
HAL Id: hal-00751446
https://hal.science/hal-00751446v1

Preprint submitted on 13 Nov 2012 (v1), last revised 5 Jun 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU-accelerated generation of correctly-rounded
elementary functions

Pierre Fortin, Mourad Gouicem, Stef Graillat

To cite this version:
Pierre Fortin, Mourad Gouicem, Stef Graillat. GPU-accelerated generation of correctly-rounded ele-
mentary functions. 2013. �hal-00751446v1�

https://hal.science/hal-00751446v1
https://hal.archives-ouvertes.fr

1

Correctly rounding elementary functions
on GPU

Pierre Fortin, Mourad Gouicem and Stef Graillat

F

Abstract—The IEEE 754-2008 standard recommends the correct

rounding of elementary functions. This requires to solve the Table

Maker’s Dilemma which implies a huge amount of CPU computation

time. We consider in this paper accelerating such computations, namely

Lefèvre algorithm, on Graphics Processing Units (GPU) which are

massively parallel architectures with a partial SIMD execution (Single

Instruction Multiple Data).

We first propose an analysis of the Lefèvre hard-to-round argument

search using the concept of continued fractions. We then propose a

new parallel search algorithm much more efficient on GPU thanks to its

more regular control flow. We also present an efficient hybrid CPU-GPU

deployment of the generation of polynomial approximations required in

Lefèvre algorithm. In the end, we manage to obtain overall speedups up

to 53.4x on one GPU over a sequential CPU execution, and up to 7.1x

over a multi-core CPU.

Index Terms—correct rounding, Table Maker’s Dilemma, Lefèvre al-

gorithm, GPU computing, SIMD, control flow divergence, floating-point

arithmetic, elementary function

1 INTRODUCTION

1.1 Problem

The IEEE 754 standard [1] specifies since 1985 the im-
plementation of floating-point operations in order to
have portable and predictable numerical software. In
its latest revision in 2008 [1], it defines formats (single,
double and quadruple precision), rounding modes (to
the nearest and toward 0, −∞ and +∞) and operations
(+,−,×, /,√) returning correctly rounded values.

Furthermore, it recommends correct rounding of some
elementary functions, like log, exp and the trigonometric
functions. As these functions are transcendental, one
cannot evaluate them exactly but have to approximate
them. However, it is hard to decide which precision is
required to guarantee a correctly rounded result – the
rounded evaluation of the approximation must be equal
to the rounded evaluation of the function with infinite
precision. This problem is known as the Table Maker’s
Dilemma or TMD [2, chap. 12].

1.2 State of the art

A first strategy to solve the TMD introduced by Ziv [3]
was to compute an approximation y of a function value

Authors are with UPMC Univ Paris 06 and CNRS UMR 7606, LIP6
Address : 4 place Jussieu, F-75252, Paris cedex 05, France
Contact: mourad.gouicem@lip6.fr

[y − ǫ, y + ǫ]

Midpoints

Floating-points

Figure 1: Example of undetermined correct rounding for
rounding to nearest, where the rounding breakpoints are
the midpoints of floating-point numbers.

f(x) with a bounded error of ǫ (containing mathematical
and round-off errors). As rounding modes are mono-
tonic, if y−ǫ and y+ǫ rounds to the same floating-point,
f(x) does too : otherwise the correct rounding cannot
be determined (see Fig. 1). Hence having a correctly
rounded result of f(x) can be done by refining the
approximation y until y − ǫ and y + ǫ rounds to the
same floating-point. For the most common elementary
functions, such an ǫ exists according to Baker’s theorem
when the function is evaluated at non-zero floating-
points.

However, the computation of many approximations
can be avoided by precomputing an ǫ guaranteeing
correct-rounding of the evaluation of f at any floating-
point number argument. This has to be done by find-
ing the hardest-to-round arguments of the function, that
is to say the arguments requiring the most important
precision to be correctly rounded when the function is
evaluated at. These hardest-to-round cases can be found
invoking Ziv algorithm at every floating-point number
in the domain of the function, but this is prohibitive.

The first improvement was proposed by Lefèvre in [4],
[5]. The main idea of his algorithm is to split the
domain into several sub-domains, to “isolate” hard-to-
round cases, and then to use Ziv algorithm to find the
hardest-to-round cases among them. This isolation is ef-
ficiently performed using local affine approximations of
the targeted function. Stehlé, Lefèvre and Zimmermann
extended this method in 2003 [6], [7] (SLZ algorithm) for
higher degree approximations, using the Coppersmith
method for finding small roots of univariate modular

2

equation1.

1.3 Motivations and contributions

Even if they are asymptotically and practically faster
than exhaustive search, Lefèvre and SLZ algorithms re-
main very computationally intensive –around five years
of CPU time for the exponential function over double
precision arguments with Lefèvre algorithm for example.
As both algorithms split the domain of the targeted func-
tion into sub-domains and search for hard-to-round cases
(HR-cases) in them independently, these computations
are embarrassingly parallel.

The purpose of this work is therefore to accelerate
these computations on Graphics Processing Unit (GPU),
which theoretically performs one order of magnitude
better than CPU thanks to its massively parallel archi-
tecture. We focus here on Lefèvre algorithm, which is
efficient for double precision rounding and which offers
fine-grained parallelism, making it suitable for GPU.

In [8], we discussed implementation techniques to
deploy Lefèvre algorithm efficiently on GPU. The major
bottleneck of its deployment was the control flow diver-
gence which is penalizing considering the partial SIMD
execution (Single Instruction Multiple Data) of the GPU.
Hardware [9] and software [10], [11] general solutions
have been proposed recently to tackle this problem on
GPU. However we here focus on algorithmic solutions.

In this paper, we thus redesign Lefèvre algorithm
using the concept of continued fraction and propose a
much more regular algorithm for searching HR-cases.
More precisely, we strongly reduce two major sources
of divergence of Lefèvre algorithm: loop divergence and
branch divergence. We also propose an efficient hybrid
CPU-GPU deployment of the generation of polynomial
approximations using fixed multi-precision operations
on GPU. These contributions enable on GPU an overall
speedup of 53.4x over Lefèvre’s original sequential CPU
implementation, and of 7.1x over six CPU cores (with
two-way SMT).

1.4 Outline

We will introduce some notions on GPU architecture and
divergence in Sect. 2. We will then present in Sect. 3
some mathematical background on the Table Maker’s
Dilemma and properties of the set {a · x mod 1 | x < n}
with a fixed. In Sect. 4, we will detail the HR-case
search step of Lefèvre algorithm and propose a new
and more regular algorithm. We will also present their
deployment on GPU. In Sect. 5 we will detail how to
efficiently compute polynomial approximations on GPU.
And finally, we will present performance results in Sect.
6 and conclude in Sect. 7.

1. http://www.loria.fr/equipes/spaces/slz.en.html

Streaming Multiprocessor 13

. . .

Streaming Multiprocessor 0

Instruction Unit

Cuda Core 0

Registers

Cuda Core 1

Registers

· · · Cuda Core 31

Registers

Shared memory/ L1 cache

Device memory

Figure 2: NVIDIA Fermi C2070 architecture.

2 GPU COMPUTING

Graphics Processing Units (GPUs) are many-core devices
originally intended to graphics computations. However
since mid-2000s they became increasingly used for high
performance scientific computing since their massively
parallel architecture theoretically performs one order of
magnitude better than CPU, and thanks to the emer-
gence of general-purpose languages adapted to GPU like
CUDA [12] and OpenCL [13]. In this section we briefly
describe the architecture of the latest NVIDIA GPU spe-
cialized in scientific computing (Fermi architecture), the
GPU programming in CUDA and divergence problems
arising from the partial SIMD execution on GPU. We use
the CUDA nomenclature.

2.1 GPU architecture and CUDA programming

From a hardware point of view, a GPU is composed
of several Streaming Multiprocessors denoted SM (14 on
Fermi C2070), each being a SIMD unit (Single Instruction
Multiple Data). A SM is composed of multiple execution
units or CUDA cores (32 on Fermi) sharing the same
pipeline and many registers (32768 on Fermi) as illus-
trated in Fig. 2. GPU memory is organized in two levels
(see Fig. 2):

• device memory, which can be accessed by any SM on
the device;

• shared memory, which is local to each SM.

Moreover, the device memory accesses are cached on the
Fermi architecture.

From a software point of view, the developer writes
in CUDA scalar code for one function designed to be

3

executed on the device, namely a kernel. At runtime,
many threads are created by blocks and bundled into a grid
to run the same kernel concurrently on the device. Each
block is assigned to a SM. Within each block, threads are
executed by groups of 32 called warps. The ratio of the
number of resident warps (number of warps a SM can
process at the same time) to the maximum number of
resident warps per SM is named the occupancy. In order
to increase the occupancy the number of blocks and their
size have to be tuned.

2.2 Divergence

As threads are executed by warps on the GPU SIMD
units, applications should have regular patterns for
memory access and control flow.

