√
2πu on [0,+∞), and Lebesgue’s theorem entails that

lim
x→0+

1/2+ρ∞∫

1/2

eiπz
2x

zs

(
1

e2iπz − 1
− 1

)
dz =

1/2+ρ∞∫

1/2

1

zs

(
1

e2iπz − 1
− 1

)
dz =: βs.

It thus remains to study the simpler integral

Ps(x) :=

1/2+ρ∞∫

1/2

eiπz
2x

zs
dz

because Us(x) = Ps(x) + αs + βs + o(1) as x → 0+. Setting z = 1
2
+ ρv/

√
w, we obtain

Ps(x) = ρ1−seiπx/4x
s−1
2

+∞∫

0

e−πv2 eiρπ
√
xv

(v + ρ
√
x
2
)s
dv.

We see here that as x → 0+, the integral is “close” to the integral
+∞∫
0

e−πv2dv/vs. The

latter is convergent if 0 ≤ s < 1 but divergent if s = 1 and we now have to distinguish
between both possibilities.

Case 0 ≤ s < 1. Observe that | exp(iρπ√xv)− 1| ≪ √
xv for v ∈ [0,+∞) and any x ≥ 0.

(this is true when
√
xv by using the Taylor polynomial, and it goes to zero when

√
xv

tends to +∞.) Moreover, |v + ρ
√
x/2| ≥ |v +

√
2x|. Hence,

∣∣∣∣∣∣

+∞∫

0

e−πv2 e
iρπ

√
xv − 1

(v + ρ
√
x

2
)s

dv

∣∣∣∣∣∣
≪

+∞∫

0

e−πv2
√
xv

(v +
√
2x)s

dv ≤
√
x

+∞∫

0

v1−se−πv2 = O(
√
x).

Therefore,

Ps(x) = ρ1−sx
s−1
2

+∞∫

0

e−πv2

(v + ρ
√
x/2)s

dv +O(x
s
2 ). (5.3)

We now prove that

+∞∫

0

e−πv2

(v + ρ
√
x/2)s

dv =

+∞∫

0

e−πv2

vs
dv +O(x

1−s
2 ). (5.4)
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Indeed, with X = ρ
√
x/2, we have

+∞∫

0

e−πv2
(

1

(v +X)s
− 1

vs

)
dv ≪ |X|

∫ ∞

|X|

e−v

vs+1
dv +

∫ |X|

0

e−v

vs
dv ≪ X1−s,

where we have used that
∣∣∣∣

1

(v +X)s
− 1

vs

∣∣∣∣≪
{

|X|
vs+1 if |X| ≤ v
1
vs

if |X| ≥ v.

Using (5.4) in (5.3) gives

Ps(x) =
ρ1−sΓ(1−s

2
)

2π
1−s
2

x
s−1
2 +O(1)

and finally

Us(x) =
ρ1−sΓ(1−s

2
)

2π
1−s
2

x
s−1
2 +O(1)

as x → 0+.

Case s = 1. We start in a similar way:
∣∣∣∣∣∣

+∞∫

0

e−πv2 e
iρπ

√
xv − 1

√
x
2
+ ρv

dv

∣∣∣∣∣∣
≪

+∞∫

0

e−πv2
√
xv

v +
√
2x

dv ≤
√
x

+∞∫

0

e−πv2 ≪
√
x.

Therefore

P1(x) = eiπx/4
+∞∫

0

e−πv2

v + ρ
√
x
2

dv +O(
√
x).

Integrating by parts, we get

+∞∫

0

e−πv2

v + ρ
√
x
2

dv =

[
log
(
v + ρ

√
x

2

)
e−πv2

]+∞

0

+ 2π

+∞∫

0

v log
(
v + ρ

√
x

2

)
e−πv2dv

= log(1/
√
x) +O(1).

Thus, P1(x) = log(1/
√
x) +O(1) when x → 0+ and the same estimate holds for U1(x) as

claimed in item 2.

6. Proof of Theorem 3

For simplicity, we set r(x) = exp(iπσ(x)/4). For any integer n ≥ 0, we define an integer
K(ℓ, n) as follows: K(−1, n) = n and

K(ℓ, n) = ⌊⌊· · · ⌊⌊n|x|⌋|T (x)|⌋ · · · ⌋|T ℓ(x)|⌋
for any integer ℓ ≥ 0. For instance, K(0, n) = ⌊n|x|⌋ and K(1, n) = ⌊⌊n|x|⌋|T (x)|⌋.
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We also set L(n) = min{j ≥ 0 : K(j, n) = 0}. This integer is well defined. Indeed, by
Proposition 1, it is obvious that

0 ≤ K(j, n) ≤ n|xT (x) · · ·T j(x)| ≤ n

qj+1 − qj

and the right hand side tends to 0 as j → +∞. By definition, we have K(L(n)−1, n) ≥ 1.
It is clear that limn L(n) = +∞ because otherwise if L(n) were bounded, we would have
limn K(L(n), n) = +∞ which is false.

