A new algorithm for fixed design regression and denoising - Archive ouverte HAL
Article Dans Une Revue Annals of the Institute of Statistical Mathematics Année : 2004

A new algorithm for fixed design regression and denoising

Fabienne Comte
Yves Rozenholc

Résumé

In this paper, we present a new algorithm to estimate a regression func- tion in a fixed design regression model, by piecewise (standard and trigonometric) polynomials computed with an automatic choice of the knots of the subdivision and of the degrees of the polynomials on each sub-interval. First we give the theoretical background underlying the method: the theoretical performances of our penalized least-squares estimator are based on non-asymptotic evaluations of a mean-square type risk. Then we explain how the algorithm is built and possibly accelerated (to face the case when the number of observations is great), how the penalty term is cho- sen and why it contains some constants requiring an empirical calibration. Lastly, a comparison with some well-known or recent wavelet methods is made: this brings out that our algorithm behaves in a very competitive way in term of denoising and of compression.
Fichier principal
Vignette du fichier
version-finale-AISM2004.pdf (354.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00748959 , version 1 (06-11-2012)

Identifiants

  • HAL Id : hal-00748959 , version 1

Citer

Fabienne Comte, Yves Rozenholc. A new algorithm for fixed design regression and denoising. Annals of the Institute of Statistical Mathematics, 2004, 56 (3), pp.449-473. ⟨hal-00748959⟩
121 Consultations
303 Téléchargements

Partager

More