Regularity of memory accesses patterns is important
to achieve high memory throughput. As the threads
within a warp load data from memory concurrently, the
developer has to coalesce device memory accesses and
avoid bank conflict in shared memory [14, chap. 6]. This
can be done by reorganizing data storage.

Regularity of control flow is important to achieve
high instruction throughput, and is obtained when all
the threads within a warp execute the same instruction
concurrently [14, chap. 9]. In fact, when the threads of a
same warp diverge (i.e. they follow different execution
paths), the different execution paths are serialized. For
an if statement, the then and else branches are serially
executed. For a loop, any thread exiting the loop has to
wait until all the threads of its warp exit the loop. In the
following we will distinguish branch divergence due to if
statements and loop divergence due to loop statements.

The impact of branch divergence can be statically
estimated by counting the number of instructions issued
within the scope of the if statement. Let consider the
then branch issues nthen instructions and the else branch
issues nelse instructions.

• If the warp does not diverge, either nthen or nelse

instructions are issued depending on the evaluation
of the condition.

• If the warp diverges, nthen + nelse instructions are
issued.

Contrary to branch divergence, measuring the impact
of loop divergence requires a dedicated indicator and
profiling. We introduced in [8] the mean deviation to
the maximum of a warp. This indicator is similar to the
standard deviation, which is the mean deviation to the
mean value. However, as the number of loop iterations
issued for a warp is equal to the maximum number of
loop iterations issued by any thread within the warp, it is
relevant to consider the mean deviation to the maximum
value. This gives the mean number of loop iterations a
thread remains idle within its warp.

More formally, we denote ℓi the number of loop
iterations of the thread i and we number the threads
within a warp from 1 to n, n being the number of threads
by warp (n = 32 on Fermi). If ℓ = {ℓi, i ∈ [1, n]}, the

Mean Deviation to the Maximum (MDM) of a warp is
defined as

MDM(ℓ) = max(ℓ)−mean(ℓ). (1)

We can normalize the mean deviation to the maximum
by max(ℓ) to compute the average percentage of loop
iterations for which a thread remains idle within its
warp. Hence, the Normalized Mean Deviation to the
Maximum (NMDM) is

NMDM(ℓ) = 1− mean(ℓ)

max(ℓ)
. (2)

3 MATHEMATICAL PRELIMINARIES

In this section we give some definitions to intro-
duce more formally the Table Maker’s Dilemma as
in [15]. We also recall some known properties and their
proofs on the distribution of the elements of the set
{a · x mod 1 | x < n} with a fixed [5], [16]–[19].

3.1 The Table Maker’s Dilemma

Before defining the Table Maker’s Dilemma, we intro-
duce some notations and definitions similar to those
of [15]. We denote {X} or X mod 1 the fractional part
of X . We write X cmod 1 the centered modulo, which
is the real Y such that X−Y ∈ Z and Y ∈]−1/2, 1/2] (Y
equals X−⌊X⌋ or X−⌈X⌉ depending on which has the
lowest absolute value). We also write #pE the number
of precision-p floating-point numbers in the set E.

Definition 1. The mantissa m(x) and exponent e(x) of a
non-zero real number x are defined by |x| = m(x) ·2e(x) with
1/2 ≤ m(x) < 1.

Definition 2. We define

distp(x) = |2p ·m(x) cmod 1|

as the distance between a real number x and the closest
precision-p floating-point number.

Definition 3. We now define a (p, ǫ) hard-to-round case (or
HR-case) of a real-valued function f as a precision-p floating-
point number x solution of the inequality

distp(f(x)) < ǫ. (3)

It has to be noticed that if x satisfies equation (3), it
also satisfies

2p ·m(f(x)) + ǫ < 2ǫ mod 1. (4)

Equation 4 is used to test if an argument is a (p, ǫ) HR-
case, avoiding the computation of absolute values and
cmod.

Hence, a (p, 2−p′

) HR-case x is a precision-p floating-
point number for which f(x) is at a distance less than
2−p′

from the closest precision-p floating-point number.
In other words, more than p + p′ bits are necessary to
correctly round f(x) at precision p.

4

f(x)

Figure 3: Distances between the curve defined by f and
the rounding breakpoints for rounding-to-nearest.

The given definition of HR-case only applies for di-
rected rounding. However, this definition can be ex-
tended to all IEEE-754 rounding modes as rounding-to-
nearest (p, ǫ) HR-cases are directed rounding (p + 1, 2ǫ)
HR-cases.

Definition 4 (Table Maker’s Dilemma). If f is a real valued
function defined over a domain D, we define the Table Maker’s
Dilemma as finding an ε such that

distp(f(x)) > ε

for any precision p floating-point number x ∈ D.

We call hardest-to-round cases the arguments x ∈ D
minimizing distp(f(x)). Knowing the hardest-to-round
cases gives us a lower bound on the distances between
the function f and the rounding breakpoints (see Fig. 3)
and therefore a solution to the TMD.

The general method to find the hardest-to-round case
of a function is the following:

1) fix a “convenient” ǫ using probabilistic assump-
tions [2, Sect. 12.2],

2) find (p, ǫ) HR-cases with ad hoc methods such as
Lefèvre or SLZ algorithms,

3) find the hardest-to-round among the (p, ǫ) HR-
cases using Ziv method [3].

The most compute intensive step in this method is the
second one. Lefèvre or SLZ algorithms both relies on the
following two major steps.

1) Generation of polynomial approximations:
given ǫapprox, approximate function f by
polynomials Pi on sub-intervals Di such that
|Pi(x)− f(x)| < ǫapprox2

p+e(f(x)) for all x ∈ Di.
2) HR-case search: find the (p, ǫ′) HR-cases of Pi with

ǫ′ = ǫ + ǫapprox which are the (p, ǫ) HR-cases for f
in Di.

In the HR-case search of both algorithms, a Boolean
test is used to isolate HR-cases. It successes if there is no
(p, ǫ′) HR-case for Pi in Di and fails otherwise.

In this paper, we focus on Lefèvre algorithm which
truncates polynomials to degree one for Boolean test. We
simplify the notations by considering Di = [X0, Xn] with
e(X) = e(X0) for all floating-point number X in Di. We
also denote Qi(X) = Pi(X) mod X2 the truncation of Pi

to degree one with |Qi(X)− Pi(X)| < ǫtrunc2
p+e(Pi(X)),

and

2p ·m(Qi(X)) + ǫ′′ = b− a · x,

with x = 2p−e(X0)(X −X0) and ǫ′′ = ǫ′ + ǫtrunc. This
change of variable enables us to consider the integers
x ∈ J0,#pDiK instead of the precision-p floating-point
numbers X ∈ Di. Hence, the Boolean test of Lefèvre
algorithm consists of testing if the following inequality
holds:

inf {b− a · x mod 1 | x < #pDi} < 2ǫ′′. (5)

More precisely, if the inequality (5) does not hold, there
is no (p, ǫ+ ǫapprox+ ǫtrunc) HR-cases for Qi in Di which
implies there is no (p, ǫ+ ǫapprox) HR-case for Pi in Di.

Moreover, we remark that computing the infimum of
the set {b− a · x mod 1 | x < #pDi} is similar to find
the multiple of a which is the closest to the left of b
modulo 1 on the unit segment.

3.2 Properties of the set {a · x mod 1 | x < n}
Here we will detail some properties on the points
{a · x mod 1 | x < n} over the unit segment. These
properties are necessary to efficiently locate the closest
point to {b} in these configurations.

Theorem 1 (Three distance theorem). Let a be an irrational
number. If we place on the unit segment [0, 1[the points {0},
{a}, {2a}, . . . , {(n − 1)a}, these points partition the unit
segment into n intervals having at most three lengths with
one being the sum of the two others.

Theorem 1 is also known as the Steinhaus, the three
length or the three gap theorem. It has first been proved
by Slater [16]. Different approaches to prove this theorem
can be found in [17], [18] and surveys of these methods
in [19], [20].

Hereafter, we give a short description of how are con-
structed the configurations {a · x mod 1 | x < n} when
increasing n, and some properties over these configura-
tions. Both are widely based on Van Ravenstein [19] and
Lefèvre [21] proofs. The construction of the configura-
tions {a · x mod 1 | x < n} is illustrated in Fig. 4.

1) Hypothesis
a is irrational.

2) Base case n = 2
Only two points are on the segment, {0} and {a}.
As {a} < 1 by definition, we obtain the configura-
tion (a, 1−a) with the leftmost interval of length a
and the rightmost interval of length 1− a.

5

n = 0 0 45

00

n = 1 0 45

00 1

n = 2 0 45

00 1 2

n = 3 0 45

00 1 23

n = 4 0 45

00 1 23 4

n = 5 0 45

00 1 23 4 5

n = 6 0 45

00 1 23 4 56

n = 7 0 45

00 1 23 4 56 7

n = 8 0 45

00 1 23 4 56 78

n = 9 0 45

00 1 23 4 56 78 9

45

17 28
�

17 17 11
�

6 11 17 11

6 11 6 11 11
�

6 11 6 11 6 5

6 6 5 6 11 6 5

6 6 5 6 6 5 6 5
�

1 5 6 5 6 6 5 6 5

1 5 6 5 1 5 6 5 6 5

Figure 4: Computation of the {a · x mod 1 | x < n} for
0 ≤ n < 10, with a = 17/45. Two-length configurations
are marked with �.