6.1. Proof of Theorem 3, part (i).

We write Ωs(x) = c(s)|x| s−1
2 + ∆s(x) where c(s) =

ρ1−sΓ( 1−s
2

)

2π
1−s
2

and the function ∆s(x) is

bounded on [−1, 1] by Theorem 2(ii). Let us define Es(n, x) as the error term in (1.9),
which is such that

Es(n, x) = O
(
min

( 1

(n+ 1)s
√
|x|

,
1

|x| 1−s
2

))

For any irrational number x ∈ (−1, 1), Eq. (1.9) reads

Fs,n(x) = r(x)|x|s− 1
2Fs,⌊nx⌋

(
T (x)

)
+ c(s)|x| s−1

2 +∆s(x) + Es(n, x). (6.1)

Since T (x) is also an irrational number in (−1, 1), we can use (6.1) with x and n replaced
by T (x) and ⌊nx⌋ respectively, and iterate again the result. Formally, we find that for any
integer L ≥ 0,

Fs,n(x) = c(s)

L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
|xT (x) · · ·T j−1(x)|s− 1

2

|T j(x)| 1−s
2

+

L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 ∆s

(
T j(x)

)

+ r(x)r(T (x)) · · · r(TL(x))|xT (x) · · ·TL(x)|s− 1
2 Fs,K(L,n)

(
TL+1(x)

)

+
L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 Es(K(j − 1, n), T j(x)).

(6.2)
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With L = L(n), (6.2) becomes

Fs,n(x) = c(s)

L(n)∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
|xT (x) · · ·T j−1(x)|s− 1

2

|T j(x)| 1−s
2

+

L(n)∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 ∆s

(
T j(x)

)

+

L(n)∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 Es(K(j − 1, n), T j(x)).

(6.3)

because Fs,K(L(n),n)

(
TL(n)+1(x)

)
= 0, being an empty sum.

Under hypothesis (1.10) of Theorem 3(i), the series

c(s)

∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
|xT (x) · · ·T j−1(x)|s− 1

2

|T j(x)| 1−s
2

converge absolutely (recall that
∣∣r(x)r(T (x)) · · · r(T j−1(x))

∣∣ = 1) and this also forces the
absolute convergence of the series

∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 ∆s

(
T j(x)

)

because |T j(x)| ≤ 1 and ∆s is bounded on [−1, 1]. Hence, since L(n) → +∞ with n and
by (6.2), the convergence of Fs,n(x) will follow from the proof that

L(n)∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 Es(K(j − 1, n), T j(x))

tends to 0 as n → +∞. For this, we observe that (by Theorem 2)

lim
n→+∞

Es(K(j − 1, n), T j(x)) = 0,

|Es(K(j − 1, n), T j(x))| ≪s
1

|T j(x)| 1−s
2

(6.4)

and
∞∑

j=0

|xT (x) · · ·T j−1(x)|s− 1
2

|T j(x)| 1−s
2

< +∞

by hypothesis (1.10). Hence, Tannery’s theorem can be applied and it yields that

lim
n→+∞

L(n)∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 Es(K(j − 1, n), T j(x)) = 0
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as expected. We now let n → +∞ in (6.3) to get the identity

Fs(x) =
∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))|xT (x) · · ·T j−1(x)|s− 1
2 Ωs

(
T j(x)

)
.

6.2. Proof of Theorem 3, part (ii).
The proof is more complicated than when s < 1. We can write a bound similar to (6.4)

but the corresponding right hand side depends on n and we cannot invoke Tannery’s
theorem. Instead we use an ad hoc inelegant method.

For this, we first need more informations on K(j−1, n). By multiple applications of the
trivial inequality ⌊α⌋ ≥ α− 1, we get

K(j − 1, n) ≥ n|xT (x) · · ·T j−1(x)| −
j∑

k=1

|T k(x) · · ·T j−1(x)|

= n|xT (x) · · ·T j−1(x)| ·
(
1− 1

n

j∑

k=1

1

|xT (x) · · ·T k−1(x)|

)
. (6.5)

We define J = J(n) as the maximal integer such that JqJ ≤ n/4; it is clear that J → +∞
with n. We claim that

j∑

k=1

1

|xT (x) · · ·T k−1(x)| ≤
n

2

for all j ∈ {0, . . . , J}. Indeed, the sequence |xT (x) · · ·T k−1(x)| is non-increasing (because
|Tm(x)| ≤ 1) and thus

j∑

k=1

1

|xT (x) · · ·T k−1(x)| ≤
j

|xT (x) · · ·T j−1(x)| = j|qj + ejxjqj−1| ≤ 2jqj ≤ 2JqJ ≤ n

2

(Note that the sequence (jqj)j is increasing.) Therefore, (6.5) yields that

K(j − 1, n) ≥ n

2
|xT (x) · · ·T j−1(x)|

for any j ∈ {0, . . . , J}. Moreover, for those j, we also have K(j − 1, n) ≥ 1.

We write Ω1(x) = log(1/
√
|x|) + ∆1(x) where the function ∆1(x) is bounded on [−1, 1]

by Theorem 2(ii). Let us define E1(n, x) as the error term in (1.9) for s = 1, i.e.

