Boosting Kernel Combination for multi-class image categorization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Boosting Kernel Combination for multi-class image categorization

Résumé

In this paper, we propose a novel algorithm to design multi- class kernel functions based on an iterative combination of weak kernels in a scheme inspired from boosting framework. The method proposed in this article aims at building a new feature where the centroid for each class are optimally lo- cated. We evaluate our method for image categorization by considering a state-of-the-art image database and by compar- ing our results with reference methods. We show that on the Oxford Flower databases our approach achieves better results than previous state-of-the-art methods.
Fichier principal
Vignette du fichier
lechervy12icip.pdf (362.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00753156 , version 1 (17-11-2012)

Identifiants

  • HAL Id : hal-00753156 , version 1

Citer

Alexis Lechervy, Philippe-Henri Gosselin, Frédéric Precioso. Boosting Kernel Combination for multi-class image categorization. 2012 IEEE International Conference on Image Processing (ICIP), Sep 2012, Orlando, United States. pp.4. ⟨hal-00753156⟩
432 Consultations
289 Téléchargements

Partager

More