3) Inductive step
Given the configuration {a · x mod 1 | x < n}, let
consider the leftmost interval is of length p and the
rightmost interval is of length q.
To build {a · x mod 1 | x < n+ 1} from
{a · x mod 1 | x < n}, we add the point {na}
on the segment. Adding the point {na} splits an
interval as a is irrational (otherwise we would have
na = ka mod 1 which contradicts the hypothesis
on the irrationality of a).
Let denote {la} (respectively {ra}) the clos-
est point to the left (resp. right) of {na} in
{a · x mod 1 | x < n}.

• If l 6= 0 and r 6= 0:
{la}, {ra} and {na} admit {(l−1)a}, {(r−1)a}
and {(n− 1)a} as preimages by adding −a on
the segment. Hence, the distance between {la}
and {na} equals the distance between {(l−1)a}
and {(n− 1)a} and the distance between {na}
and {ra} equals the distance between {(n−1)a}
and {(r − 1)a}. That is to say, by placing the
point {na}, we split an interval in the same
way {(n− 1)a} did.

• If l 6= 0 and r = 0:
first it has to be noticed that 0 has no preimage
on the segment because if it has one, there
may exist k 6= 0 such that a · k = 0 mod 1,
which contradicts that a is irrational. Then,
according to the three distance theorem, there
are at most three lengths of interval on the
segment, namely (p, q, q−p) or (p, q, p−q). As 0
is the right endpoint of the interval [{la}, {ra}],
this interval is the rightmost one and its length
is q by hypothesis. Then, by adding {na}, we

split the rightmost interval, of length q, in two
intervals of length p and q − p and the length
q−p is new as 0 has no preimage. Moreover, as
we have created an interval of a third length by
adding the point {na}, this implies there were
only two lengths on the segment before adding
{na} and that p < q.

• If l = 0 and r 6= 0:
by the same argument, according to the three
distance theorem, there are at most three
lengths of interval on the segment, namely
(p, q, q − p) or (p, q, p − q). As 0 is the left
endpoint of the interval [{la}, {ra}], this in-
terval is the leftmost one and its length is p
by hypothesis. Hence, we have just split an
interval of length p in two intervals of length
p− q and q and the length p− q is new as 0 has
no preimage on the segment. Moreover, as we
have created an interval of a third length by
adding the point {na}, this implies there were
only two lengths on the segment before adding
{na} and that q < p.

• If l = 0 and r = 0:
this cannot happen if n > 2.

We now introduce three properties on how the points
are added on the configurations {a · x mod 1 | x < n}.
Property 1 is illustrated on an example in Fig. 4 and
properties 2 and 3 in Fig. 5.

Property 1. Let (p, q) be a two-length configuration. Let
denote h = max(p, q) and l = min(p, q). The next two-
length configuration is (l, h− l).

Proof: Before splitting an interval having 0 as end-
point (see cases with either r = 0 or l = 0 above) we have
a two-length configuration. When splitting an interval
not having 0 as endpoint (see case with l 6= 0 and r 6= 0
above), we split this interval in the same way than the
previous one was.

When splitting an interval having 0 as left endpoint,
we split an interval p into two intervals p − q and q.
Splitting all intervals of length p into two intervals p− q
and q leads to the next two-length configuration with
lengths (p− q, q).

When splitting an interval having 0 as right endpoint,
we split an interval q into two intervals p and q − p.
Splitting all intervals of length q into two intervals p
and q−p leads to the next two-length configuration with
lengths (p, q − p).

Property 2. Let (p, q) be a two-length configuration. Let
denote h = max(p, q) and l = min(p, q). If we denote
r = h− ⌊h/l⌋ · l the remainder of the division of h by l, then
(l, r) is a two-length configuration.

Proof: It is similar as repeating ⌊h/l⌋ times the Prop-
erty 1.

Property 1 and 2 implies that computing the lengths
of the two-length configurations is similar to compute
the continued fraction expansion of a, where all the

6

45

0
b

0 45

0

0
b

0 45

0 1

11 34
�

0
b

0 45

0 1 2

11 11 23
�

0
b

0 45

0 1 2 3

11 11 11 12
�

0
b

0 45

0 1 2 3 4

11 11 11 11 1
�

(a) a = 11/45 ; b = 30/45

45

0
b

0 45

0

0
b

0 45

0 1

34 11
�

0
b

0 45

0 12

23 11 11
�

0
b

0 45

0 123

12 11 11 11
�

0
b

0 45

0 1234

1 11 11 11 11
�

(b) a = 34/45 ; b = 30/45

Figure 5: Computation of {a·x mod 1 | x < n} for 0 ≤ n < 5 illustrating the directed reduction Property. Two-length
configurations are marked with �.

lengths of the two-length configurations correspond to
the partial remainders [19], [20].

Property 3 (Directed reduction). Let (p, q) be a two-length
configuration with p < q (resp. q < p). When going to the
next two-length configuration, intervals of length q (resp. p)
are split into two intervals: a left one of length p (resp. p− q)
and a right one of length q − p (resp. q).

Moreover, if we denote r = q − ⌊q/p⌋ · p the remainder of
the division of q by p (resp. r = p − ⌊p/q⌋ · q the remainder
of the division of p by q), intervals of length q (resp. p) are
split into k intervals of length p and one interval of length
r (resp. one interval of length r and k intervals of length q)
in this order i.e. from left to right on the unit segment (resp.
from right to left on the unit segment).

Proof: When adding a point in an interval having
0 as endpoint, a new interval with a new distance is
created with 0 as endpoint. Hence, when the leftmost
interval of length p is split into two intervals p−q and q,
the interval of length p− q is the new leftmost interval.
Similarly when the rightmost interval of length q is split
into two intervals p and q−p, the interval of length q−p
is the new rightmost interval.

Applying this argument to the construction of Prop-
erty 2 proves Property 3.

All the proofs provided in this section are valid as 0
has no preimage when a is irrational. However, this is
also valid for a rational as long as neither p nor q equals
to 0 (that is to say, the last quotient of the continued
fraction expansion is computed).

4 HR-CASE SEARCH ON GPU

In this section we describe two algorithms for HR-case
search: Lefèvre HR-case search and a new and more reg-
ular HR-case search. More precisely if Pi is a polynomial
of degree δ defined over a domain Di, they find every
precision p floating-point number x ∈ Di satisfying (4)
for Pi(x).

4.1 Lefèvre HR-case search

In [21], Lefèvre presented an algorithm to search for
(p, ǫ′) HR-cases of a polynomial Pi(x). This algo-

rithm relies on a Boolean test which truncates Pi(x)
to degree one, computes a lower bound of the set
{b− a · x mod 1 | x < #pDi} and checks if the inequal-
ity (5) holds.

In Sect. 3.2, we described some properties of the
configurations {a · x mod 1 | x < n}. According to these
properties, computing the lengths of the intervals of
the two-length configurations can be done efficiently
in O(log#pDi) arithmetic operations by computing the
continued fraction expansion of a. However, if we use
continued fraction expansion, we will place more points
than #pDi on the unit segment (at most 2 · #pDi if
we use the subtraction-based Euclidean algorithm). To
take advantage of the efficient construction of the two-
length configurations, Lefèvre HR-case search computes
the infimum of {b− a · x mod 1 | x < n} with n > #pDi

the number of multiples of a placed, which gives
a lower bound on {b− a · x mod 1 | x < #pDi}. Then
the infimum of {distp(Pi(x)) < ǫ | x < #pDi} is exactly
computed by exhaustive search (only if required) in
O(#pDi) arithmetic operations. To minimize this exhaus-
tive search, a filtering strategy in three phases is used.

• Phase 1: we compute a lower bound on
{b− a · x mod 1 | x < #pDi} and test if this
lower bound is a (p, ǫ′′) HR-case of Qi. If not there
is no (p, ǫ′) HR-case for Pi in Di. Else, go to next
phase.

• Phase 2: we split Di in sub-intervals Di,j , we refine
the approximation Qi(x) by Qi,j(x) and we compute
a lower bound on {bj − aj · x mod 1 | x < #pDi,j}
for each Di,j . For each Di,j where the lower bound
on {bj − aj · x mod 1 | x < #pDi,j} is a (p, ǫ′′j) HR-
case of Qi,j , go to next phase.

• Phase 3: we search exhaustively for (p, ǫ′) of Pi in
Di,j using the table difference method (see Sect. 5).

The corner stone of Lefèvre algorithm strategy
is therefore the computation of the infimum of
{b− a · x mod 1 | x < n}. In other words, it finds which
multiple of a is the closest to the left of b modulo 1.