E1(n, x) = O
(
min

( 1

(n + 1)
√
|x|

,
∣∣ log((n+ 1)

√
|x|)
∣∣+ 1

))

For any irrational number x ∈ (−1, 1), Eq. (1.9) reads

F1,n(x) = r(x)
√

|x|F1,⌊nx⌋
(
T (x)

)
− 1

2
log |x|+∆1(x) + E1(n, x). (6.6)
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Since T (x) is also an irrational number in (−1, 1), we can use (6.6) with x and n replaced
by T (x) and ⌊nx⌋ respectively, and iterate again the result. Formally, we find that for any
integer L ≥ 0,

F1,n(x) = −1

2

L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)| log |T j(x)|

+
L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|∆1

(
T j(x)

)

+ r(x)r(T (x)) · · · r(TL(x))
√

|xT (x) · · ·TL(x)|F1,K(L,n)

(
TL+1(x)

)

+
L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|E1(K(j − 1, n), T j(x)).

(6.7)

From now on, the letter L will stand exclusively for L(n) (defined above), in which case (6.7)
becomes

F1,n(x) = −1

2

L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)| log |T j(x)|

+
L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|∆1

(
T j(x)

)

+

L∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|E1(K(j − 1, n), T j(x)).

(6.8)

because F1,K(L,n)

(
TL+1(x)

)
= 0, being an empty sum.

Under hypothesis (1.13) of Theorem 3(ii), the series

−1

2

∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)| log |T j(x)|,

converges absolutely and hypothesis (1.12) implies the absolute convergence

∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|,

which in turn forces the absolute convergence of

∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|∆1

(
T j(x)

)
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by boundedness of ∆1 on [−1, 1]. Hence, since L(n) → +∞ with n and by (6.7), the
convergence of F1,n(x) will follow from the proof that

R1(n, x) :=

L(n)∑

j=0

√
|xT (x) · · ·T j−1(x)|E1(K(j − 1, n), T j(x))

tends to 0 as n → +∞.
With H = min(L, J), we split R1(n, x) into three parts:

R1(n, x) =

(
H−1∑

j=0

+
L−1∑

j=H

)
√

|xT (x) · · ·T j−1(x)|E1(K(j − 1, n), T j(x))

+
√
|xT (x) · · ·TL−1(x)|E1(K(L− 1, n), TL(x)).

The sum from H to L−1 might be empty if H = L, which would simplify the proof below.
We assume that it is not empty, i.e that H = J ≤ L− 1. For the two sums from j = 0 to
j = L− 1, we use the fact that (for any n ≥ 0, any x > 0)

E1(n, x) = O
(

1

(n + 1)
√
|x|

)
.

First

H−1∑

j=0

√
|xT (x) · · ·T j−1(x)|E1(K(j − 1, n), T j(x))

≪
J−1∑

j=0

√
|xT (x) · · ·T j−1(x)|

(K(j − 1, n) + 1)
√

|T j(x)|
≤ 2

n

J−1∑

j=0

√
|xT (x) · · ·T j−1(x)|

(|xT (x) · · ·T j−1(x)|+ 1)
√
|T j(x)|

≤ 2

n

J−1∑

j=0

1√
|xT (x) · · ·T j(x)|

≤ 2J

n
√
|xT (x) · · ·T J−1(x)|

≤ 4J
√
qJ

n
≤ 4

√
JqJ
n

≤ 2√
n

by definition of J .
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Second, for the sum from j = H to j = L − 1, we observe that K(j − 1, n) ≥ 1
|T j(x)|

because 1 ≤ K(j, n) = ⌊K(j − 1, n)|T j(x)|⌋ for such j by definition of L. Hence,

L−1∑

j=H

√
|xT (x) · · ·T j−1(x)|E1(K(j − 1, n), T j(x))

≪
L−1∑

j=H

√
|xT (x) · · ·T j−1(x)|

(K(j − 1, n) + 1)
√
|T j(x)|

≤
L−1∑

j=H

√
|xT (x) · · ·T j−1(x)| · |T j(x)|√

|T j(x)|

≤
L−1∑

j=H

√
|xT (x) · · ·T j(x)|. (6.9)

The series with term
√

|xT (x) · · ·T j(x)| is convergent (by hypothesis), thus the expression
in (6.9) tends to 0 as n tends to infinity because H tends to +∞ with n. It remains to
consider the case for j = L. Here, we use the fact that (for any n ≥ 0, any x > 0)

E1(n, x) ≪
∣∣ log((n+ 1)

√
|x|)
∣∣ + 1.

(In this case, n and x are replaced by K(L− 1, n) and TL(x) respectively.) Hence,

√
|xT (x) · · ·TL−1(x)|E(K(L− 1, n), TL(x))

≪
√
|xT (x) · · ·TL−1(x)| ·

(
1 +

∣∣ log
(
(K(L− 1, n) + 1)

√
|TL(x)

)∣∣
)

(6.10)

The propertiesK(L−1, n) ≥ 1 and ⌊K(L−1, n)|TL(x)|⌋ = 0 together imply that |TL(x)| ≤
K(L− 1, n)|TL(x)| < 1, so that

∣∣ log
(
(K(L− 1, n) + 1)

√
|TL(x)|

)∣∣ ≤
∣∣ log

(
K(L− 1, n)

√
|TL(x)|

)∣∣+ log(2)

≤ 3

2

∣∣ log |TL(x)|
∣∣+ log(2).

