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A NEW ALGORITHM FOR FIXED DESIGN REGRESSION AND
DENOISING

F. COMTE∗ AND Y. ROZENHOLC∗∗

Abstract. In this paper, we present a new algorithm to estimate a regression function
in a fixed design regression model, by piecewise (standard and trigonometric) polynomi-
als computed with an automatic choice of the knots of the subdivision and of the degrees
of the polynomials on each sub-interval. First we give the theoretical background under-
lying the method: the theoretical performances of our penalized least-squares estimator
are based on non-asymptotic evaluations of a mean-square type risk. Then we explain
how the algorithm is built and possibly accelerated (to face the case when the number
of observations is great), how the penalty term is chosen and why it contains some con-
stants requiring an empirical calibration. Lastly, a comparison with some well-known or
recent wavelet methods is made: this brings out that our algorithm behaves in a very
competitive way in term of denoising and of compression.

1. Introduction

We consider in this paper the problem of estimating an unknown function f from [0, 1]
into IR when we observe the sequence Yi, i = 1, . . . , n, satisfying

(1) Yi = f(xi) + σεi,

for fixed xi, i = 1, . . . , n in [0, 1] with 0 ≤ x1 < x2 < · · · < xn ≤ 1. Most of the theoretical
part of the work concerns any type of design but only the equispaced design xi = i/n
is computationally considered and implemented. Here εi, 1 ≤ i ≤ n is a sequence of
independent and identically distributed random variables with mean 0 and variance 1.
The positive constant σ is first assumed to be known. Extensions to the case where it is
unknown are proposed.

We aim at estimating the function f with a data driven procedure. In fact, we want
to estimate f by piecewise standard and trigonometric polynomials in a spirit analogous
but more general than e.g. Denison et al. (1998). We also want to choose among “all
possible subsets of a large collection of pre-specified candidates knot sites” as well as
among various degrees on each subinterval defined by two consecutive knots.

Our method is based on recent theoretical results obtained by Baraud (2000, 2002),
Baraud et al. (2001a, b) who adapted to the regression problem general methods of model
selection and adaptive estimation initiated by Barron and Cover (1991) and developed by
Birgé and Massart (1998), Barron et al. (1999). Results on Gaussian regression can also
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be found in Birgé and Massart (2001). It is worth mentioning that a similar (theoretical)
solution to our regression problem, in a context of regression with random design, is
studied by Kohler (1999): he proposes also piecewise smooth regression functions to
estimate the regression function, and he uses a penalized least-squares criterion as well.
The approach is similar to Baraud’s (2000) and he uses Vapnis-Chervonenkis theory in
place of Talagrand’s or deviation inequalities.

All the results we have in mind about fixed design regression have the specificity of
giving non asymptotic risk bounds and of dealing with adaptive estimators. The first
results about adaptation in the minimax sense in that context were given by Efromovich
and Pinsker (1984). Some asymptotic results have been also proved by Shibata (1981),
Li (1987), Polyak and Tsybakov (1990). An overview of most nonparametric techniques
is also given by Hastie and Tibshirani (1990). Lastly, it is worth mentioning that most
available algorithms deal with equally spaced design; results and proposals concerning
the more general case of a non necessarily equi-spaced design are quite recent. Some of
them can be found for instance in Antoniadis and Pham (1998), see also the survey in
Antoniadis et al. (2002).

An attractive feature of the method which is developed here is that, once a calibration
step is done, everything is completely automatic and reasonably fast. Friedman and Sil-
verman (1989) already gave an algorithm for optimizing the number and location of the
knots of the partition in an adaptive way: this algorithm is used by Denison et al. (1998)
but the latter calibrate a piecewise cubic fit. In other words, all their polynomials have
the same degree a priori fixed to be 3. Ours have variable degrees between 0 and rmax