Hereafter we focus on computing the distance be-
tween {b} and the closest point to the left of {b}, de-

7

noted {la}, in the configuration {a · x mod 1 | x < n}.
We write N the number of floating-point numbers in
the considered interval (n ≥ N as we compute a lower
bound). Depending on how we generate the two-length
configurations (using Property 1 or Property 2) we can
derive from Property 3 two ways to compute the dis-
tance between {b} and {la}.

Algorithm 1: Lefèvre lower bound computation and
test algorithm.

input : b − a · x, ǫ′′, N

1 initialisation:
p← {a}; q ← 1− {a}; d← {b};
u← 1; v ← 1;

2 if d < ǫ′′ then return Failure;
3 while True do
4 if d < p then
5 k = ⌊q/p⌋;
6 q ← q − k ∗ p; u← u+ k ∗ v;
7 if u+ v ≥ N then return Success;
8 p← p− q; v ← v + u;
9 else

10 d← d− p;
11 if d < ǫ′′ then return Failure;
12 k = ⌊p/q⌋;
13 q ← p− k ∗ q; v ← v + k ∗ u;
14 if u+ v ≥ N then return Success;
15 q ← q − p; u← u+ v;

In the lower bound computation of Lefèvre HR-case
search, the way we compute the two-length configura-
tions depends on the length of the interval containing
{b}. When adding points in intervals containing {b}
and in the direction of {b} we use a subtraction-based
Euclidean algorithm (Property 1). Else we use a division-
based Euclidean algorithm (Property 2). Algorithm 1
describes the lower bound computation of Lefèvre HR-
case search and the corresponding test with respect to ǫ′′

which is the sum of all errors involved. In this algorithm,
the variables u and v count the number of intervals of
length q and p respectively, in order to exit when n =
u+v > N . They are updated by maintaining pu+qv = 1.
The variable d contains the distance between {b} and
the closest point to its left {la}. Hereafter we detail the
relations between the two-length configurations and the
execution paths of Algorithm 1. Let (p, q) be a two-length
configuration.

• If p < q:

– if {b} is in an interval of length p, no point is
added in the interval containing {b}. So we go
directly to the configuration (p, r) with r < p
and r = q − ⌊q/p⌋ · p.

– if {b} is in an interval of length q and d < p,
as only intervals of length q can be split by
intervals of length p, if d < p no points can
be added to the left of b. So we go directly
to the configuration (p, r) with r < p and

r = q − ⌊q/p⌋ · p.
– if {b} is in an interval of length q and d > p, we

subtract p to d and we go to the configuration
(p, q − p).

• If q < p:

– if {b} is in an interval of length q, no point is
added in the interval containing {b}. So we go
directly to the configuration (r, q) with r < q
and r = p− ⌊p/q⌋ · q.

– if {b} is in an interval of length p and d < p,
according to Property 3 points are added from
the right in the intervals of length p. As d < p,
{b} is in an interval of length p and points can
potentially be added to the left of {b}. Hence
we go to configuration (p− q, q).

– if {b} is in an interval of length p and d > p,
according to Property 3 points are added from
the right in the intervals of length p. As points
at the right of {b} have been added one by one
in the previous rule, we are sure that the last
point added is the closest point at the left of {b}
added so far. Hence we refresh d by subtracting
p. As {b} is no more in an interval of length p,
we go directly to configuration (r, q) with r < q
and r = p− ⌊p/q⌋ · q.

It has to be noticed that the condition at line 4 is true
if {b} is in an interval of length p and false otherwise.
This condition enables thus to handle the six previous
cases.

It also has to be noticed that Lefèvre algorithm always
reduces d by using subtractions at line 10. In practice
Lefèvre adds specific instructions to compute partly
these reductions with divisions in order to avoid large
quotients to be entirely computated with subtractions.
We have omitted these instructions here for clarity but
they are present in our implementations of Lefèvre al-
gorithm.

Furthermore as the algorithm computes a continued
fraction, the remainders have to be computed at each it-
eration. In practice, we can make use of different division
implementations to compute these remainders. We can
apply a subtractive division, a division instruction, or
combine both in an hybrid approach as presented in [21].

Let write Cdiv (resp. Csub) the cost of the division
instruction (resp. the subtraction instruction). The sub-
tractive division cost is q·Csub with q the computed
quotient. The cost of the division instruction is constant
and equals Cdiv . Then, if the computed quotient is less
than Cdiv

Csub
, subtractive division is more efficient than

division instruction, else division instruction is more
efficient than subtractive division.

Lefèvre hybrid division consists in choosing the best
division implementation each time we compute a quo-
tient. As we cannot rely on the quotient itself as a criteria,
the expected size of the quotient is used. If we divide a
by b, the size of the expected quotient can be estimated

8

by the difference of size between a and b. Let k be a
threshold on the size of the expected quotient. If a > 2kb
(namely, a is rather big compared to b) we use the
division instruction, else we use the subtractive division.

However, in our context, we expect small quotients
as the quotients of continued fraction expansions follow
the Gauss-Kuzmin distribution [22], [23] [24, p. 352].

Theorem 2 (Gauss-Kuzmin). Given a continued fraction
[0, a1, a2, . . .] and k ∈ N

∗,

lim
n→∞

P(an = k) = − log2

(

1− 1

(k + 1)2

)

.

Even if the threshold k is likely small, setting it to a
relevant value directly depends on the architecture and
is determined by extensive testings.

4.2 New regular HR-case search

We here propose a new algorithm for the HR-case search
where we use the same filtering and division strategy as
in Lefèvre algorithm, but we introduce a more regular
algorithm – in the sense that it strongly reduces diver-
gence on GPU – in order to compute a lower bound on
{b− a · x mod 1 | x < #pDi}. Hereafter, we will refer to
this new algorithm as the regular HR-case search.

In this new HR-case search described in Algorithm
2, we only rely on Property 2 in order to use only the
division-based Euclidean algorithm. Instead of testing
the length of the interval containing {b} like in Lefèvre
HR-case search, we test here which length is reduced as
in the classical Euclidean algorithm, and then we reduce
it and update d accordingly. Let (p, q) be a two-length
configuration.

• If p < q, we go directly to the configuration (p, r)
with r = q − ⌊q/p⌋ · p.

– If {b} was in an interval of length p: no point is
added in the interval containing {b} (as d < p,
d = d mod p).

– If {b} was in an interval of length q: points are
potentially added to the left of {b}. According
to Property 3, intervals of length q are split by
adding points from the left. Hence the distance
d is updated by reduction modulo p.

• If q < p, we go directly to the configuration (r, q)
with r = p− ⌊p/q⌋ · q.

– If {b} was in an interval of length q: no point is
added in the interval containing {b}.

– If {b} was in an interval of length p: points are
potentially added to the left of {b}. According
to Property 3, intervals of length p are split by
adding points from the right. Then the distance
d is updated if d > r by reducing d− r modulo
q.

In each branch, we reduce the interval of the longest
length by using Property 2 and then we update d. In
the else branch of Algorithm 2, testing if {b} was in an
interval of length q is useless. Indeed if d > r and {b}

Algorithm 2: New regular lower bound computation
and test algorithm.

input : b− a · x, ǫ′′, N

1 initialisation:
p← {a}; q ← 1; d← {b};
u← 1; v ← 1;

2 if d < ǫ′′ then return Failure;
3 while True do
4 if p < q then
5 k = ⌊q/p⌋;
6 q = q − k ∗ p;
7 u = u+ k ∗ v;
8 d = d mod p;
9 else

10 k = ⌊p/q⌋;
11 p = p− k ∗ q;
12 v = v + k ∗ u;
13 if d ≥ p then
14 d = d− p;
15 d = d mod q;

16 if u+ v ≥ N then return d > ǫ′′;

was in an interval of length q, subtracting r at line 14
would still have been done in the next loop iteration at
line 8.

In practice, the remainders of the continued fraction
expansion are computed like in Lefèvre HR-case search
with a subtractive division, a division instruction or the
hybrid approach.

4.3 Deployment on GPU

The exhaustive search algorithm perfectly takes advan-
tage of the GPU massive parallelism and of its (partial)
SIMD execution. Hence, we will focus on the deploy-
ment of the lower bound computation. In this section we
present how we have deployed Lefèvre HR-case search
and the new regular HR-case search on GPU by reducing
divergence at three levels: the filtering strategy, the main
loop and the main conditional statement. More details
about Lefèvre HR-case search deployment on GPU can
be found in [8].

For these deployments, we first changed the data lay-
out to a “structure of arrays” in order to have coalesced
memory accesses [14, Sect. 6.2.1]. We also avoided as
much as possible consecutive dependent instructions in
order to increase the instruction-level parallelism within
each thread.

Throughout this section, we will consider the example
interval [1, 1+2−13[in the binade [1, 2[for the exponential
function in double precision, as this binade is considered
in [21] as the general case.

