GPU-accelerated generation of correctly-rounded elementary functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

GPU-accelerated generation of correctly-rounded elementary functions

Résumé

The IEEE 754-2008 standard recommends the correct rounding of some elementary functions. This requires to solve the Table Maker's Dilemma which implies a huge amount of CPU computation time. We consider in this paper accelerating such computations, namely Lefe'vre algorithm on Graphics Processing Units (GPUs) which are massively parallel architectures with a partial SIMD execution (Single Instruction Multiple Data). We first propose an analysis of the Lefèvre hard-to-round argument search using the concept of continued fractions. We then propose a new parallel search algorithm much more efficient on GPU thanks to its more regular control flow. We also present an efficient hybrid CPU-GPU deployment of the generation of the polynomial approximations required in Lefèvre algorithm. In the end, we manage to obtain overall speedups up to 53.4x on one GPU over a sequential CPU execution, and up to 7.1x over a multi-core CPU, which enable a much faster solving of the Table Maker's Dilemma for the double precision format.
Fichier principal
Vignette du fichier
article.pdf (284.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00751446 , version 1 (13-11-2012)
hal-00751446 , version 2 (05-06-2013)

Identifiants

Citer

Pierre Fortin, Mourad Gouicem, Stef Graillat. GPU-accelerated generation of correctly-rounded elementary functions. 2013. ⟨hal-00751446v1⟩
416 Consultations
404 Téléchargements

Altmetric

Partager

More