(which is rmax = 75 in most experiments) and those degrees are also automatically cho-
sen. This provides an important flexibility for denoising step signals for instance. Note
that we did not deal with splines (and associated constraints) which were studied for
instance by Lindstrom (1999) using a penalized estimation method as well. Moreover, the
calibration operation being done once and for all, the only input of the algorithm is the
maximal number of knots to be considered and the maximal degree rmax. Contrary to
many MCMC methods, we do not have any complicated nor arbitrary stopping criterion
to deal with, nor do we have any problems of initialization either. A great number of
wavelet methods have also been recently proposed in the literature. For an exhaustive
presentation and test of these methods, the reader is referred to Antoniadis et al. (2002).
Therefore, we compared our method with standard toolboxes implemented by Donoho
and Johnstone (1994), as well as with some more recent methods tested in Antoniadis et
al. (2002). The performances of our algorithm prove that our method is very good, for
any sample size, any type of function f , and whether σ is known or not. Let us mention
also that our method seems to globally behave in a very competitive way, in term of
L2-error performances as well as in term of sparseness of the representation of the signal.
In addition, we deal with much more general frameworks. Our main drawback until now
is in term of the complexity of our algorithm,which is of the order O(n2) linear operations
or O(n3) elementary operations (+,×, <) when the one of wavelet algorithms is of the
order O(n log2(n)) elementary operations. Actually we propose a quick but approximated
version with complexity of the order O(n) linear operations or O(n2) elementary opera-
tions (+,×, <). As a counterpart the analysis provided by wavelet methods includes 2n/2
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bases which are constructed on dyadic partitions whereas ours includes about (2rmax)
n

different bases which are constructed on general partitions.
Section 2 gives some more details on the theoretical part of the procedure. We present

first its formal principle and a theoretical result is stated. Finally, the general form of
the penalty we are working with is written. In Section 3, details about how the estimate
is computed are given, two relevant bases are described (one for the space of standard
polynomials, the other for the space of trigonometric polynomials) and the reason for
the choice of the form of the penalty term involved in the computation of the estimate
is explained. Section 4 presents the algorithm: the two main ideas, namely localization
and dynamical programming are developed. The scheme for accelerating the algorithm
without losing its good properties is introduced. Section 5 presents the empirical results
for both the complete algorithm and the accelerated algorithm. The calibration procedure
is led by the complete algorithm. Then both methods are compared (in term of L2-
error and of compression performances) with wavelet denoising developed by Donoho
and Johnstone (1994) and Donoho et al. (1995) whose toolbox is available on the Internet
together with the test functions we used. Comparison results with 8 other recent methods
are also provided.

2. The general method

2.1. General framework. We aim at estimating the function f of model (1) using a
data driven procedure. For that purpose we consider families of linear spaces generated
by piecewise (standard or trigonometric) polynomials bases and we compute for each
space (basis) the associated least-squares estimator. Our procedure chooses among the
resulting collection of estimators the ”best” one, in a sense that will be later specified.
The procedure is the following. Let Dmax and rmax be two fixed integers and D an integer
such that 0 ≤ D ≤ Dmax. For any D, we choose a partition of [0, 1], that is a sequence
a1, . . . , aD−1 of D−1 real numbers in [0, 1] such that 0 = a0 < a1 < · · · < aD−1 < aD = 1,
a sequence of degrees, that is integers r1, . . . , rD, such that for any d, 1 ≤ d ≤ D, 0 ≤
rd ≤ rmax, and a sequence C1, . . . , CD of binary variables such that if Cd = P standard
polynomials are considered on [ad−1, ad[ and if Cd = T trigonometric polynomials are
considered on [ad−1, ad[, for d = 1, . . . , D. Then, denoting by

