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ABSTRACT

In this paper, we propose a novel algorithm to design multi-

class kernel functions based on an iterative combination of

weak kernels in a scheme inspired from boosting framework.

The method proposed in this article aims at building a new

feature where the centroid for each class are optimally lo-

cated. We evaluate our method for image categorization by

considering a state-of-the-art image database and by compar-

ing our results with reference methods. We show that on the

Oxford Flower databases our approach achieves better results

than previous state-of-the-art methods.

Index Terms— Image databases, Machine learning algo-

rithms, Boosting

1. INTRODUCTION

Recent machine learning techniques have demonstrated their

power for classifying data in challenging contexts (large

databases, very small training sets or on the opposite, huge

training sets, dealing with user interactions...). However,

emerging problems are pushing these methods away their

limits with several hundred of image categories to be clas-

sified, with millions of images both in training and testing

datasets.

Different frameworks have been proposed to address im-

age categorization task. One can consider kernel frameworks

based on SVM [1] or based on boosting [2]. In this article, we

propose a new method combining these two frameworks: we

design a scheme inspired from boosting framework to build

kernel functions which are then integrated in a SVM.

Different techniques have been proposed, in the litera-

ture, to linearly combine several (minor) kernels leading to

improved performances of the hence designed major kernel.

Among these methods, the last decade has seen an important

increase of interest of methods which try to learn the com-

bination of kernels in a so-called Multiple Kernel Learning

framework (MKL) [3]. In the the classic MKL framework,

methods aim at jointly optimizing the weight of each kernel
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in the combination. However, the two currently most power-

ful MKL methods are not following this exact scheme: Gehler

and Nowozin [4] proposed a boosting-oriented scheme opti-

mizing alternately the combination weights and the combined

kernels which reached the best performance on classic MKL

evaluation databases. But more recently, Orabona et al. [5]

achieve the best current performances by proposing to change

the MKL problem formulation.

In the proposed method, we are inline with the works done

by Crammer et al. [6], Kawanabe et al. [7] and Gehler et

al.[4]. We propose to design a linear combination of base ker-

nels using the boosting paradigm, similarly to [6]. However,

we focus on a strategy for multi-class learning using many

different features. We also take inspiration from [7] taking ad-

vantage of kernel centered alignment to compute the combi-

nation weights but they compute all the combination weights

at once while we do it iteratively. We consider at each itera-

tion their combination weight computation approach in order

to determine the weight in the combination of the major ker-

nel at previous iteration and the weak kernel to be added.

In section 2, we introduce the context of linearly combine

kernels inside a boosting framework. In section 3 we develop

in details our method. Section 4 presents experiments on im-

age categorization in referenced database for the MKL con-

text and show that our method outperforms the current state-

of-the-art approaches. Then we conclude and present of some

perspectives of this work.

2. LINEAR KERNEL COMBINATION USING

BOOSTING

2.1. Linear combination

The aim of this paper is to design a kernel function K(., .) as

a linear combination of base kernel functions kt(., .):

KT (xi,xj) =

T
∑

t=1

βtkt(xi,xj),

where xi is the features for image i.



This combination is performed to match a target kernel

function K⋆, whose values K⋆ are sampled on a given train-

ing set. In the following, we mix functions (f , K,...) and

their values on the training set (written in bold f , K...). The

combination is evaluated thanks to Kernel Target Alignment,

a popular criterion for kernel optimization. More specifically,

we use the centered alignment which allows kernel matrices

with unbalanced classes [7]:

AH(KT ,K
⋆) =

〈HKTH,HK⋆H〉

‖HKTH‖‖HK⋆H‖
,

with H = I− 1

n11
⊤ and 1 the vector full of ones.

2.2. Target kernel

The target kernel matrix K⋆ is defined from the n×nc′ matrix

L of labels on the training set (1 for positive image and -1

otherwise):

Li,c = label of image i for category c.

To overcome the dependence between classes, we propose

to consider the matrix Q of the QR decomposition of HL.

We select only the columns where the diagonal element of R

is not null. Thus Q is a n×nc full rank matrix, assuming that

all classes are independent. Our target Gram matrix is then

defined as K⋆ = QQ⊤. The specific form of this target ma-

trix is further exploited to find the optimal boosting increment

(i.e. the kernel evolution direction towards the next best ma-

jor kernel alignment). Furthermore, it can be shown that the

orthonormality of Q ensures the convergence of the learning

algorithm.

