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Tracking in Presence of Total Occlusion and Size Variation using
Mean Shift and Kalman Filter

Oscar E. Ramos, Mohammad Ali Mirzaei, Frédéric Merienne

Abstract— The classical mean shift algorithm for tracking in
perfectly arranged conditions constitutes a good object tracking
method. However, in the real environment it presents some
limitations, especially under the presence of noise, objects with
varying size, or occlusions. In order to deal with these problems,
this paper proposes a reliable object tracking algorithm using
mean shift and the Kalman filter, which was added to the
traditional algorithm as a predictor when no reliable model of
the object being tracked is found. Experimental work demon-
strates that the proposed mean shift Kalman filter algorithm
improves the tracking performance of the classical algorithms
in complicated real scenarios. The results involve the tracking
of an object in a gray level and in a color sequence, with varying
size and in presence of total occlusion.

I. INTRODUCTION

Tracking is an important technique for a variety of ap-
plications, ranging from military such as anti-aircraft and
missiles shelter defense systems to very commercial cases
like unmanned autopilot navigation, monitoring and security.
The main concern in all the applications is to find the object
of interest, which is generally called the target, and then to
follow it using vision systems. The goal of object tracking in
a video stream is to continuously and reliably determine the
position of an object against dynamic scenes with presence
of noise [1]. To this sake, numerous sophisticated algorithms
have been proposed and implemented. For example, con-
sidering Gaussian and linear problems, Welch and Bishop
[2] proposed a Kalman filter for tracking a user’s pose for
interactive interface with virtual environments. The proposed
single-constraint-at-a-time (SCAAT) tracking method fused
the measurements of different optical sensors in order to im-
prove the tracking accuracy and stability. Proposed schemes
in [3][4] recruited the posterior probability distribution over
some scene properties of interest, based on image observa-
tions to improve the functionality of object tracking under
real working conditions. Other tracking strategies can also be
found as Multiple Hypothesis Tracking [5][6], kernel-based
tracking [7][8], and tracking based on optical flow [9].

A scale invariant feature transform, known as SIFT [10],
based on the mean-shift algorithm was presented for object
tracking in real scenarios. SIFT features were widely used in
this method to find correspondences in the regions of interest
across the frames. Meanwhile, mean-shift was used to find
regions of interest via color histograms [11]. To improve

O. Ramos is with LAAS-CNRS, University of Toulouse III (UPS), 7 av.
du Colonel Roche, 31077 Toulouse, France

A. Mirzaei is with ParisTech, Image Institute ENSAM, CNRS, Le2i Lab,
2 rue Thomas Dumorey, 71100 Chalon-sur-Saône, France
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the performance of this technique in complex scenes, [12]
proposed a new algorithm for optimally adapting the ellipse
outlining the objects of interest. The target is represented by
a Gaussian mixture model in a joint feature-spatial space,
with each ellipsoid corresponding to a different fragment.
These fragments are automatically adapted to the image data,
then selected by a region-growing procedure and updated
according to a weighted average of the past and present
image statistics. The target and background are modeled in
a Chan-Vese manner using the framework of level sets to
preserve accurate boundaries of the target [13]. The Active
Shape Model (ASM) has been widely used to recognize
and track a face from a video sequence. Since this method
is computationally heavy, another complementary research
[14] proposed an enhanced ASM and predicted mean-shift
algorithm to meet these challenges, which combines the
context information and predicts mean-shift to obtain multi-
angle start shapes for ASM searching and the best result
shape is chosen based on a matching evaluation.

In this paper, the target object is identified with a bounding
box in the first frame using image processing techniques.
After that, the histogram model is used as a feature to
estimate the motion vector. By having this motion vector,
the bounding box is moved to a new place to indicate the
motion of the target and to localize its position. For color
images, color model is applied to extract this feature but the
method remains similar. In order to cope with the different
size of the target object, the scale needs to be found and
the tracking system rescaled. Moreover, to deal with noisy
situations and total occlusion, the Kalman filter was added
to the mean-shift approach improving the reliability of the
current tracking algorithm.

This paper is organized as follows. Section II describes
the region of interest selection using image processing tech-
niques. The mean-shift algorithm is briefly recalled in section
III. Section IV adapts the technique to handle tracking when
the object has different scales. Color information is added to
the algorithm in section V. Finally, section VI combines the
Kalman filter with the algorithm to deal with total occlusion.