(2) m = (D, a1, . . . , aD−1, r1, . . . , rD, C1, . . . , CD)

we define a linear space Sm as the set of functions g defined on [0, 1] that admit the
following kind of decomposition: let Id = [ad−1, ad[ for d = 1, . . . , D − 1, and ID =
[aD−1, aD], then

g(x) =
D
∑

d=1

Pd(x)1IId
(x), Pd polynomials with degree rd, d = 1, . . . , D,

where the polynomial Pd is standard if Cd = P and trigonometric if Cd = T . Note
that we may consider standard polynomials exclusively and in such a case C1, . . . , CD is
not necessary in the definition of m. We define ℓ(I) as the number of xk falling in the
subinterval I and we call it ”weight of I”.
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The space Sm generated in this way has the dimension Dm =
∑D

i=1(ri + 1). If we call

Mn ⊂ {1, ..., Dmax}×
⋃Dmax

D=1 [0, 1]D−1×{0, . . . , rmax}D×{P , T }D a finite set of all possible
choices for m, the family of linear spaces of interest is then {Sm, m ∈ Mn}.

Given some m in Mn, we define the standard least-squares estimator f̂m of f in Sm by

(3)
n
∑

i=1

(Yi − f̂m(xi))
2 = min

g∈Sm

n
∑

i=1

(Yi − g(xi))
2.

In other words, we compute the minimizer f̂m for all g in Sm of the contrast γ(g) where

(4) γ(g) =
1

n

n
∑

i=1

[Yi − g(xi)]
2 .

Each model m being associated with an estimator f̂m, we have a collection of estimators
{f̂m, m ∈ Mn} and we look for a data driven procedure m̂ = m̂(Yi, i = 1, . . . , n) which
selects automatically among the set of estimators the one that is defined as the estimator
of f :

f̃ = f̂m̂.

m̂ is a vector ”number of bins, partition, degree of the polynomials on each piece, type of
polynomial on each piece” with values in Mn, (D̂, (â1, . . . , âD̂−1), (r̂1, . . . , r̂D̂), (B̂1, . . . , B̂D̂))
based solely on the data and not on any a priori assumption on f .

Let us precise what the “best” estimator is and how to select it. We measure the risk
of an estimator via the Expected Average Squared Error. Namely, if f̂ is some estimator
of f , the risk of f̂ is defined by

d2
n(f, f̂) = E

(

1

n

n
∑

i=1

(f(xi) − f̂(xi))
2

)

.

The risk of f̂m, where f̂m is an estimator built as in relation (3), can in fact be proved to
be equal (see equation (2) in Baraud (2000)) to

d2
n(f, Sm) +

dim(Sm)

n
σ2

where dn(f, Sm) = inft∈Sm
dn(f, t) and dim(Sm) denotes the dimension of Sm. Therefore

an ideal selection procedure choosing m̂ should look for an optimal trade-off between
d2

n(f, Sm), the so-called bias term and σ2dim(Sm)/n, the so-called variance term. In
other words, we look for a model selection procedure m̂ such that the risk of the resulting
estimator f̂m̂ is almost as good as the risk of the best least-squares estimator in the family.
More precisely, our aim is to find m̂ such that

(5) d2
n(f, f̂m̂) ≤ C min

m∈Mn

{

d2
n(f, Sm) + σ2Lmdim(Sm)

n

}

,

where the Lm’s are some weights related to the collection of models {Sm, m ∈ Mn}. This
inequality means that, up to a constant C (which has to be not too far from one for the
result to be of some interest) our procedure chooses an optimal model and inside that
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model an optimal estimator in the sense that it realizes a Lm-trade-off between the bias
and the variance terms.

We consider the selection procedure based on a penalized criterion of the following form

m̂ = arg minm∈Mn
[γ(f̂m) +

penn(m)

n
]

where penn(m) is a penalty function mapping Mn into R+. We will precise this penalty
later on and just mention that it is closely related to the classical Cp criterion of Mal-
lows (1973).

The procedure is then as follows: for each model m we compute the normalized residual
sum of squares, γ(f̂m), where γ is defined by (4), we choose m̂ in order to minimize among

all models m ∈ Mn the penalized residual sum of squares γ(f̂m) + penn(m)/n and we

compute the resulting estimator, f̂m̂. Mallows’ Cp criterion corresponds to penn(m) =
2σ̂2dim(Sm)/n where σ̂2 denotes a suitable estimator of the unknown variance of the εi’s.
Our penalty term is similar but uses an unknown universal constant instead of 2 and the
factor Lm allowing for very rich collections of models (see the further discussion on the
choice of the Lm’s). When σ2 is unknown we replace it by an estimator.

