Text Recognition in Videos using a Recurrent Connectionist Approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Text Recognition in Videos using a Recurrent Connectionist Approach

Khaoula Elagouni
  • Fonction : Auteur
  • PersonId : 914801
Franck Mamalet
Pascale Sébillot

Résumé

Most OCR (Optical Character Recognition) systems developed to recognize texts embedded in multimedia documents segment the text into characters before recognizing them. In this paper, we propose a novel approach able to avoid any explicit character segmentation. Using a multi-scale scanning scheme, texts extracted from videos are first represented by sequences of learnt features. Obtained representations are then used to feed a connectionist recurrent model specifically designed to take into account dependencies between successive learnt features and to recognize texts. The proposed video OCR evaluated on a database of TV news videos achieves very high recognition rates. Experiments also demonstrate that, for our recognition task, learnt feature representations perform better than hand-crafted features.
Fichier principal
Vignette du fichier
ICANN.pdf (217.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00753906 , version 1 (19-11-2012)

Identifiants

Citer

Khaoula Elagouni, Christophe Garcia, Franck Mamalet, Pascale Sébillot. Text Recognition in Videos using a Recurrent Connectionist Approach. 22th International Conference on Artificial Neural Networks, ICANN, Sep 2012, Lausanne, Switzerland. pp.172-179, ⟨10.1007/978-3-642-33266-1_22⟩. ⟨hal-00753906⟩
891 Consultations
773 Téléchargements

Altmetric

Partager

More