4.3.1 Filtering strategy divergence

As a consequence of the filtering strategy, we will have
few threads executing phase 2, and fewer executing

9

(a) Lefèvre HR-case search with specific instructions (b) Regular HR-case search

Figure 6: Normalized mean deviation to the maximum of the number of main loop iterations per warp among the
220 warps required for the exp function in the interval [1; 1 + 2−13].

phase 3. Table 1 shows the number of intervals involved
in each phase for an interval Di containing 240 floating-
point numbers. As we can see, very few intervals lead
to the exhaustive search step. Hence, executing one
kernel computing the three phases leads to an important
divergence as we have fewer and fewer active threads
within each warp from one phase to the next [8].

To tackle this problem, we propose to use three ker-
nels, one for each phase. This allows us to re-build the
grid of threads between each phase, and to run the exact
number of threads required by each phase. However, this
implies two additional costs.

First, we have to write failing intervals2 of phase 1
and 2 in consecutive memory locations as we prepare
coalesced reads for the next phase. In [8], this was
done with atomic operations on the GPU global memory
since we had few failing intervals. For some specific
binades, the number of failing intervals can be much
more important and the numerous atomic operations can
then lower the performance. Hence, we use atomic oper-
ations on the GPU global memory or compact operations
based on parallel prefix sums provided by CUDPP [25],
depending on the expected number of failing intervals.

Second, between two phases, we have to transfer back
to CPU the number of failing intervals to compute on
CPU the optimal grid size for the next phase. This
optimal grid size is computed by factoring the number
of intervals involved in the next phase, which enables
us to minimize the number of useless threads.

It can be noticed in Table 1 that Lefèvre HR-case
lower bound computation filters a little more than the
new algorithm. Lefèvre HR-case lower bound computa-
tion uses indeed subtraction-based Euclidean algorithm
when splitting the interval containing {b}, which results
in a number of considered arguments less than 2 ·#pDi.
As we always use the division-based Euclidean algo-
rithm in the regular HR-case search, we consider k·#pDi

2. Intervals for which the computed lower bound is less than ǫ′′ in
algorithms 2 and 1.

Phase
Number of intervals

Lefèvre Regular
1 240 ≈ 1.1 · 1012 240 ≈ 1.1 · 1012

2 ≈ 3.6 · 109 ≈ 1.8 · 1010

3 ≈ 8.9 · 106 ≈ 5.9 · 107

HR-cases 243 243

Table 1: Details of argument filtering during HR-case
search in [1, 1 + 2−13].

HR-case search
min max mean mean

iteration iteration iteration NMDM
number number number

Lefèvre 5 328 24 25.6%
With specific

5 31 16 25.7%
instructions
Regular 8 19 12 0.1%

Table 2: Comparison of the main loop behavior among
the 220 warps required for the different HR-case searches
on exp function in interval [1, 1 + 2−13].

where k is the last computed quotient. However, the ge-
ometric mean of the quotients of the continued fraction
of almost all real numbers equals Khinchin’s constant
(≈ 2.69). Hence, we can hope considering 3.69 · #pDi

arguments with the regular HR-case search.

4.3.2 Loop divergence

The second source of divergence is the main uncondi-
tional loop (see line 3 in Algorithms 1 and 2). Fig. 6
shows the NMDM of the number of loop iterations by
warp for the different HR-case searches on the testing
interval containing 240 double-precision floating-point
arguments. Table 2 summarizes statistical informations
on the NMDM and the number of iterations for both
Lefèvre and the regular HR-case searches.

For Lefèvre HR-case search, this main unconditional
loop is an important source of divergence with a mean
NMDM of 25.6%, that is to say, a thread remains idle on
average 25.6% of the number of loop iterations executed
by its warp. To our knowledge there is no a priori

10

information on the number of loop iterations that would
enable us to statically reorder the intervals in order to
decrease this divergence. We also tried to use software
solutions to reduce the impact of the loop divergence [8],
[10] to no avail because the computation is very fine-
grained.

This divergence in Lefèvre HR-case search is mainly
due to the fact that the quotients are entirely or partially
computed at each iteration depending on the position
of b even with the specific instructions (see Sect. 4.1).
Thanks to these specific instructions the pathological
cases are avoided (see Table 2) but the mean NMDM
is still around 25.6%.

In the new regular HR-case search, the key point is
that a quotient of the continued fraction expansion of a
is entirely computed at each loop iteration, which is not
the case in Lefèvre HR-case search. Hence, the number of
loop iterations only depends on the number of quotients
of the continued fraction expansion of a computed to
reach #pDi points on the segment. As the number of
quotient to compute is very close from one interval to
the next, we reduce the mean NMDM by warp to 0.1%.

4.3.3 Branch divergence

The third source of divergence is on the main conditional
statement on the value d (see line 4 in Algorithms 1 and
2). We aim at reducing the number of instructions con-
trolled by the branch condition, and, if reduced enough,
benefit from the GPU branch predication [14, Sect. 9.2].
This branch predication enables indeed, for short sec-
tions of divergent code, to fill at best the pipelines by
scheduling both then and else branches for all threads:
thank to a per-thread predicate, only the relevant results
are actually computed and finally written.

By looking carefully at the content of each branch
in Lefèvre HR-case search, we can notice that they
contain the same instructions, except that the variables x
(respectively u) and y (resp. v) are interchanged, and that
x is subtracted to b. We therefore swap the two values x
and y (resp. u and v) to remove the common instructions
from the conditional scope as described in Algorithm 3.
The swap implies a small extra cost but we thus reduce
the portion of divergent code, and hence the number of
divergent instructions.

To minimize the extra cost of the swap, we swap the
values only when this is required, that is to say we swap
the values only if the evaluation of the condition d < p
changes at line 15 of Algorithm 3. This enables us to
minimize the number of swap operations. In practice,
each swap is performed thanks to an auxiliary variable.

As far as the new regular HR-case search is concerned,
there is in Algorithm 2 as much branch divergence
within the unconditional loop as in Algorithm 1. How-
ever the main conditional statements of the two algo-
rithms are rather different. In Lefèvre HR-case search,
this test depends on the position of the point b at each
iteration. In the regular HR-case search, it depends on

Algorithm 3: Lefèvre’s lower bound computation
and test algorithm with swap.

input : b− a · x, ǫ′′, N
1 initialisation:

p← {a}; q ← 1− {a}; d← {b};
u← 1; v ← 1; are swapped← False;

2 if d < ǫ′′ then return Failure;
3 if (d ≥ p) then
4 SWAP(p, q); SWAP(u, v);
5 are swapped← True;

6 while True do
7 if are swapped then
8 d← d− p;
9 if d < ǫ′′ then return Failure;

10 k = ⌊q/p⌋;
11 q ← q − k ∗ p; u← u+ k ∗ v;
12 if u+ v ≥ N then return Success;
13 p← p− q; v ← v + u;
14 if are swapped xor (d ≥ p) then
15 SWAP(p, q); SWAP(u, v);
16 are swapped← not(are swapped);

Algorithm 4: New regular lower bound computation
and test algorithm unrolled.

input : b− ax, ǫ′′, N

1 initialisation:
p← {a}; q ← 1; d← {b};
u← 1; v ← 1;

2 while True do
3 k = ⌊q/p⌋;
4 q = q − k ∗ p;
5 u = u+ k ∗ v;
6 d = d mod p;
7 if u+ v ≥ N then return d > ǫ′′;
8 k = ⌊p/q⌋;
9 p = p− k ∗ q;

10 v = v + k ∗ u;
11 if d ≥ p then
12 d = d− p;
13 d = d mod q;

14 if u+ v ≥ N then return d > ǫ′′;

the length to reduce. Unlike the test on the position of
b, the test on the length to reduce is deterministic as
the regular HR-case search computes a quotient of the
continued fraction expansion of a at each loop iteration.
Hence the evaluation of the condition switches at each
loop iteration and it first evaluates to True as p is
initialized to {a} and q to 1. Therefore, by unrolling
two loop iterations, we can avoid this test which leads
to Algorithm 4 where the branch divergence is strongly
reduced.

11

5 POLYNOMIAL APPROXIMATION GENERATION

ON GPU

In this section, we detail how we have deployed on GPU
the generation of polynomial approximations required
for the HR-case search algorithms described in Sect. 4.

The principle is to approximate the function f on a
large interval by a polynomial P of degree δ with for
example a Taylor approximation. Then, to have precise
approximations Pi over intervals [iN ; (i + 1)N] of N
arguments, we use Taylor shifts of P that is to say we
compute Pi(x) = P (x + iN). The tabulated difference
shift [5], [26], [27], the most often used shift in this
context, is intrinsically sequential and requires multi-
precision arithmetic which is problematic for a deploy-
ment on the parallel GPU architecture.

In the following, we will first present a method named
hierarchical method [5], [26] to change one Taylor shift by
N into several Taylor shifts by 1. Then, we present two
existing Taylor shift algorithms:

• the tabulated difference shift which sequentially
iterates a shift of the polynomial Pi to obtain Pi+1

with only multi-precision additions;
• and the straightforward shift which computes the

Pi’s from P in parallel but requires multi-precision
multiplications and additions.