2.2. Theoretical results. From the theoretical point of view, Kohler (1999), Baraud (2000,
2002), Baraud et al. (2001a, b) obtained several results. We formulate in detail a result
corresponding to model (1) satisfying the following condition:

(Hǫ) The εi’s are i.i.d.centered variables and satisfy, ∀u ∈ R

E(exp uε1) ≤ exp (u2s2/2)

for some positive s.

This assumption allows the variables εi’s to be Gaussian with variance s2 or to be bounded
by s. The particular case of Gaussian variables is given in Baraud (2002) and the following
result is a simplified version of Theorem 1 in Baraud et al. (2001).

Theorem 1. Consider model (1) where f is an unknown function. Assume that the εi’s
satisfy Assumption (Hε) and that the family of piecewise polynomials described in section
2.1 has dimensions Dm such that

(6)
∑

m∈Mn

e−LmDm = Σ < +∞

where the Lm’s are nonnegative numbers (to be chosen) and Σ is a constant independent
of n. Then there exists a universal constant θ > 0 such that if the penalty function is
chosen to satisfy

penn(m) ≥ θs2Dm(1 + Lm)

then the estimator f̃ = f̂m̂ satisfies

(7) d2
n(f, f̃) ≤ C inf

m∈Mn

[

d2
n(f, Sm) +

penn(m)

n

]

+ C ′s2 Σ

n

where C and C ′ are universal constants.
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This kind of result can be extended to variables εi’s admitting only moments of order
p, provided that p > 2 (see Baraud (2000)) for regular collections of models only (i.e.
collections with one model by dimension, as in example (RP) defined below).

It is worth mentioning that (7) allows to compute the rate of the estimator f̃ as soon as
f is assumed to belong to some class of regularity authorizing an evaluation of the bias
term in function of the dimension of the projection space Sm.

2.3. Collections of models and choice of the weights. Let us now illustrate condition
(6) in order to better see the role of the Lm’s. Roughly speaking, the final rate for
estimating a function of smoothness α is the minimax rate n−2α/(2α+1) when the Lm’s can
be chosen constant. In most other cases, the Lm’s are required to be of order ln(n) and
the rate falls to (n/ ln(n))−2α/(2α+1). Let us give some (standard) examples for the choice
of the spaces when the design is equispaced, namely when xi = i/n:

(RP) Regular piecewise polynomials (and regular Sm’s). This is typically what is meant
when talking about regular collections of models. We work with constant degrees
r1 = · · · = rD = r − 1 and we choose aj = j/D for j = 0, . . . , D (regular partition
of [0, 1]). Then m = (D, a1, . . . , aD−1, r−1, . . . , r−1,P , . . . ,P), dim(Sm) = rD, we
take D = 1, . . . , Dmax and we simply impose that rDmax ≤ n, i.e. Dmax = [n/r].
Then we look for Lm’s such that

∑

m∈Mn

e−LmDm =

[n/r]
∑

D=1

e−LmD ≤ Σ < ∞.

Therefore Lm = 1 (or Lm = 2 ln(D)/D) suits.
(IPC) Irregular piecewise polynomials with constant degrees. This illustrates by com-

parison the extension from regular to general collections of models.
We keep all the degrees constant equal to r − 1. We choose the D − 1 values of
a1 < · · · < aD−1 in the set {j/n, j ∈ {1, . . . , n − 1}} for D = 1, . . . , Dmax = [n/r].
We then have for Lm = Ln

∑

m∈Mn

e−LmDm =

[n/r]
∑

D=1

(

n − 1
D − 1

)

e−rDLn .