Therefore, (6.10) becomes

√
|xT (x) · · ·TL−1(x)|E(K(L− 1, n), TL(x))

≪
√

|xT (x) · · ·TL−1(x)| ·
(
1 +

∣∣ log |TL(x)|
∣∣). (6.11)

Hypothesis (1.12) and (1.13) in Theorem 3(ii) now ensure that the right hand side of (6.11)
tends to 0 when L(n) → +∞. This concludes the proof that R1(n, x) tends to 0 when
n → +∞.

We now let n → +∞ in (6.8) to get the identity

F1(x) =
∞∑

j=0

r(x)r(T (x)) · · · r(T j−1(x))
√

|xT (x) · · ·T j−1(x)|Ω1

(
T j(x)

)
.



37

7. Proof of Theorem 5

7.1. Proof of Theorem 5, part (i).
We introduce a second dynamical system more adapted to our study (see the work of

Schweiger [15, 16]). Let us partition the interval (0, 1] into the double-indexed sequence of
intervals

B(+1, k) =

(
1

2k
,

1

2k − 1

]
and B(−1, k) =

(
1

2k + 1
,
1

2k

]
.

Consider the map U : [0, 1] → [0, 1] by U(0) = 0 and if x 6= 0

U(x) = e ·
(
1

x
− 2k

)
when x ∈ B(e, k).

It is trivial to check that for every irrational x ∈ [0, 1], |U(x)| = |T (x)|. So we will prove
Theorem 5 using this transformation U instead of T .

A key property is that U is an ergodic transformation with a σ-finite invariant measure
µ with infinite mass (due to the parabolic point 1 for the mapping U), whose density
relatively to the Lebesgue measure is given by

dµ(x) =
1

x+ 1
+

1

1− x
.

Further we need to study in details the orbit of a typical point x under the action of the
dynamical system ([0, 1], U). For this, we introduce the points xp :=

p−1
p

= 1− 1
p
, for every

integer p ≥ 1. Observe that for every p ≥ 2,

U(xp) = xp−1. (7.1)

Lemma 5. Let p ≥ 2 be an integer, and let y be such that

xp−1 ≤ y ≤ xp.

Then for every 0 ≤ m ≤ p− 2, one has

xp−1−m ≤Um(y) < xp−m (7.2)

p−m− 2

p− 1
≤yU(y) · · ·Um(y) ≤ p−m− 1

p
.

Proof. Equation (7.2) follows from (7.1) and the monotonicity of U on the interval [1/2, 1).
Further,

UPk+p1
k(x) · · ·UPk+p1

k
+m(x) ≤ xpxp−1 · · ·xp−m

≤ p− 1

p

p− 2

p− 1
· · · p−m− 1

p−m
=

16

p
=

p−m− 1

p
.

The same holds for the lower bound. �

Recall that σ(x) stands for the sign of x ∈ R.
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Lemma 6. For every irrational x ∈ [0, 1], there are two possibilities: either there exists an
integer jx such that for every j ≥ jx, U

j(x) ≤ x2, or there exist two sequences of integers
(p1k)k≥1 and (p2k)k≥1 satisfying the following: for every k ≥ 4, p1k ≥ 1, p2k ≥ 1, and if we set

Pk+1 =
∑k

ℓ=1 p
1
k + p2k, then:

• for every Pk ≤ j ≤ Pk + p1k − 1, U j(x) ≤ x2 = 1/2,
• for every Pk + p1k ≤ j ≤ Pk + p1k + pk2 − 1 = Pk+1 − 1, x2 < U j+1(x) < U j(x), and
the σ(T j(x)) are all equal (i.e. the T j(x) have all the same sign).

• p2k is the unique integer greater than 1 such that

xpk2+1 ≤ UPk+p1
k(x) ≤ xpk2+2

Proof. Assume that we are not in the first case. Hence U j(x) > x2 for infinitely many
integers j.

Consider the first integer j such that U j(x) > x2, and call this integer p11. Observe that
it is possible that p11 = 0, if x itself is greater than x2. On the interval [x2, 1], as already
stated in Lemma 5, the map U is strictly decreasing and concave, and has a derivative
strictly less than one when x < 1. Consequently, as long as U j(x) stays in the interval
[x2, 1), the sequence U j(x) is strictly decreasing. Moreover, using (7.2), there is a first

integer p21 such that Up11+p21(x) > x2 and Up11+p21(x) ≤ x2.
Iterating this scheme allows to find the sequences (p1k) and (p2k). The fact that the T

j(x)
have all the same sign follows from the fact that T (±[2/3, 1]) ⊂ ±[1/2, 1).

