Tracking in Presence of Total Occlusion and Size Variation using Mean Shift and Kalman Filter - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Tracking in Presence of Total Occlusion and Size Variation using Mean Shift and Kalman Filter

Résumé

The classical mean shift algorithm for tracking in perfectly arranged conditions constitutes a good object tracking method. However, in the real environment it presents some limitations, especially under the presence of noise, objects with varying size, or occlusions. In order to deal with these problems, this paper proposes a reliable object tracking algorithm using mean shift and the Kalman filter, which was added to the traditional algorithm as a predictor when no reliable model of the object being tracked is found. Experimental work demonstrates that the proposed mean shift Kalman filter algorithm improves the tracking performance of the classical algorithms in complicated real scenarios. The results involve the tracking of an object in a gray level and in a color sequence, with varying size and in presence of total occlusion.
Fichier principal
Vignette du fichier
trackingKalman2011.pdf (1.96 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00749631 , version 1 (08-11-2012)

Identifiants

  • HAL Id : hal-00749631 , version 1

Citer

Oscar Efrain Ramos Ponce, Mohammad Ali Mirzaei, Frédéric Merienne. Tracking in Presence of Total Occlusion and Size Variation using Mean Shift and Kalman Filter. 2011 IEEE/SICE International Symposium on System Integration, Dec 2011, Kyoto, Japan. ⟨hal-00749631⟩
592 Consultations
504 Téléchargements

Partager

More