Therefore, if we choose Lm = Ln = ln(n)/r it implies that

∑

m∈Mn

e−LmDm ≤
n−1
∑

k=0

(

n − 1
k

)

e−r(k+1)Ln

≤
n−1
∑

k=0

(

n − 1
k

)(

1

n

)k+1

=
1

n

(

1 +
1

n

)n−1

≤
(

1 +
1

n

)n

≤ e

and condition (6) is satisfied with logarithmic weights.
(ITC) Irregular trigonometric polynomials with constant degrees.

The partitions and the aj’s are selected just as before. The degree in this example
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(but not in practice) is fixed to 2r + 1 in the sense that, on an interval I of weight

ℓ we consider Trigℓ
0(x) =

√

1/ℓ1lI(x),
{

Trigℓ
2p(x) =

√

2/ℓ cos
(

2nπ
ℓ

px
)

1lI(x),

Trigℓ
2p+1(x) =

√

2/ℓ sin
(

2nπ
ℓ

px
)

1lI(x),

for p = 1, . . . , r. Let us mention that the Trig polynomials would have to be
multiplied by

√
n to be normalized in L2. For the same reason as above, this

would lead to weights Lm’s of order ln(n), in order for (6) to be fulfilled.

Note that the first example is meaningless for a non equally spaced design, but the
second and third ones can be extended to the general fixed design case by simply choosing
the knots a1 < · · · < aD−1 in the set {x1, x2, . . . , xn} with still a0 = 0 and aD = 1.

Moreover the degrees of the polynomials are supposed to be fixed (to r or 2r + 1) in
the previous examples for the sake of simplicity but are variable in the set {0, . . . , rmax}
in the algorithm developed below. In such case, the dimensional constraint Dmax = [n/r]

becomes
∑D

d=1(rd + 1) ≤ n where rd ∈ {0, . . . , rmax} is the degree of the polynomial on
Id. This implies a greater number of models.

2.4. The aim of the calibration study. The order of the penalty as given in the
theoretical results above is only a crude approximation which technically works. One of
the aims of the empirical work is to find a more precise development for the choice of the
penalty and to calibrate empirically the universal constants involved. For instance, if we
think of a penalty:
(8)

penn(m) = s2

[

c1 ln

(

n − 1
D − 1

)

+ c2(ln(D))c3 + c4

D
∑

d=1

(rd + 1) + c5

D
∑

d=1

[ln(rd + 1)]c6

]

for m defined by (2), we need to check that it satisfies (6). Then since we believe the
constants ci, i = 1, . . . , 6 to be universal constants, we want to compute them using
simulation experiments.

Note that complementary terms in a penalty function have been studied in a theoretical
framework (but for another problem and with a penalty having a different form) by
Castellan (2000). On the other hand, empirical experiments for calibrating a penalty
have already been performed for density estimation with regular histograms by Birgé
and Rozenholc (2002). For all degrees set to zero and regular partitions, they proposed
penn(D) = [ln(D)]2.5 + D − 1. Here, we take c1 = c4 = 2 and s2 = σ2. We look for
c2, c3, c5 and c6.

The choice s2 = σ2 appears in many theoretical results. If this variance is known, we
keep it as the multiplicative factor. Otherwise it can be estimated by the least-squares
residuals:

σ̂2 =
1

n

n
∑

i=1

(Yi − f̂m(xi))
2

for a f̂m computed on a well chosen Sm. For instance, for equispaced design regression, we
can take the space generated by ad = d/D with D = n/ ln(n). This has been proved to
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allow an extension of the theoretical results in the case of regular subdivisions in Comte
and Rozenholc (2002).

3. Computation of the estimate

3.1. The general formula. Given a basis B = (B0, . . . , Br, . . . ) of polynomials, with
degree of Br = r, we denote by Br = (B0, . . . , Br) and by PB

r the linear space spanned by
B0, . . . , Br.

The first step for the computation of f̃ = f̂m̂ is the computation of the f̂m’s for m varying
in Mn among which we choose it. Let m = (D, a1, . . . , aD−1, r1, . . . , rD, C1, . . . , CD) be
given and recall that Id = [ad−1, ad[ for d = 1, . . . , D− 1, and ID = [aD−1, aD], a0 = 0 and

aD = 1. Then f̂m satisfies

γ(f̂m) =
1

n

D
∑

d=1

min
P∈PB

rd

∑

xk∈Id

(Yk − P (xk))
2.