The third item follows from the definition of p2k and Lemma 5. �

The rest of this section is devoted to the proof of part (i) of Theorem 5.
We denote MΩ a positive constant such that |Ω(x)| ≤ MΩ for every x. We fix an

irrational number x ∈ (0, 1), and for convenience we will denote uj := |U j(x)|. If there
exists jx such that uj ≤ x16 for every j ≥ jx, then the series converges. Thus, we assume
that uj ≥ x16 for infinitely many integers j. Adapting Lemma 6, we immediately get:

Lemma 7. For every irrational x ∈ [0, 1], there are two possibilities: either there exists an
integer jx such that for every j ≥ jx, U

j(x) ≤ x16, or there exist two sequences of integers
(p1k)k≥1 and (p2k)k≥1 satisfying the following: for every k ≥ 4, p1k ≥ 1, p2k ≥ 14, and if we

set Pk+1 =
∑k

ℓ=1 p
1
k + p2k, then:

• for every Pk ≤ j ≤ Pk + p1k − 1, U j(x) ≤ x16,
• for every Pk + p1k ≤ j ≤ Pk+1 − 1, x16 < U j+1(x) < U j(x).
• p2k is the unique integer greater than 1 such that

xpk2+15 ≤ UPk+p1
k(x) ≤ xpk2+16

The difference with Lemma 6 is that we impose p1k ≥ 14 for every k. This follows from
the fact that the sequence (Um(y)) is slowly decreasing when y ∈ [x2, x16].

It is clear that the convergence of the sequence (1.21) does not depend on the first terms.
Hence, without loss of generality, we assume that n1 ≥ 4. We now bound by above the
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partial sums

ΣJ =
J∑

j=1

e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)
|xT (x) · · ·T j−1(x)|αΩ

(
T j(x)

)
.

Step 1: We separate the cases where 1 ≤ j ≤ p11 − 1 and n1 ≤ j ≤ p11 + p21 − 1 = P1 − 1.

• If j ≤ p11 − 1, then we have

p11−1∑

j=1

∣∣∣∣∣e
iπ
4

j−1∑
ℓ=0

σ(T ℓx)
|xT (x) · · ·T j−1(x)|αΩ

(
T j(x)

)
∣∣∣∣∣ ≤ MΩ

x16 − x
p11
16

1− x16
≤ MΩ

x16

1− x16
.

Hence

|Σp11−1| ≤ MΩ
x16

1− x16
.

• We now consider p11 ≤ j ≤ p11 + p21 − 1 = P1 − 1. We observe that

ΣP1−1 − Σp11−1 = (u1u2 · · ·up11−1)
αe

iπ
4

p11−1∑
ℓ=0

σ(T ℓx)

×
p21−1∑

j=0

e
iπ
4

p11+j∑

ℓ=p1
1

σ(T ℓx)

(up11
up11+1 · · ·un1+j)

αΩ(T p11+j+1(x)). (7.3)

By the second item of Lemma 6, all the σ(T p11+j+1(x)) are equal. We assume, without loss
of generality, that they are equal to 1. Hence, we need to take care of the sum

p21−1∑

j=0

ei
π
4
j(up11

up11+1 · · ·up11+j)
αΩ(T p11+j+1(x)). (7.4)

Now, we use that the T p11+j+1(x) are all close to 1. Since Ω is differentiable at 1, we have
for every j ∈ {0, ..., p21 − 1}

Ω(T p11+j+1(x)) = Ω(1) + Ω′(1)(T p11+j+1(x)− 1) + o(T p11+j+1(x)− 1).

Using this equation, we split the sum (7.4) into two parts:

(i) The sum

S1 =

p21−1∑

j=0

ei
π
4
j(up11

up11+1 · · ·up11+j)
αΩ(1)

can be rewritten (since ei
π
4
8 = 1)

Ω(1)

⌊
p21−1

8

⌋

∑

j=0

(up11
up11+1 · · ·up11+8j−1)

α

(
7∑

m=0

(up11+8jup11+8j+1 · · ·up11+8j+m)
αei

π
4
m

)
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+Ω(1)

p21−1∑

j=8

⌊
p2
1
−1

8

⌋
ei

π
4
j(up11

up11+1 · · ·up11+j)
α.

The second sum contains at most 7 terms all bounded in absolute value by 1, hence it is
less than 7Ω(1).

We now consider the sum between parenthesis above. Fix j ∈ {0, ...,
⌊
p21−1

8

⌋
}, and let us

write for every m = 0, ..., 7,

up11+8jup11+8j+1 · · ·up11+8j+m = 1− εjm.

Obviously from their definition, the εjm are small positive quantities, and they are increasing
with m. We thus have

7∑

m=0

(up11+8jup11+8j+1 · · ·up11+8j+m)
αei

π
4
m =

7∑

m=0

(1− εjm)
αei

π
4
m

=
7∑

m=0

(1− αεjm + o(εjm))e
iπ
4
m

= −
7∑

m=0

(αεjm + o(εjm))e
iπ
4
m.

In absolute value, this sum is less than 16εj7 (since the εjm are small and increasing). In
addition, since the terms up11+8j+m belong to the interval (x16, 1), one also has 8εj7 ≤ Cε0j =

C(1− up11+8j). Finally, we get

|S1| ≤ CΩ(1)


1 +

⌊
p21−1

8

⌋

∑

j=0

(up11
up11+1 · · ·up11+8j−1)

α(1− up11+8j)


 . (7.5)

Using Lemma 5 (in particular that up11
≤ xp12+16), we can bound by above this sum by

|S1| ≤ CΩ(1)


1 +

⌊
p21−1

8

⌋

∑

j=0

(
p21 − 8j

p21

)α
1

p21 − 8j


 ≤ CΩ(1)


1 +

⌊
p21−1

8

⌋

∑

j=0

(p21 − 8j)α−1

(p21)
α




= CΩ(1)

for some constant C independent of the problem.
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(ii) The second sum

S2 =

p21−1∑

j=0

ei
π
4
j(up11

up11+1 · · ·up11+j)
αΩ′(1)

(
T p11+j+1(x)− 1) + o(T p11+j+1(x)− 1)

)

is bounded in absolute value, by using again Lemma 5 to find explicit upper bounds for
the terms up11

up11+1 · · ·up11+j and |T p11+j+1(x)− 1|. We find, for some constant C depending
on Ω only,

|S2| ≤ C

p21−1∑

j=0

(
p21 − j

p21

)α
1

p21 − j
≤ C

p21−1∑

j=0

(p21 − j)α−1

(p21)
α

= C.