2.3. One rank base kernels and weak functions

We consider base kernel functions defined by kt(xi,xj) =
ft(xi)ft(xj), with ft(.) a function built by a weak learner. In

order to build the combination, we work on a finite matrix on a

given training set X, which leads to the following expression::

Kt =

t
∑

s=1

βsfsf
⊤

s = FtF
⊤

t ,

with ft = ft(X) and Ft = β1/2 ⊙ (f1 f2 . . . ft) where ⊙ is

the Hadamard product.

The values of weak functions ft(.) will be referred as su-

pervised or semantic features built by the method.

We select base kernels iteratively in a boosting scheme:

Kt = Kt−1 + βtftf
⊤

t ⇔ Ft = (Ft−1 β
1

2

t ft),

where (βt, ft) is the solution of the following problem:

(βt, ft) = arg max
β>0,f

AH(FF⊤ + βff⊤,QQ⊤). (1)

2.4. Weak targets

In order to train weak learners, we need to choose a target

function f⋆, which leads to the best alignment AH(FF⊤,QQ⊤).
In a two-classes context, it can be defined by f⋆(xi) = 1 if

sample i is in the first class, −1 otherwise. However, in the

case of multi-class context, this is not obvious, since we need

to spread each class data around equidistant centers [8].

We propose to consider the centers of (orthonormalized)

classes in the space induced by the current combination kernel

Kt = FtF
⊤
t :

Gt = Q⊤Ft.

The rows of Gt are the coordinates of each class center.

The idea of our method is to move each center to make it

equidistant from others. In [8] section 10.5, Vapnik states that

the largest possible margin is achieved when the nc vertices of

(nc − 1)-dimensional unitary simplex are centered onto the

origin. A sufficient mean to achieve this properties is to build

c orthonormal vertices, whose projection on a (nc−1) dimen-

sion space is the unitary simplex. In our case, that means that

an ideal target set of class centers G⋆
t is such that G⋆

t (G
⋆
t )

⊤

is proportional to the identity matrix Idc,c.

In next section we present an algorithm to compute these

target functions.

3. ALGORITHM

3.1. Initialization

The first weak function target f⋆
0

is defined as the first column

of Q. It is equivalent to set the first target centroids g⋆ as one

of the column of identity matrix. Then, we build a set of weak

function candidates using least mean squares (LMS). The first

weak function f0 is the candidate that maximizes the centered

alignment AH(ff⊤,QQ⊤).

3.2. Iterations

For each iteration t, we need to define a weak function target

f⋆t . The first t < nc target function are defined as columns

of matrix Q, f⋆t = qt. Then target functions for t ≥ nc is

defined as ft
⋆ = Qg⋆

t , with g⋆ a vector based on the smallest

eigenvalue λ and corresponding eigenvector v of GtG
⊤
t :

g⋆ =

√

1− λ

√

nc

‖HFtF
⊤
t H‖

v.

Then, we build a set of weak function candidates using

least mean squares (LMS), and the weak function ft is the

one that maximize Eq. (1).

For a better generalization, we first evaluate the weak can-

didate function built using low dimension features. In the case



MKL 87.2±2.7

NLP-β 87.9±1.8

NLP-νMC 87.8±2.1

NLP-B 87.3±2.7

MKL-prod 85.5 ± 1.2

MKL-avg (l∞) 84.9 ± 1.9

CF (l∞) / AKM 86.7 ± 2.7

CG-Boost 84.8 ± 2.2

MKL (SILP or Simple) or OBSCURE 85.2 ± 1.5

LP-β 85.5 ± 3.0

LP-B 85.4 ± 2.4

MKL-FDA (lp) 86.7 ± 1.2

Proposed 88.3 ± 1.1

Fig. 3: Classification rate on Oxford Flower 17

where no one of them increases enough the centered align-

ment, we evaluate weak function candidates built using fea-

tures with a larger dimension. This process is repeated until a

relevant one is found.

3.3. Final supervised features

Final supervised features FT on the training set is then the

concatenation of weighted weak functions values, FT = (β
1

2

t ft)t.
Let us notice that we can compute these supervised fea-

ture for any image, as we learned functions ft(.) that can be

evaluated outside the training set.

4. EXPERIMENTS

In this paper, we test our method on Oxford Flower17 and

Flower102 databases [9]. In the following experiments, we

use the same χ2 distance matrices D provided by the authors

[9]. For each matrix, we compute a new matrix X = e−µfD,

where µf is set to be 1 over the mean value of the χ2 distances

over all the training images.

Then we reduce the dimension of X by applying a PCA.

Our method then produce supervised features thanks to

the training set and these supervised features are further used

in a Gaussian Kernel SVM for each category.

Performances are measured with the same protocol as

in [9].