In other words, for some given m, we replace the global minimization of the contrast γ in
Sm by D minimizations of local contrasts denoted

(9) γId
(g) =

1

n

∑

{k/xk∈Id}

(Yk − g(xk))
2

for g varying in PB
rd

. Then we have to compute for any degree r, any basis B and any

interval I, the polynomial P I,B
r ∈ PB

r such that:

γ̂B
I (r)

def
= γI(P

I,B
r ) = min

P∈PB
r

∑

{k/xk∈I}

(Yk−P (xk))
2/n =

1

n





∑

{k/xk∈I}

Y 2
k −

∑

{k/xk∈I}

(P I,B
r (xk))

2



 .

This defines the contribution of the interval I to the global contrast. This local contrast
is defined only by the points xk and Yk for the indexes k such that xk ∈ I; therefore, any
interval I containing the same xk leads to the same minimization procedure and to the
same polynomial PI . So there is no loss of generality to consider intervals with bounds
chosen among the xk’s.

It is well known that, for any basis Br = (B0, . . . , Br) of a linear space PB
r , the contrast

minimizer P I
r = α0B0 + α1B1 + . . . + αrBr is the solution of the system of equations

CI
r AI

r = DI
r where (denoting by X ′ the transpose of the vector X),

AI
r = (α0, . . . , αr)

′,(10)

CI
r = (cs,t)1≤s,t≤r , cs,t =

∑

k/xk∈I

Bs(xk)Bt(xk),(11)

DI
r = (d0, d1, . . . , dr) , ds =

∑

k/xk∈I

YkBs(xk).(12)

Let us denote by XI
r the matrix (Bs(xk)), s = 0, . . . , r, k ∈ {j/xj ∈ I} with r + 1 rows

and with #{k/xk ∈ I} = ℓ(I) columns, and by Y I the vector of the Yk’s for xk falling in
I. The minimum of the contrast satisfies

n γ̂B
I (r) = (Y I)′Y I − (AI

r)
′XI

r(X
I
r)

′AI
r = (Y I)′Y I − (DI

r)
′(CI

r )−1CI
r (CI

r )−1DI
r .
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and therefore

(13) γ̂B
I (r) =

1

n
[(Y I)′Y I − (DI

r)
′(CI

r )−1DI
r ].

3.2. Choice of a relevant basis. Since (13) is valid for any basis Br of PB
r , we look for

a relevant choice of the basis of polynomials Br = (B0, . . . , Br) on the interval I. In other
words, we aim at choosing the basis such that CI

r = Ir (Ir is the r × r identity matrix),
that is

cs,t =
∑

k/xk∈I

Bs(xk)Bt(xk) = δs,t

where δs,t is the Kronecker symbol such that δs,t = 1 is s = t and δs,t = 0 otherwise.
In the case of a general design (xi)1≤i≤n (not necessarily equispaced), for each interval I,

we can build by Gram-Schmidt orthonormalization and using a Q-R decomposition of X,
an orthonormal basis of polynomials of any degree r, with respect to the discrete scalar
product associated to the xk’s in I. The problem here is that for each possible interval
I, and degree rmax a specific orthonormalized basis must be computed, which is feasible
but costing a lot of time from a computational point of view. Consequently, some other
ideas for accelerating the method have to be found. The ideas below are relevant in the
equispaced case only.