Hence, going back to (7.3), we obtain

|ΣP1−1 − Σp11−1| ≤ C(u1u2 · · ·up11−1)
α

for some constant depending on Ω. The same holds if the T j(x) are all close to -1 and not
to 1.

Step 2: We separate the cases where 0 ≤ j ≤ P1+p12−1 and P1+p12 ≤ j ≤ P1+p12+p22−1 =
P2 − 1.

• If 0 ≤ j ≤ p12 − 1: all the terms uP1+j satisfy |uP1+j | ≤ x16. We deduce that

|ΣP1+p12−1 − ΣP1−1| ≤ MΩ(u1u2 · · ·uP1)
α

p12−1∑

j=0

(x16)
j ≤ MΩ

(u1u2 · · ·uP1)
α

1− x16

.

• We now consider p22 ≤ j ≤ P2 − 1. The same procedure as above (in Step 1) yields
∣∣∣ΣP2−1 − ΣP1+p12−1

∣∣∣ ≤ C(u1u2 · · ·uP1+p12−1)
α.

Step k: By an immediate recurrence, one obtains that for every k ≥ 1, we have the
following properties:

τ 1k :=
∣∣∣ΣPk+p1

k+1−1 − ΣPk

∣∣∣ ≤ MΩ
(u1u2 · · ·uPk

)α

1− x16
,

τ 2k :=
∣∣∣ΣPk+1−1 − ΣPk+p1

k+1−1

∣∣∣ ≤ C(u1u2 · · ·uPk+p1
k+1−1)

α.

We can now conclude regarding the convergence of the series (1.21). Obviously by
construction p2k ≥ 14, and the first series (

∑
k≥1 τ

1
k ) converges, since the ratio between two

consecutive terms
(u1u2···uPk+1

)α

(u1u2···uPk
)α

is less than (x16)
14α < 1.

For the second series (
∑

k≥1 τ
2
k ), the same argument applies (the ratio between two

consecutive terms
(u1u2···uPk+1+p1

k+2
−1

)α

(u1u2···uPk+p1
k+1

−1
)α

is less than (x16)
14α < 1).
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7.2. Proof of Theorem 5, parts (ii) and (iii).
We consider the two sums (1.24) and (1.22). Using Theorem 5(i), the only problem may

come from the terms with |T j(x)| ≤ 1/2, since one can write log 1
|x| = (log 1

|x|)1[0,1/2)(x) +

Ω(x), where Ω is bounded and differentiable at 1 and −1. The same holds for 1
|x|β . Thus

we will focus on the convergence of the series
∞∑

j=0

|xT (x) · · ·T j−1(x)|α log
(

1

T j(x)

)
1[0,1/2)(T

j(x))

and
∞∑

j=0

|xT (x) · · ·T j−1(x)|α
|T j(x)|β 1[0,1/2)(T

j(x)).

We will prove the absolute convergence because the complex terms do not play any role
any more in this convergence. The next lemma is key in the proof.

Lemma 8. If |T j(x)| ≤ 1/2, then there exists an integer n such that

|xT (x) · · ·T j−1(x)| ≤ 1

Qn−1

and |T j(x)| ≥ 1

An

.

Moreover, with two different j’s such that |T j(x)| ≤ 1/2 correspond two different n’s.

Proof. This follows from a fine analysis of the even and regular continued fractions. If x is
an irrational number whose RCF expansion x = [A1, A2, ....]R contains only even numbers,
then one knows that the ECF expansion of x is x = [(1, A1), (1, A2), ....]E , so T

j(x) = Gj(x)
for every j ≥ 1, and the lemma follows from (2.2) and the definition of G.

We assume that this is not the case. Let us start with two observations on the shape of
the mapping T :

(R1) 1/2 < |y = Tm−1(x)| < 1. When 1/2 < y < 1, then T (y) is given by T (y) = 2− 1
y
.

Similarly, when −1 < y < −1/2, T (y) = −2 − 1
y
. Subsequently, if |Tm−1(x)| ≥ 1/2 for

some m, then, recalling the algorithm (2.6) producing the ECF from the RCF, the m-term
in the ECF expansion (2.5) of x = [(e1, a1), (e2, a2), ...]E will be (−1, 2).

(R2) y = Tm−1(x) ∈ (−1/2, 1/2). If T (y) ∈ (−1/2, 0), then
⌊
1
y

⌋
is necessarily even. In

this case, the m-th term in the expansion of x is (1, An) for some integer n.