II. PREPARATION OF THE DATA FOR THE ALGORITHM

Each image will be considered as a 3 dimensional matrix
N3 → R with the form I(x, y, t). The two first components
of the domain x ∈ [0, H], y ∈ [0,W ] correspond to the pixel
location (conventionally starting from the top left corner),
and the third one t ∈ [1, Nimg] to the image sequence
number (associated with the time), where H represents the
height of the image, W its width and Nimg the total number



of images in the sequence. In this work, the range is reduced
to the set of gray levels I(x, y, t) ∈ [0, 255], but it is evident
that any other representation would be easily applied.

A. Background subtraction

In order to obtain the background from the set of given
images, the median of each pixel in time is performed. The
assumptions are that there is no motion in the camera or
background from image at time t to image at time t+1, and
that the objects not constituting the background are moving
along the scene and appear in different positions in time,
that is, the moving object appears only for a short period of
time in a given location. Then, the background image for a
certain (x, y) pixel position, Iback(x, y), is given by

Iback(x, y) = med{I(x, y, 1), I(x, y, 2), ..., I(x, y,Nimg)}

where med{.} represents the median operation.

B. Region of Interest

We assume that the first image presents the object that
has to be tracked. Then, the absolute value of the difference
between the first image and the background, computed as

Idiff (x, y) = |I(x, y, 1)− Iback(x, y)| (1)

highlights the objects that are different to the background.
To find the region of interest (ROI), Idiff can be binarized
applying a threshold to it. However, due to noise or to the
existence of minor objects in first image (which were not
present in the background), some small undesired regions
not constituting the ROI might appear. In order to eliminate
them, morphological operations can be applied.

To illustrate this, a sequence of images of a street with a
car and some people occasionally walking by will be used.
The objective is to track the car. The background obtained is
shown in Figure 1a. The result after thresholding is shown in
Figure 1b. However, there are some undesired elements to be
eliminated, which have a small number of constituting pixels.
Then, a criteria for their elimination was to first label the
connected elements using 8-connectivity, leading to several
connected regions, and then keeping only the region with
most connected elements, that is, the largest region. This
region constitutes the desired ROI and corresponds to the
car. To improve the result, the thresholded image can be first
closed applying successively a dilation and then an erosion.
Figure 1c shows the result after keeping only the largest
region. The maximum and minimum positions of this region
were determined and used as the limits of the bounding box
of the ROI. The width wr and height hr of the region were
computed, as well as its center (xc, yc), which is the mean
of the extremes in x and in y. The bounding box is shown
in Figure 1d.

III. BASIC MEAN-SHIFT ALGORITHM

The algorithm described in this section corresponds basi-
cally to the one in [15], [16]. First, the grey levels for each
one of the pixels in the ROI have to be quantized into m
bins. Let the number of pixels in the ROI be n. For a certain

(a) Background obtained (b) Initial thresholded image

(c) Largest region selected (d) Bounding box on the ROI

Fig. 1: Example of preparation of the data

pixel Xi = (xi, yi) in the ROI, where i ∈ [1, n], its quantized
value or bin number, will be b(Xi). A new image containing
only this values for the ROI, at any time t, is created as:

b(Xi) = b(xi, yi) =

⌊
I(xi, yi, t)

256/m

⌋
(2)

where b.c represents the floor function (largest integer not
greater than f ). Using this formulation, b(Xi) will have
values ranging from 0 to m − 1. The target model q is a
discrete m-bin histogram obtained from the ROI in the first
image and containing m elements: q = [q1, q2, ..., qm]. Each
element is given by [7]:

qu+1 = C

n∑
i=1

k

∥∥∥∥Xi −Xc

h

∥∥∥∥2δ(b(Xi)− u) (3)

where u ∈ [0,m−1], Xc are the coordinates of the center of
the ROI, C is a normalization factor so that q sums up to 1, h
is half of the size of the window, and k is the Epanechnikov
kernel defined by

k(x) =

{
0.5C−1d (d+ 2)(1− x) , x < 1

0 , x > 1
(4)

Since the image lies in a 2 dimensional space, d = 2 and
Cd = π, the volume of a unitary circle. Note that the
subindex of q is u+1 instead of u. This change in the notation
was necessary since the values of the histogram b(Xi) start
with 0, whereas the elements of q, qi start with 1.