Finally we will discuss how the two shifts can be com-
bined in an hybrid CPU-GPU Taylor shift algorithm
which requires only fixed size multi-precision addition
on GPU.

More details on these algorithms and their error prop-
agation can be found in [5], [27]. There exist asymptoti-
cally more efficient algorithms and an overview can be
found in [28].

5.1 Taylor shift algorithms

We first describe a hierarchical method originally de-
scribed in [5], [26] which transforms one shift by N of a
polynomial of degree δ into δ+1 shifts by 1. This method
requires the input polynomial to be represented in the
binomial basis. Hence, we define the forward difference
operator and its application to interpolate a polynomial
in the binomial basis.

Definition 5. The forward difference operator, denoted ∆h is
defined as ∆h[P](x) = P (x + h) − P (x). We write ∆i

h the
composition i times of ∆h and ∆ = ∆1.

Using this forward difference operator, one can get an
efficient algorithm to interpolate a polynomial of degree
δ in the binomial basis, given the values {P (i), 0 ≤ i ≤ δ}
as

P (x) =

δ
∑

i=0

∆i[P](0) ·
(

x

i

)

.

An example is shown in Fig. 7. This interpolation is
computed using the definition of ∆ and as initial values

x 0 1 2 3

P (x) 0 1 8 27

1 7 19

6 12

6

Figure 7: Newton interpolation of polynomial x3.

∆0[P](x) = P (x). This algorithm is similar to the New-
ton interpolation with the forward difference operator
used instead of the forward divided difference operator.

Now, we describe the hierarchical method. Given a
polynomial P , we want to build a scheme to shift this
polynomial in consecutive arguments following an arith-
metic progression with common difference N . Hence, if
we consider the univariate polynomial P as a bivariate
polynomial such that P (x) = P (kN +m), by interpola-
tion in binomial basis with respect to the variable m, we
obtain

P (kN +m) =

δ
∑

j=0

aj(k)

(

m

j

)

.

Hence, by evaluating the aj(k) in i we get Pi(m) in the
binomial basis.

To obtain all the Pi, we have to compute the con-
secutive evaluations of aj(k). This can be performed
efficiently with the tabulated difference shift [26], [27].
According to the forward difference operator definition,

∆i[P](x) = ∆i−1[P](x + 1)−∆i−1[P](x),

that is to say

∆i−1[P](x+ 1) = ∆i−1[P](x) + ∆i[P](x).

Furthermore, if P is of degree δ,

∆δ[P](x) = ∆δ[P](x+ 1) = · · · = ∆δ[P](x+m)

for any integer m > 0, and is constant as it is the δth

discrete derivative of P times δ! . An illustration of this
algorithm can be found in Fig. 8. Hence, the only needed
operations to obtain the consecutive evaluations of the
polynomials aj(k) are multi-precision additions of the
coefficients.

Obtaining the consecutive evaluations of aj(k) can
also be performed with the straightforward shift. This
algorithm multiplies the vectors of aj(k) coefficients by a
triangular matrix constructed using Newton’s binomial
theorem. If we consider aj(k) as polynomials in binomial
basis, the triangular matrix is

(

k
0

) (

k
1

)

· · ·
(

k
δ

)

0
(

k
0

)

· · ·
(

k
δ−1

)

0
...

. . .
...

0 · · · 0
(

k
0

)

.

12

0 1 8 27 64 125

1 7 19 37 61 91

6 12 18 24 30 36

6 6 6 6 6 6

Figure 8: Tabulated difference shift for evaluating the
polynomial x3.

This multiplication exactly corresponds to applying k
times the tabulated difference algorithm. Furthermore,
this matrix is Toeplitz, which can be used to speed up
the matrix-vector multiplication for high degree. Hence,
only the first

(

kN
i

)

with 0 ≤ i < δ + 1 are needed to
compute its coefficients.

5.2 Hybrid CPU-GPU deployment

In our deployment, we use the hierarchical method as
described in [5], [26]. The polynomial P is a Taylor poly-
nomial of degree 2 approximating the targeted function
like in [26]. We interpolate it in the binomial basis using
the hierarchical method with N = 215 as we want to
use the Boolean tests described in Sect. 4 on intervals
containing 215 arguments (see [5] for more explanations).
Hence we have

Pk(x) = P (k215 +m) =

2
∑

j=0

aj(k)

(

m

i

)

.

As the interpolation in the binomial basis is done once,
it is precomputed on CPU.

Hence, to obtain all the Pi, we have to deploy on GPU
the computation of the consecutive evaluations of aj(k).

On one hand, the tabulated difference shift is effi-
cient as it requires only multi-precision additions. This
method is thus used in the reference CPU implemen-
tation [26]. However this is an intrinsically sequential
method, which prohibits its direct deployment on GPU.

On the other hand, the straightforward shift is em-
barrassingly parallel, but requires multi-precision multi-
plications and divisions to compute the binomials and
multi-precision multiplications and additions to com-
pute the matrix-vector products.

In order to benefit from the efficiency of the tabulated
difference shift on GPU, we therefore use an hybrid
strategy that relies on both the CPU and the GPU: we
compute shifts of aj(k) by tS + s with 0 < t < T and
0 < s < S. We vary t and shift by tS sequentially on CPU
with the straightforward shift to form packets3. This way,
we generate T packets of size S. All the multi-precision
operations on CPU are computed efficiently using the
GMP library [29].

3. This computation on CPU could thus be parallelized but the
corresponding computation times are minority in practice.

Then the aj(tS) with 0 < t < T are transferred to
GPU. We run a CUDA kernel of T threads wherein each
thread of ID t processes aj(tS) and computes aj(tS + s)
with 0 < s < S using the tabulated difference shift.

Furthermore, as there are δ + 1 independent aj poly-
nomials (δ = 2 in practice), we can run one kernel per
aj and overlap the GPU computation for the polynomial
aj with the CPU computation of the polynomial aj+1.

The only algorithm deployed on GPU is therefore the
tabulated difference shift which is sequential within each
GPU thread, but performed concurrently by multiple
threads on multiple polynomials.

As the coefficients of the considered polynomials are
large, we need multi-precision addition on GPU. Here
only fixed size multi-precision additions are required
as bounds on the required precision, depending on the
targeted function and exponent of the targeted domain,
can be computed before compile time [5], [27]. Multi-
precision libraries on GPU [30], [31] have been very
recently developed. However, we preferred to have our
own implementation of this operation for two main
reasons: to use PTX (NVIDIA assembly language) [32]
and the addc instruction in order to have an efficient
carry propagation; and to benefit from the fixed size
of the multi-precision words at compile time in order
to unroll inner loops. As the addc instruction operates
only on 32-bit words, multi-precision words are arrays
of 32-bit chunks. The multi-precision addition function
is implemented as a C++ template with the size of
the multi-precision words given as a parameter, which
enables an automatic generation of addition functions
for each size of fixed multi-precision word required by
each binade. As a consequence, the inner loop on the
number of chunks can easily be unrolled as the number
of loop iterations is known at compile time. Furthermore,
in order to have coalesced memory accesses, the word
chunks are interleaved in global memory and loaded
chunk by chunk in registers.

Finally, it can be noticed that this algorithm is com-
pletely regular: there is therefore no divergence issue
among the GPU threads here.

6 PERFORMANCE RESULTS

In this section we present the performance analysis
of our different deployments. All results are obtained
on a server composed of one Intel Xeon X5650 hex-
core processor running at 2.67 GHz, one NVIDIA Fermi
C2070 GPU and 48 GB of DDR3 memory.

We compare three implementations. The first one is the
sequential implementation (named Seq.) which is Lefèvre
reference code provided by V. Lefèvre. The second one is
the parallel implementation on CPU (referred to as MPI)
which is the sequential implementation with an MPI
layer (OpenMPI version 1.4.3) to distribute equally the
8192 intervals composing a binade among the available
CPU cores (6 physical cores here). We use a cyclic
decomposition which offers a better load balancing than

13

5 10 15 20 25 30 35 40 45 50 55 60

0.1

0.2

0.3

0.4

k

T
im

e
in

se
co

n
d

s

Lefèvre

Regular

Figure 9: Execution time of the two HR-case searches
in the interval [1 + 2−13] according to k threshold on a
C2070 GPU.

a block decomposition and run 12 MPI processes to take
advantage of the two-way SMT (Simultaneous Multi-
threading or Hyper-threading for Intel) of each core.
The third implementation (named CPU-GPU) relies on
the GPU and CPU-GPU deployments presented in this
paper. The implementations have been compiled with
gcc-4.4.5 for CPU code and nvcc (CUDA 4.1) for GPU
code.

All the following timings are obtained for searching
(64, 2−32) HR-cases of exp function, that is to say ex-
tended precision floating-point arguments for which 32
extra bits of precision during evaluation do not suffice
to guarantee correct rounding. The measures include all
computations and data transfers between the GPU and
the CPU.