If T (y) ∈ (−1/2, 0), then
⌊
1
y

⌋
is odd and

⌊
1

T (y)

⌋
is necessarily equal to 1. This simply

follows from the form of the mapping T . Again using the algorithm (2.6), this amounts to
change the RCF terms

An +
1

1 +
1

An+2 + ...

into

An +
−1

(An+2 + 1) + ...
,
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in order to get the ECF expansion of x, whose m-th term is necessarily (−1, An+2 + 1) for
some integer n.

We treat the case where 0 < T j(x) < 1/2, the other case is symmetric. There are two
possibilities:

• If T j−1(x) > 1/2: Necessarily, we are at a step j where, in the ECF expansion x =
[(e1, a1), (e2, a2), ...]E of x, there was a sequence of (−1, 2) for some time before the index
j. Then, this sequence of (−1, 2) stops at the (j+1)-th iterate, since for y = T j(x), T (y) is
not defined by T (y) = 2− 1

y
any more. By our remark (R1) above, this can be translated

to the ECF and RCF expansions as follows: there is an integer n such that

x =
e1

a1 +
e2

a2 +
e3

. . . +
−1

2 +
−1

aj + T j+1(x)

=
1

A1 +
1

A2 +
1

. . . +
1

An +Gn(x)

where aj = An + 1. In particular, this implies that
pj
qj

=
Pn

Qn
. In this case, we know by

Propositions 1 and 2 (as in Section 8) that qj − qj−1 ≥ Qn−1. This yields

|xT (x) · · ·T j−1(x)| ≤ 1

qj+1 − qj
≤ 1

Qn−1

.

Moreover, we have 1
T j(x)

− aj ∈ (−1, 1), with aj = An + 1 ≥ 2. We deduce that T j(x) ≥
1

aj−1
= 1

An
.

• If −1/2 < T j−1(x) < 1/2: then one can apply our remark (R2) above: for some integer
n, one has

x =
e1

a1 +
e2

a2 +
e3

. . . +
ej̃+m

aj̃+m +
ej̃+m

aj̃+m + T j̃+m+1(x)

=
1

A1 +
1

A2 +
1

. . . +
1

An +Gn(x)

with either (ej̃+m, aj̃+m) = (1, An) or (ej̃+m, aj̃+m) = (−1, An + 1) for some integer n. In

both case we have
pj
qj

=
Pn

Qn
for some integer n, and the same estimates as above hold true.

It is obvious from the construction that the integers n corresponding to different integers
j are pairwise distinct. �

Theorem 5(ii)-(iii) follows immediately. Indeed, from Lemma 8, we have

∞∑

j=0

|xT (x) · · ·T j−1(x)|α log
(

1

T j(x)

)
1[0,1/2)(T

j(x)) ≤
+∞∑

n=1

log(An+1)

Qα
n

≤
+∞∑

n=1

log(Qn+1)

Qα
n
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and
∞∑

j=0

|xT (x) · · ·T j−1(x)|α
|T j(x)|β 1[0,1/2)(T

j(x)) ≤
+∞∑

n=1

Aβ
n+1

Qα
n

≤
+∞∑

n=1

Qβ
n+1

Qα+β
n

,

where we have used that An+1 ≤ Qn+1/Qn.

8. Proof of Theorem 4

8.1. Proof of Theorem 4, parts (i), (ii) and (iii).
Let α > 0, β ≥ 0 be two positive real numbers. Let us rewrite the general term of the

sum (1.10) as

|xT (x) · · ·T j−1(x)|α
|T j(x)|β =

|xT (x) · · ·T j−1(x)|α+β

|xT (x) · · ·T j(x)|β .

Using (2.7), one sees that

|xT (x) · · ·T j(x)| ≥ 1

2qj+1

and |xT (x) · · ·T j−1(x)| ≤ 1

qj − qj−1

.

Hence
∞∑

j=1

|xT (x) · · ·T j−1(x)|α
|T j(x)|β ≤ 2β

∞∑

j=1

qβj+1

(qj − qj−1)α+β
.

We now use Proposition 1:

• If qj = Qn for some integer n and qj−1 = Qn−1, then qj+1 is either equal to Qn+1 or to
Qn+1 + Qn. One also has qj − qj−1 = Qn − Qn−1 = (An − 1)Qn−1 + Qn−2. Since in this
configuration, An is necessarily even, we deduce that qj − qj−1 ≥ 1

2
AnQn−1 ≥ 1

4
Qn. Hence,

qβj+1

(qj − qj−1)α+β
≤ 22α+3β Q

β
n+1

Qα+β
n

.

• If qj = Qn for some integer n and qj−1 = Qn − Qn−1. Again, qj+1 is either equal to
Qn+1 or to Qn+1 +Qn. Hence,

qβj+1

(qj − qj−1)α+β
≤ 2β

Qβ
n+1

Qα+β
n−1

.