For the computation, first the center of the ROI, Xc, is
calculated with the values of q initialized to zero, and then
the pixels belonging to the ROI are read in order. For each
pixel, the square of the centered and normalized magnitude
is computed in this case as:∥∥∥∥Xi −Xc

h

∥∥∥∥2 =

(
xi − xc
hr/2

)2

+

(
yi − yc
wr/2

)2

(5)



where wr and hr are the width and height of the region,
as described previously. This value is the argument of the k
function. Then, the value of k is added to the element of the
target model qu+1 considering that b(Xi) = u. Finally, after
the whole computation, q is normalized to sum up to 1, like
a probability distribution.

For the ROI in the next frame (the target candidate), the
color model is computed exactly in the same way, but now it
is named p(Yc) instead of q. The center of the new ROI is Yc
referring to the fact that now the central point of the patch is
going to be changed in order to find a good similarity with
the target model. Each one of the pixels in the new frame is
called Yi = (xi, yi). To evaluate how this new color model
matches the previous one, the Brattacharyya coefficient ρ is
calculated as:

ρ(q, p(Yc)) =

m∑
u=1

√
qupu(Yc). (6)

The weight for each pixel Yi in the ROI is then:

wi = w(Yi) =

m∑
u=1

δ(b(Yi)− u)

√
qu

pu(Yc)
(7)

which states that for each pixel, the root square is taken only
for the component of p and q that corresponds to the value
of b(Yi); all the other other components are neglected by the
δ function. The new location Z is:

Z =

∑n
i=1 Yiwig(‖(Y − Yi)/h‖2)∑n
i=1 wig(‖(Y − Yi)/h‖2)

. (8)

The function g(x) = −k′(x) and in this case, since the
kernel k(x) depends linearly on x, its derivative is a constant
and can be omitted from the previous equation as it appears
in both the numerator and denominator and will be then
canceled after the division. However, the fact that it is
different to zero only when x < 1 has to be taken into
account. After obtaining the new position of Z inside the
patch, with reference to its center, it has to be translated
to the position in the image, which can be easily done by
adding it to the coordinates of the center of the patch in the
image frame. Doing this process iteratively yields to the new
center of the patch, which corresponds to the desired center
of the tracked object.

Summarizing, the basic algorithm is as follows:
1) Compute the target model using (3)
2) Initialize the patch (ROI) for the new frame in the

position of the previous frame, Y , and obtain its model
p(Y ).

3) Compute the distance ρ given by (6).
4) Calculate the new location Z applying the mean shift,

using (8).
5) Compute the new values of p(Z) and ρ.
6) If the new distance is smaller than the previous one,

that is ρ[p(Z), q] < ρ[p(Y ), q], change the value of Z
to 0.5(Y + Z).

7) If ‖Z − Y ‖ is small, stop; otherwise assign Z to Y
and go to step 2.

The loop can be controlled for a number of fixed iterations
before it reaches a small difference in the last step in order
to make the process computationally less expensive. This
approach, although faster, sacrifices the accuracy leading to
bounding boxes slightly less well localized in the image, but
the tracking still works.

The results of the tracking process for different positions
of the object is shown in Figure 2. The size of the patch
does not change from frame to frame, but the size of the car
decreases as the car goes further in the image. Nevertheless,
the algorithm is still able to track the car, even though the
size of the new car is smaller than the initial one.

Fig. 2: Tracking using the same ROI size

IV. HANDLING THE VARYING SIZE OF THE OBJECT

The simplest way to handle the tracking of an object
whose size varies in time is to define different scales and
then compare the size of the current bounding box with the
previous one to find the scale down/up between two con-
secutive windows. The usage of the γ (gamma) distribution
function, called γ-normalization method, was introduced by
[17]. The γ-normalization function is

fγ(θ, V ) = |V |γ/2f(θ, V ) (9)

where θ represents the mean and γ the variance. This
function is directly linked with the position of the local
patches which are defined by the mean.

The method followed here is the one proposed in [7]. It
consists in pre-computing the color distribution for the target
candidate at three different scales in every frame. Then, the
one that gives the highest Bhattacharyya coefficient for the
whole iteration procedure in that frame is selected keeping
that scale as the initial one for the next frame. Let Hold be
the original size (height or width) of the ROI. The three test
sizes are computed as Hold, (1 + ∆)Hold and (1−∆)Hold.
From them, the one that gives the largest coefficient, HM ,
is selected, and the new size of the window is given by:

Hnew = ∆HM + (1−∆)Hold (10)



where ∆ is the incremental size of the window, typically
0.1. This new size is used for the computation inside the
iteration, and it is also used as ROI input size for the next
frame.