4.1. Oxford Flower 17

Oxford Flower 17 is a database of 17 categories with 80

flower images per category. The dataset is made of 3 prede-

fined random splits and each split consists in 3 sets: training

(40 images per class), validation (20 images per class) and

test (20 images per class). There are both large intra-category

variance owing to appearance variations and small inter-

category variance owing to partial appearance similarities

between categories.

In our experiments, we use 7 χ2-distance matrix provided

by the authors of this base 1 to describe different properties

of the flowers: colour, shape and texture histogram, HSV

histogram, SIFT inside the foreground region, SIFT on the

foreground region boundary and Histogram of Oriented Gra-

dients.

We run our method with different settings. We build our

classifier with features of different granularity. Initially, the

coarsest features (i.e in our case the feature with low dimen-

sions) are tried first. If the boosting algorithm fails to find a

good kernel from these, then we consider more refined fea-

tures with more information and detail. In practice, after

PCA we keep features of 16, 32, 64, 128, 256, 512 and 1024

dimensions and we start our selection with low dimensions

features. The results of this strategy are given in Table 2.

This table gives the classification rate for several T and sev-

eral max dimensions of feature. For example in case T=300

and dimfeature = 128 , we have selected up to 300 weak func-

tions and the features have 16, 32, 64 or 128 dimensions. The

method may stop by itself before reaching the desired number

of iterations because no available feature increases enough the

alignment. We can see that the average precision gets higher

as the dimension of initial features and the number of itera-

tions both increase.

We reported results from the literature [10] in Table 3.

Our method outperforms these reference results, and gets

lower standard deviation. This standard deviation is com-

puted thanks to the 3 data split predefined by the authors of

the dataset.

4.2. Oxford Flower 102

Oxford Flower 102 database contains 8189 images divided

into 102 flower classes (cf. Fig.1). Each class consists in

about 40 up to 250 images and the distribution of the images

between classes is none uniform. The dataset is divided into

three sets: training, validation and test. The training and vali-

dation sets consist in 10 images per class (1030 images) while

the test set has 6129 images with at least 20 images per class.

Like [9] we use four different χ2 distance matrices pro-

vided 2 to describe different properties of the flowers: HSV

histogram, SIFT inside the foreground region, SIFT on the

foreground region boundary and Histogram of Oriented Gra-

dients.

In Fig.4, we compare our method with the methods from

the literature and mainly to the reference method of the state-

of-the-art [10]. As one can see, our method provides a signif-

icant gain.

1http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
2http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html



Blackberry lily Bolero deep blue Bougainvillea Bromelia Camellia Columbine Orange dahlia Gazania

Fig. 1: Examples of categories for flower 102

16 32 64 128 256 512 1024

50 78.24 ± 2.70 78.24 ± 2.70 78.24 ± 2.70 78.24 ± 2.70 78.24 ± 2.70 78.24 ± 2.70 78.24 ± 2.70

100 83.73 ± 2.45 83.73 ± 2.45 83.73 ± 2.45 83.73 ± 2.45 83.73 ± 2.45 83.73 ± 2.45 83.73 ± 2.45

200 84.12 ± 1.35 84.8 ± 1.80 85.78 ± 2.67 85.88 ± 2.56 85.88 ± 2.56 85.88 ± 2.56 85.88 ± 2.56

300 - 84.9 ± 1.67 86.27 ± 2.25 85.88 ± 2.33 86.47 ± 2.22 86.47 ± 2.22 86.47 ± 2.22

400 - - 86.67 ± 2.47 86.27 ± 2.64 87.55 ± 1.80 87.55 ± 1.80 87.55 ± 1.80

500 - - - 86.47 ± 2.84 87.94 ± 1.47 88.33 ± 1.11 88.33 ± 1.11

Fig. 2: Classification rate on Flower 17 for several T and several dimensions of feature

MKL [9] 72.8

MKL [10] 73.4

NLP-β 75.7

NLP-νMC 73.4

NLP-B 73.60

MKL-prod 73.8

MKL-avg 73.4

Proposed 77.8

Fig. 4: Classification rate on Oxford Flower 102

5. CONCLUSION

In this paper, we propose a novel algorithm to design multi-

class kernel functions based on an iterative combination of

weak kernels in a scheme inspired from boosting frame-

work. The proposed method aims at building supervised

features where the centroid for each class are optimally lo-

cated. Experiments have been carried on state-of-the-art

image databases Flower17 and Flower102. We compare our

results with the reference methods, and showed that better

results can be achieved using our method. We are currently

working on a generalization of our method to collaborative

learning context. Indeed, the same algorithm can target a

kernel matrix for collaborative learning by considering that

initial annotation matrix stores all previous retrieval runs.
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