• If qj = mQn + Qn−1 for some integers n ≥ 1 and 1 ≤ m ≤ An+1 − 1, then necessarily
qj−qj−1 ≥ Qn, with equality when m ≥ 2 (i.e. when qj−1 = (m−1)Qn+Qn−1). Moreover,
qj+1 is equal to (m+ 1)Qn +Qn−1 ≤ 2(m+ 1)Qn. Hence,

qβj+1

(qj − qj−1)α+β
≤ (2(m+ 1)Qn)

β

Qα+β
n

= 2β
(m+ 1)β

Qα
n

.
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We deduce from this analysis that for some constant C depending on α and β only,
∞∑

j=1

|xT (x) · · ·T j−1(x)|α
|T j(x)|β ≤ C

∞∑

n=1

Qβ
n+1

Qα+β
n

+ C
∞∑

n=1

Qβ
n+2

Qα+β
n

+ C

∞∑

n=1

An+1−1∑

m=1

(m+ 1)β

Qα
n

.

The first sum is clearly bounded by the second sum. For the third one, one sees that

∞∑

n=1

An+1−1∑

m=1

(m+ 1)β

Qα
n

≤ C
+∞∑

n=1

Aβ+1
n+1

Qα
n

≤ C
∞∑

n=1

Qβ+1
n+1

Qα+β+1
n

,

where we used that An+1 ≤ Qn+1

Qn
. Finally,

∞∑

j=1

|xT (x) · · ·T j−1(x)|α
|T j(x)|β ≤ C

∞∑

n=1

Qβ
n+2

Qα+β
n

+ C
∞∑

n=1

Qβ+1
n+1

Qα+β+1
n

.

Let us call S1 and S2 the two sums in the right-hand side above. Let βα =

√
α2 + 4− 1

2
.

• β < βα. We rewrite the general term of S2 as

Qβ+1
n+1

Qα+β+1
n

=

(
Qn+1

Q
1+ α

β+1
n

)β+1

.

Then, observe that

Qβ
n+2

Qα+β
n

=

(
Qn+2

Q
1+ α

β+1

n+1

)β (
Qn+1

Q
1+ α

β+1
n

)β(1+ α
β+1

)

Qδ
n,

where

δ = β

(
1 +

α

β + 1

)2

− (α + β) =
α(β2 + αβ − 1)

(β + 1)2
.

Because of our choice of β, δ < 0. Hence, the convergence of the series S1 implies the
convergence of S2 (because the series

∑
n≥1Q

δ
n converges as soon as δ < 0 for all real

numbers x).
One can also deduce that the series S1 converges for all x whose irrationality exponent

µ(x) is smaller than 2 + α
β+1

, which implies the convergence of the series

∞∑

n=1

Qn+2

Q
1+ α

β+1

n+1

.

• β > βα. In this case, the same argument yields that the convergence of the series S2

implies the convergence of S1.
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In terms of Diophantine properties, S2 converges for all real numbers whose irrationality

exponent µ(x) is smaller than 1+
√

1 + α
β
. Indeed, for such an x, one has

∑
n≥1

Qn+1

Q
µ(x)−1
n

< ∞.

Writing

Qβ
n+2

Qα+β
n

=

(
Qn+2

(Qn+1)µ(x)−1

)β
(

Qn+1

Q
µ(x)−1
n

)β(µ(x)−1)

Qβ(µ(x)−1)2−α−β
n ,

we deduce that the series S2 converges, since our choice for µ(x) implies β(µ(x) − 1)2 −
α− β < 0.

• β = βα. The convergence of the two series are close to be equivalent, but they are not,
depending on the values of α (and βα). It is simpler to indicate that for all real numbers

x with irrationality exponent less than 1 +
√

1 + α
βα

(which coincides with 2 + α
βα+1

), the

two series S1 and S2 converge.

8.2. Proof of Theorem 4, part (iv).
The analysis is very similar to the one we performed in the last section, so we mention

the main steps of the proof. We write for an irrational x ∈ (0, 1)

|xT (x) · · ·T j−1(x)|α · log
( 1

T j(x)

)
= |xT (x) · · ·T j−1(x)|α · log

(
xT (x)...T j−1(x)

)

− |xT (x) · · ·T j−1(x)|α · log
(
xT (x)...T j−1(x)T j(x)

)
. (8.1)

The first term in the right hand-side in dominated in absolute value by the second term,
so we focus on the convergence of this term. Equation (2.7) yields

|xT (x) · · ·T j−1(x)|α ·
∣∣ log

(
xT (x)...T j−1(x)T j(x)

)∣∣≪ log(qj+1)

(qj − qj−1)α
.

The same distinction in three cases as in the previous section yields that
∞∑

j=1

|xT (x) · · ·T j−1(x)|α ·
∣∣ log

(
xT (x) · · ·T j(x)

)∣∣≪
∞∑

n=1

log(Qn+1)

Qα
n

+

∞∑

n=1

log(Qn+2)

Qα
n

+
∞∑

n=1

An+1−1∑

m=1

log(m+ 1)

Qα
n

.

The second term dominates the first one. Then we use that
An+1−1∑

m=1

log(m+ 1) ≪ An+1 log(An+1)

to prove that
∞∑

j=1

|xT (x) · · ·T j−1(x)|α ·
∣∣ log

(
xT (x) · · ·T j(x)

)∣∣≪
∞∑

n=2

log(Qn+1)

Qα
n−1

+
∞∑

n=1

An+1 log(An+1)

Qα
n

.

Using that An+1 ≤ Qn+1

Qn
, we finally get (1.18).
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