The results obtained using the scale adaptation are shown
in Figure 3. Comparing these results with Figure 2, the
improvement in the scale selection can be appreciated, and
is particularly noticeable for the last images.

Fig. 3: Tracking using an adaptive scale for the ROI

V. TRACKING WITH COLOR IMAGES

The procedure described in the previous sections can be
also applied to color images. However, some modifications
are necessary to handle the color information. The results
will also depend on how the color distribution is modeled.
There are many possibilities and this section will present two
examples.

The first sequence used consists on the top view of
a toy car moving in a static background. In this case,
for background extraction, the median was taken for each
plane independently of the others, and then the results were
”added” in order to generate again the color background.
The segmentation is based in morphological operations in a
similar way as for the gray level images: thresholding the
image and then keeping the largest connected region. But,
the difference of the first image and the background was
computed in each of the R, G and B planes independently.
This led to three “segmented” images for each image plane,
which were then combined by simple addition.

Fig. 4: Segmented region for the toy car image

Here, the approach to mean-shift algorithm is to compute
the histogram in each image channel independently and then

increase the size of the q and p vectors to 3m, where m is
the number of bins. This approach simplifies the problem,
without using explicitly the color histogram, but profiting
somehow the color information. The rest is kept as for the
gray scale case. Some of the results are shown in Figure 5.
The first images show that mean shift is robust enough to
deal with partial occlusions, which were present when the
toy car passed partially behind the box, making its lower
part disappear from the field of view of the camera. However,
when there is complete occlusion (toy car completely behind
the box), the tracking system fails and the bounding box gets
”lost”: it remains in the place where the toy disappeared as
a consequence of the complete occlusion.

Fig. 5: Tracking a toy car. The time evolution is left to right,
and top to down. The car is tracked even after partial occlu-
sion, but it fails after complete occlusion (bottom images)

The second color sequence is the top view of a plane
with the camera moving with a similar velocity of the plane,
so that it almost always remains in the bottom part of the
image. The background composed of clouds changes as the
plane moves, and then, it cannot be correctly estimated using
the median. Then, background subtraction cannot be applied.
The approach here was to use the region growing method
for segmentation. That is, the initial image was segmented
without considering the sequence background at all. After
this, it was binarized, and the extremes of the biggest region
(corresponding to the plane and discarding the sky) were
obtained. The next steps were exactly as in the previous toy
car case. Using the RGB color space, acceptable results were
obtained, but the bounded region was not very stable. Then,
the HSV space was intended as a solution. Some images
obtained using the HSV space are shown in Figure 6.



Fig. 6: Plane sequence tracking in the HSV space

One of the problems encountered with this sequence was
that the bounding box containing the whole plane also
contains a large part of sky, which is constantly changing.
Then, for some images, the box with the ROI tends to get
slightly lost, but still with most of it covering the plane,
due to the large amount of changing sky. One solution is to
restrict the tracked area to the central part of the plane where
no sky is present. This yields accurate results since there is no
”background” noise. To obtain this central part, the threshold
value was modified, when subtracting the first image from the
”background” (no region growing segmentation was used for
this slightly different approach). For displaying the results,
only a bounding box around the tracked part can be shown,
or a bounding box extended to the whole plane can be used,
being the last one more visually attractive. To emphasize this
approach, only this region is shown in Figure 7.

Fig. 7: Plane sequence tracking using a reduced ROI

There is a compromise between speed and color space. If
RGB is used, the algorithm will work faster, but for some
frames the tracking region will be slightly moved (very small
displacement. When using HSV the result is better, but it is
slightly slower as compared to RGB, because of the color
space modification.

Another approach for dealing with color is to assume
that the shape of a non-rigid object is approximated by an
ellipsoidal (rectangle or circular or any other kind of shape)
region in an image. The region can then be selected exactly
in the same way that the very initial steps fo the initial

condition were selected. Let xi denote a pixel location, θ
the initial location of the center of the object in the image,
V the variance, M the number of bins in the histogram and
let b(xi) be a function that assigns the color value for each
pixel to its bin. The value of the mth bin is calculated by

om =

Nv0∑
i=1

N (xi; θ0, V0)δ[b(xi)−m] (11)

In this equation N represents the Gaussian distribution and
δ is the Kronecker delta function. The weighting coefficient
calculation is exactly the same as the one used in the first
part: the farther the lesser weight, and the nearer the larger
weight.