6.1 HR-case search

We first want to find for Lefèvre HR-case search and
for the regular HR-case search, which division version is
the fastest one on GPU among the subtractive division,
the hybrid division or the division instruction presented
in Sect. 4.1. We varied the parameter k, referring to the
threshold on the size of the quotient, from 0 (division
instruction) to 64 (subtractive division as we use 64-bit
integers).

As shown in Fig. 9, on a C2070 GPU the optimal k is 3
for both HR-case searches. We therefore use the hybrid
division with k = 3 in all the following testings. This
result is similar to the one observed by Lefèvre [21],
which had an optimal k of 3 on CPU. We also run the
same test on our X5650 CPU and obtain an optimal k of
3 for Lefèvre HR-case search and for the regular HR-case
search. This means that the ratio Cdiv

Csub
mentioned in Sect.

4.1 is roughly the same on CPU and on GPU. Also, this
value is small partly due to the expected small values

Seq. MPI CPU-GPU
Seq.
MPI

Seq.
CPU-GPU

Pol.
43300.81 5251.53 788.84 8.25 54.89

approx.
Lefèvre 36816.10 5292.67 2446.27 6.96 15.05
Regular 34039.94 4716.97 711.92 7.22 47.81

Lef. /Reg. 1.08 1.12 3.44

Table 3: Timings comparison (in seconds) of different
implementations of the polynomial approximation gen-
eration and of Lefèvre and regular HR-case search in
[1, 2[.

of the quotients of the continued fraction expansion (see
Sect. 4.1).

Furthermore, we notice that the new regular HR-case
search is more sensitive to this parameter than Lefèvre
HR-case search (it achieves nearly 300 seconds when
k > 30). There can be two explanations to this behavior.
First, d is reduced only by subtractions in Lefèvre HR-
case search whereas it is reduced by divisions in the
regular HR-case search. This also implies that when a
large partial quotient is encountered in the continued
fraction expansion, another large quotient is potentially
computed to reduce b. Second, as Lefèvre computes each
quotient by a first subtraction and then by a division,
quotients equals to 1 do not need a division. As a quo-
tient equals 1 with probability 0.4 during the continued
fraction expansion much fewer divisions are computed
in Lefèvre HR-case search.

We also searched for the optimal block sizes on GPU
and tried to increase the number of intervals computed
per thread in every GPU kernel, in order to optimize
occupancy and computation granularity. However in-
creasing the number of intervals per thread do not im-
prove performances since the occupancy of each kernel
is already high enough.

Now we show in Table 3 performance results of the
HR-case search over the binade [1, 2[as it corresponds to
the general case according to [21]. First, we remark that
Lefèvre and regular HR-case searches take advantage of
the two-way SMT on the multi-core tests as we have a
parallel speedup higher than the number of cores. Then,
the deployment of Lefèvre HR-case search on GPU offers
a good speedup of 15.05x over one CPU core and 2.16x
over six cores. Finally, the new regular HR-case search
delivers over Lefèvre HR-case search a slight gain of 8%
on one CPU core, of 12% over six CPU cores and an
important speedup of 3.44x on GPU. This result in a very
good speedup of 51.71x for the regular HR-case search
on GPU over Lefèvre HR-case search on one CPU core,
and of 7.43x over six CPU cores.

6.2 Polynomial approximation generation

We show in Table 3 performance results of the poly-
nomial approximation generation step over the binade
[1, 2[.

We first observe that the polynomial approximation
generation takes great advantage of SMT with a speedup

14

MPI CPU-GPU MPI Lef./CPU-GPU
[1, 2[[128, 256[[1, 2[[128, 256[[1, 2[[128, 256[

Polynomial approximation generation 5336.81 11243.26 785.14 1612.03 6.74 6.97
Lefèvre HR-case search 5292.67 169911.90 2446.78 51530.44 2.16 3.30
Regular HR-case search 4716.96 – 711.8 61581.87 7.44 2.76

Table 4: Timings (in seconds) for binades [1, 2[and [128, 256[. Timings for the MPI regular HR-case search over
[128, 256[have been omitted because they are prohibitive.

of 8.25x when using six CPU cores. This is mainly due
to the high latency caused by the carry propagation
during the multi-precision addition which can be partly
offset by the SMT execution. Concerning the CPU-GPU
deployment of the polynomial approximation genera-
tion, the times includes the CPU computations, the data
transfers from CPU to GPU and the GPU computation.
This hybrid CPU-GPU deployment greatly takes advan-
tage of the GPU as all the threads perform independent
computations and as the control flow is perfectly regular
among the GPU threads. It offers thus a speedup of
54.89x over the one CPU core execution and of 6.66x
over the six core execution.

6.3 Overall performance results

In this subsection, we present detailed performance re-
sults for the overall algorithms on different binades. In
the following tables, one can remark that the total times
are slightly higher than the sum of the three phases. This
is due to the cost of measuring time for each phase.

In Table 4, the timings are obtained over two binades.
The binade [1, 2[corresponds to the general case accord-
ing to [21], where the exp function is well approximated
by a polynomial of degree one, and the binade [128, 256[
corresponds to the last entire binade before overflow,
where the exp function is hard to approximate by a
polynomial of degree one.

We can first observe that speedups on GPU-CPU
over CPU of the polynomial approximation genera-
tion are similar, even if in the binade [128, 256[we
use longer multi-precision words (maximum coefficient
sizes are 320 bits for the binade [1, 2[and 448 for
the binade [128, 256[) and polynomials of higher degree
(maxj (deg aj(x)) is 6 for the binade [1, 2[and 10 for the
binade [128, 256[).

It has to be noticed that the HR-case search is much
slower in the binade [128, 256[than in the binade
[1, 2[(22.7x and 86.5x for Lefèvre and regular HR-case
searches respectively on GPU). Moreover, Lefèvre HR-
case search delivers a better speedup on GPU over CPU
in [128, 256[compared to [1, 2[, and regular HR-case
search delivers a lower speedup.

The high computation times required in the binade
[128, 256[and the disparities in speedups of Lefèvre
and regular HR-case searches can be explained by the
truncation error ǫtrunc introduced by the Boolean tests
used in both filtering strategies.

We therefore present in Table 5 the filtering and timing
details of the Lefèvre and the regular HR-case searches

Lefèvre Regular
Arguments Time (s) Arguments Time (s)

Phase 1 9.01 · 1015 2372.60 9.01 · 1015 583.97
Phase 2 3.19 · 1013 61.31 1.62 · 1014 91.41
Phase 3 7.65 · 1010 11.02 5.14 · 1011 35.17

Table 5: Details on each phase for Lefèvre and regular
HR-case searches on GPU in the binade [1, 2[.

Lefèvre Regular
Arguments Time (s) Arguments Time (s)

Phase 1 9.01 · 1015 4097.41 9.01 · 1015 1634.67
Phase 2 8.97 · 1015 30003.78 9.01 · 1015 21443.58
Phase 3 4.19 · 1014 17428.16 9.00 · 1014 38480.87

Table 6: Details on each phase for Lefèvre and regular
HR-case searches on GPU in the binade [128, 256[.

over the binade [1, 2[. In Table 5, both HR-case searches
split the entering intervals into 8 sub-intervals in phase
2. In this binade the exp function is well approximated
by a polynomial of degree one. This implies that the
error ǫtrunc due to the truncation to degree one is low
compared to the error ǫ we want to test, and the Boolean
tests used in Lefèvre and regular HR-case searches fail
rarely.

However, as stated in Sect. 4.3.1, the new regular HR-
case search filters less intervals than Lefèvre HR-case
search. This increases the amount of time spent in phases
2 and 3 by a factor 1.49 and 3.19 respectively. However,
we can observe a good speedup of 4.06x in phase 1 due
to the regularity of the new regular HR-case search. As
phases 2 and 3 are minority, the new regular HR-case
search offers a total speedup of 3.44x over Lefèvre HR-
case search.

Table 6 details the corresponding results for the binade
[128, 256[where the exp function is hard to approximate
by a polynomial of degree one. This implies that ǫtrunc
is high compared to ǫ, and the Boolean tests used in
Lefèvre and regular HR-case searches fail very often.
We set the Lefèvre HR-case search to split the entering
intervals into 16 sub-intervals in phase 2 and the regular
HR-case search to split the entering intervals into 32
sub-intervals in phase 2. This is due to the need of
balancing phase 2 and phase 3 in order to obtain the
best performance. Here, only the regular HR-case search
uses parallel prefix sums for the compaction operation
between each phase.

As the Boolean tests fail very often, the critical phases
for this binade are the phases 2 and 3. Hence, Lefèvre
HR-case search is more efficient as it filters more than
the new regular HR-case search. In this binade, 10.00%

15

of the initial arguments are involved in phase 3 with the
regular HR-case search against 4.65% with Lefèvre HR-
case search. This results in Lefèvre HR-case search being
16.3% faster than the regular HR-case search on GPU
for this binade. Moreover, as phase 3 corresponds to the
exhaustive search, which is embarrassingly parallel and
which offers a completely regular control flow, we still
have a good speedup on GPU (up to 3.30x with Lefèvre
HR-case search over a hex-core CPU).