3.3. Choice of a relevant basis in the case xi = i/n.

3.3.1. Polynomial basis. We use the discrete Chebyshev polynomials defined as follows
(see Abramowitz and Stegun (1972)). The discrete Chebyshev polynomial on {0, 1, . . . , ℓ−
1} with degree r is

(14) Chebℓ
r(x) =

1
{

∑ℓ−1
i=0 [C

ℓ
r(i)]

2
}1/2

Cℓ
r(x)

where Cℓ
0(x) = 1 and

Cℓ
r(x) =

1

(r!)2
∆r

[

r
∏

s=0

gℓ(x − s)

]

, where gℓ(x) = x(x − ℓ)

and ∆f(x) = f(x + 1) − f(x), ∆r = ∆r−1o∆. Those polynomials satisfy

ℓ−1
∑

k=0

Chebℓ
r(k)Chebℓ

s(k) = δs,t, for 0 ≤ s, t ≤ r.

Therefore, choosing on the intervals I = [i/n, . . . , (i + ℓ + 1)/n[, the basis

BI
s (x) = Chebℓ

s(nx − i),

will do the job. This leads to

(15) γ̂Cheb
I (r) =

1

n

[

(Y I)′Y I − (DI
r)

′DI
r

]

,
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where DI
r is the vector with components

(16) ds =
∑

k/n∈I

YkB
I
s (k/n) =

ℓ(I)−1
∑

k=0

Yk+iChebℓ
s(k).

3.3.2. Trigonometric basis. The case of piecewise trigonometric bases is even simpler since
the basis described in (ITC) is naturally orthonormal with respect to the discrete scalar
product considered with a regular design, for ℓ = ℓ(I):

∑

xk∈I

Trigℓ
s(xk)Trigℓ

t(xk) = δs,t.

Therefore, choosing on the intervals I = [i/n, . . . , (i + ℓ + 1)/n[, the basis

BI
s (x) = Trigℓ

s(x),

will do the job. This leads to

(17) γ̂Trig
I (r) =

1

n

[

(Y I)′Y I − (DI
r)

′DI
r

]

,

where DI
r is the vector with components

(18) ds =
∑

k/n∈I

YkB
I
s (k/n) =

∑

xk∈I

YkTrigℓ
s(xk).

3.4. The choice of the penalty. Equation (8) is our choice for the global form of the
penalty. For the results given in Theorem 1 to hold, we must prove that

∑

m∈Mn
e−LmDm <

+∞ with penn(m) = s2(1 + Lm)Dm and m defined by (2).
∑

m∈Mn

e−LmDm =
∑

m∈Mn

e−penn(m)/s2+Dm

=
∑

1≤D≤Dmax,0≤rd≤rmax

2D exp

{

−
[

c1 ln

(

n − 1
D − 1

)

+ c2[ln(D)]c3

+c4

D
∑

d=1

(rd + 1) + c5

D
∑

d=1

[ln(rd + 1)]c6

]

+ D

}

=
Dmax
∑

D=1

2D

(

n − 1
D − 1

)

exp

{

−
[

c1 ln

(

n − 1
D − 1

)

+ c2[ln(D)]c3
]

+ D

}

×
[

rmax
∑

r1=0

· · ·
rmax
∑

rD=0

exp

{

−c4

D
∑

d=1

(rd + 1) − c5

D
∑

d=1

[ln(rd + 1)]c6

}]

=
Dmax
∑

D=1

2D exp

{

ln

(

n − 1
D − 1

)

−
[

c1 ln

(

n − 1
D − 1

)

+ c2[ln(D)]c3
]

+ D

}

×
(

rmax
∑

r=0

e−c4(r+1)−c5[ln(rd+1)]c6

)D

.
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Therefore, if c1 ≥ 1, c2 ≥ 0 and c5 ≥ 0, we can give the following bound

∑

m∈Mn

e−LmDm ≤
Dmax
∑

D=1

(2e)De−c4D

(

1 − e−c4(rmax+1)

1 − e−c4

)D

≤
Dmax
∑

D=1

(

2e1−c4

1 − e−c4

)D

,

and this last term is bounded provided that
∣

∣

∣

∣

2e1−c4

1 − e−c4

∣

∣

∣

∣

< 1

that is, if c4 > ln(1 + 2e) ≃ 1.862. Thus in the general case, the chosen penalty is of the
form:

Proposition 1. The following choice of the penalty:

penn(m) = s2

[

c1 ln

(

n − 1
D − 1

)

+ c2(ln(D))c3 + c4

D
∑

d=1

(rd + 1) + c5

D
∑

d=1

[ln(rd + 1)]c6

]

is such that
∑

m∈Mn
e−LmDm =

∑

m∈Mn
e−penn(m)/s2+Dm converges with exponential rate,

provided that c1 ≥ 1, c2 ≥ 0, c4 ≥ 1.87 and c5 ≥ 0.