VI. TRACKING IN PRESENCE OF TOTAL OCCLUSION:
PROFITING THE KALMAN FILTER

In order to increase the accuracy and robustness of the
tracking, and to deal with total occlusion, the Kalman filter
was introduced in the body of the algorithm. The idea is to
predict the position of the tracked object in the new frame
based on the object’s previous motion.

A. Methodology
Let the states of the filter be X = [xc, yc, ẋc, ẏc], where

ẋc and ẏc represent the velocity in xc and yc, respectively.
The discrete-time process model will be given by

Xt =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

Xt−1 +N(0, Q) (12)

where ∆t is the sampling time and N(0, Q) represents a
normal distribution for the model with a covariance given
by Q. For initialization, the initial positions are set to the
initial centers of the ROI (computed in the very first frame)
and the velocities are arbitrarily initialized (e.g. to 1). The
discrete-time measurement model is given by:

Yt =

[
1 0 0 0
0 1 0 0

]
Xt +N(0, R) (13)

where N(0, R) is the zero-centred normal distribution cor-
responding to the uncertainty in the measurement, with R as
the covariance matrix for the measurement.

After the initialization of the values, the basic iteration
of the mean-shift algorithm is performed for the second
frame, but before assigning the new center of the ROI (the
tracked object), the prediction part of the Kalman filter is
computed with the very well known Kalman equations. After
the prediction step, the value of the distance ρ is checked. If
ρ > ρmin, the measurement (estimation of the new center)
is consistent enough and it is used to update the prediction.
The value of ρmin is experimentally determined and usually
ranges from 0.8 to 0.95, but other values are possible. If
ρ < ρmin, then the new center calculated using mean-shift
is not reliable, and no update is performed. This happens, for
instance, when there is complete occlusion. In this situation,
the new center relies completely on the prediction of the
Kalman Filter, since no measurement is taken into account.



B. Example

This methodology was applied to the sequence of the
toy car, presented in the previous section. In that case,
the mean shift tracking algorithm failed when the toy was
completely occluded by the box, as shown in Figure 5. The
total occlusion problem was solved using the Kalman Filter.
When initializing the algorithm, the value of ∆t was assumed
to be 2 for a stronger prediction, the values for Q were zeroed
everywhere except in the velocities variance where they
were established as 0.12, and R was set to diag{1, 1}. For
checking the reliability of mean-shift, a value of ρmin = 0.85
was used. The results are shown in Figure 8, where the car
is moving from left to right passing behind the white box. It
can be observed that the target is tracked even after having
been completely occluded by the box, thanks to the addition
of the Kalman filter prediction.

Fig. 8: Kalman Filter with mean-shift algorithm to overcome
the total occlusion problem.

VII. LIMITATIONS OF THE ALGORITHM

The experiments showed that this algorithm is quite sen-
sitive to the initial conditions, that is, if the bounding box
is initially not located in a good place (or, equivalently, if
the initial target is not precisely determined), it will go to a
wrong place after some movement of the object. However,
this displacement will not be very big and tracking will be
still possible, although less accurate. Second, in case that
the difference between the background and the object is
small in the sense of illumination and contrast, it is hard
to track the object with the color model that was defined.
One of the possible ways is to try to adapt the color space
according to the case of study, if high accuracy is needed.
But in case there is a good difference between the object
and its background, the algorithm works well due to a lot of
redundant information. The main limitation of simple mean-
shift tracking is the case of total occlusion. The proposed way
to solve this problem in this paper was to use the kalman
filter to predict the position of the tracked object when it is
totally occluded.

VIII. CONCLUSIONS

The mean-shift tracking algorithm works well when there
is a lot of information in the frames, a notorious difference
in contrast, and illumination without presence of noise. This
algorithm might present some problems when facing severe
or complete occlusions, or when dealing with varying size
objects. The way to solve this problem, proposed in this
paper, is the addition of the Kalman filter, which has a good
performance in real applications even with presence of noise.
A combination of mean-shift tracking with Kalman filter
yields to very good results when dealing with total occlusion
due to the prediction of the target’s motion based on the
previous frames measurements. The usage of particle filter
is also possible.
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