Hence, both HR-case searches can be used depending
on the truncation error. This truncation error directly
depends on the coefficient of the term of degree two
of the polynomial approximation. A threshold on the
truncation error to switch from one HR-case search to
the other can be precomputed. One can also use the ratio
of the number of intervals in phase 3 over the number
of intervals in phase 1 of the previous interval to select
the appropriate HR-case search algorithm for the current
interval. As shown in Table 4, this let us benefit from
a very good speedup of 7.44x on a GPU over a hex-
core CPU when the function is well approximated by
a polynomial of degree one, and from a good speedup
of 3.30x otherwise. For example, with the exponential
function in double precision, out of twenty-two binades
which do not evaluate to overflow or underflow, fifteen
binades are more efficiently computed using the new
regular algorithm.

However, both HR-case searches are slow when the
truncation error ǫtrunc is high compared to the targeted
error ǫ. The best here should be to consider a Boolean
test using polynomials of higher degree like in the SLZ
algorithm.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm based
on continued fraction expansion for HR-case search
which improves Lefèvre HR-case search algorithm by
strongly reducing loop and branch divergence, which is
a problem inherent to GPU because of their partial SIMD
architecture. We have also proposed an efficient deploy-
ment on GPU of these two HR-case search algorithms
and an hybrid CPU-GPU deployment for the generation
of polynomial approximations.

When searching for HR-cases of the exp function in
double precision, these deployments enable an overall
speedup of up to 53.4x on one NVIDIA C2070 GPU over
a sequential execution on one Intel X5650 CPU core, and
a speedup of up to 7.1x on one NVIDIA C2070 GPU over
one Intel X5650 hex-core CPU.

In the future, we plan to investigate whether our new
regular HR-case search can benefit from other SIMD
architectures like vector units (SSE, AVX, . . .) on multi-
core CPU and MIC (Many Integrated Cores) architec-
tures. This will require an OpenCL [13] implementation
and an effective automatic vectorization by the OpenCL
compiler.

We also hope to further decrease the computation
times by deploying on GPU the SLZ algorithm which

tests the existence of HR-cases with higher degree poly-
nomials. This algorithm heavily relies on the use of the
LLL algorithm. The deployment of this algorithm on
GPU is therefore far from trivial if one wants to obtain
good performance. Porting the LLL algorithm to GPU
will be the next step of this work.

8 ACKNOWLEDGEMENT

This work was supported by the TaMaDi project of
the french ANR (grant ANR 2010 BLAN 0203 01). The
authors want to thank Vincent Lefèvre for helpful discus-
sions on the HR-case search and for providing us with
his implementations and results. We also thank Polytech
Paris-UPMC and their system administrator team for
allowing us to use their CPU-GPU server.

REFERENCES

[1] Microprocessor Standards Commitee, “IEEE Standard for
Floating-Point Arithmetic,” tech. rep., IEEE Computer Society,
August 2008.

[2] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-point Arithmetic. Birkhauser, 2009.

[3] A. Ziv, “Fast evaluation of elementary mathematical functions
with correctly rounded last bit,” ACM Trans. Math. Softw., vol. 17,
pp. 410–423, September 1991.

[4] V. Lefèvre, “An algorithm that computes a lower bound on the
distance between a segment and Z

2,” Tech. Rep. 97-18, Labora-
toire de l’Informatique du Parallélisme, ENS Lyon, 1997.

[5] V. Lefèvre, Moyens arithmétiques pour un calcul fiable. PhD thesis,
École normale supérieure de Lyon, 2000.

[6] D. Stehlé, V. Lefèvre, and P. Zimmermann, “Worst cases and
lattice reduction,” in 16th IEEE Symposium on Computer Arithmetic
(ARITH 16), pp. 142–147, IEEE Computer Society, 2003.

[7] D. Stehlé, V. Lefèvre, and P. Zimmermann, “Searching worst
cases of a one-variable function using lattice reduction,” IEEE
Transactions on Computers, vol. 54, pp. 340–346, 2005.

[8] P. Fortin, M. Gouicem, and S. Graillat, “Towards solving the table
maker’s dilemma on GPU,” in Proceedings of the 20th International
Euromicro Conference on Parallel, Distributed and Network-based Pro-
cessing, PDP’2012, pp. 407 – 415, IEEE Computer Society, February
2012.

[9] N. Brunie, S. Collange, and G. Diamos, “Simultaneous branch
and warp interweaving for sustained GPU performance,” in
International Symposium on Computer Architecture, ISCA, 2012.

[10] S. Frey, G. Reina, and T. Ertl, “SIMT microscheduling: Reducing
thread stalling in divergent iterative algorithms,” in Proceedings
of the 20th International Euromicro Conference on Parallel, Distributed
and Network-based Processing, PDP’2012, pp. 399–406, IEEE Com-
puter Society, February 2012.

[11] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence
in GPU programs,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, GPGPU-4, pp. 3:1–
3:8, ACM, 2011.

[12] NVIDIA, CUDA C Programming Guide, version 4.1, November
2011.

[13] Khronos Group, The OpenCL Specification Version 1.2, November
2011.

[14] NVIDIA, CUDA C Best Practices Guide, version 4.1, January 2012.
[15] G. Hanrot, V. Lefèvre, D. Stehlé, and P. Zimmermann, “Worst

cases of a periodic function for large arguments,” in Proceedings
of the 18th IEEE Symposium on Computer Arithmetic, ARITH 18,
pp. 133–140, 2007.

[16] N. B. Slater, “The distribution of the integers n for which
{θn} < φ,” Proceedings of the Cambridge Philosophical Society,
vol. 46, pp. 525–534, October 1950.

[17] V. T. Sõs, “On the theory of diophantine approximations I,” Acta
Math. Acad. Sci. Hungar., vol. 8, pp. 461–472, 1957.

[18] V. T. Sõs, “On the distribution mod 1 of the sequence nα,” Ann.
Univ. Sci. Budapest, vol. 1, pp. 127–134, 1958.

16

[19] T. Van Ravenstein, “The three gap theorem (Steinhaus con-
jecture),” Australian Mathematical Society, vol. Series A, no. 45,
pp. 360–370, 1988.

[20] N. B. Slater, “Gaps and steps for the sequence nθ mod 1,” Math-
ematical Proceedings of the Cambridge Philosophical Society, pp. 1115–
1123, 1967.

[21] V. Lefèvre, “New results on the distance between a segment and
Z2. application to the exact rounding,” in Proceedings of the 17th
IEEE Symposium on Computer Arithmetic, ARITH 17, pp. 68–75,
IEEE Computer Society, 2005.

[22] R. O. Kuzmin, “Sur un problème de Gauss,” in Atti del Congresso
Internationale dei Matematici, vol. 6, pp. 83–89, 1932.

[23] A. Y. Khinchin, Continued fractions. Dover, 1997.
[24] D. E. Knuth, The Art of Computer Programming, vol. 2 (Seminu-

merical Algorithms). Addison-Wesley, second ed., 1981.
[25] S. Sengupta, M. Harris, and M. Garland, “Efficient parallel scan

algorithms for GPUs,” Tech. Rep. NVR-2008-003, NVIDIA, De-
cember 2008.

[26] V. Lefèvre, J.-M. Muller, and A. Tisserand, “Toward correctly
rounded transcendentals,” IEEE Transactions on Computers, vol. 47,
no. 11, pp. 1235–1243, 1998.

[27] F. de Dinechin, J.-M. Muller, B. Pasca, and A. Plesco, “An FPGA
architecture for solving the Table Maker’s Dilemma,” in 22nd

IEEE International Conference on Application-Specific Systems, Archi-
tectures and Processors, ASAP 2011, pp. 187–194, IEEE Computer
Society, 2011.

[28] J. von zur Gathen and J. Gerhard, “Fast algorithms for Taylor
shifts and certain difference equations,” in Proceedings of the
1997 international symposium on Symbolic and algebraic computation,
ISSAC ’97, pp. 40–47, ACM, 1997.

[29] T. Granlund and the GMP development team, GNU MP, 4.3.2 ed.,
January 2010.

[30] T. Nakayama and D. Takahashi, “Implementation of multiple-
precision floating-point arithmetic library for GPU computing,” in
Proceedings of the 23rd IASTED International Conference on Parallel
and Distributed Computing and Systems, PDCS 2011, pp. 343–349,
December 2011.

[31] M. Lu, B. He, and Q. Luo, “Supporting extended precision on
graphics processors,” in Proceedings of the Sixth International Work-
shop on Data Management on New Hardware, DaMoN ’10, pp. 19–26,
ACM, 2010.

[32] NVIDIA, Parallel thread execution ISA Version 3.0, February 2012.