It should be noted that the total number of visited bases is asymptotically (for great
values of n and fixed rmax) of the order

n
∑

D=1

(

n − 1
D − 1

)

(2rmax)
D = (2rmax) (2rmax + 1)n−1 = O((2rmax)

n).

4. Description of the algorithm

In the sequel, both for the description of the algorithm and for the empirical results,
we consider only the regular design defined by xi = i/n.

4.1. Localization. Here we should emphasize the two basic ideas of our procedure. The
first one is based on a localization of the problem. With the results and notations of
Section 3.1 and the subsections following, the global value of the contrast is

γ(f̂m) =
D
∑

d=1

γ̂Brd

Id
(rd)

and we look for

m̂ = arg min
m∈Mn

[

γ̂m +
penn(m)

n

]

where we must consider here that penn(m) = penn,c(m) with c = (c1, c2, c3, c4, c5, c6) and

penn,c(m) = σ2

[

c1 ln

(

n − 1
D − 1

)

+ c2 ln(D)c3

]

+
D
∑

d=1

σ2 [c4(1 + rd) + c5 ln(1 + rd)
c6 ]

def
= penn,c1,c2(D) +

D
∑

d=1

penn,c4,c5,c6(rd).
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Then we find a localized decomposition of the penalized contrast:

nγ(f̂m) + penn,c(m) = penn,c1,c2(D) +
D
∑

d=1

{

nγ̂Brd

Id
(rd) + penn,c4,c5,c6(rd)

}

,

where the first part of the penalty penn,c1,c2(D) is the global penalization concerning the
number of sub-intervals and the second part penn,c4,c5,c6(rd) is the local part concerning

the degree on each sub-interval. We recall that γ̂B
I (r) is defined by (13) for a basis Br,

and more precisely given by (15)-(16) or (15)-(17).
This can also be written:

nγ(f̂m) + penn,c(m) =
n
∑

k=1

Y 2
k + penn,c1,c2(D) +

D
∑

d=1

[

penn,c4,c5,c6(rd) − pB
rd

Id
(rd)

]

where on the interval I = [i/n, . . . , (j + 1)/n[

pB
s

I (s) =
s
∑

t=0

[

j−i
∑

k=0

Yk+iB
I
t (k)

]2

def
= pBs (i, j).

The quantity pBs (i, j) represents precisely the weight of the contrast when going from i to
j (j included), so that pBs (i, i) is defined. Note that, for 1 ≤ ℓ ≤ n, those quantities are
systematically computed by setting

Yℓ = (Yi+k−1)1≤i≤ℓ,1≤k≤n−ℓ and Bℓ = (BI
i (k))0≤i≤rmax,0≤k≤ℓ−1

and by computing and storing (BℓYℓ)
•2 where A•2 = (a2

i,k)1≤i≤p,1≤k≤q for A = (ai,k)1≤i≤p,1≤k≤q.
Then considering different values of ℓ amounts to take into account intervals of any weight
ℓ = 1, . . . , n.
For j ≥ i, the procedure of minimization first computes:

p(i, j)
def
= min

1≤s≤rmax

min
Bs

[

σ2(c4(1 + s) + c5 ln(1 + s)c6) − pBs (i, j)
]

,

so that the best basis and the best degree are chosen.

4.2. Dynamical programming. Here we reach the point where we need to use dynam-
ical programming (see Kanazawa (1992)). The fundamental idea of dynamical program-
ming is that to go to point j with d steps (i.e. pieces), we must first go to some k < j
with d − 1 steps and then go from k to j in one step. A very similar idea is developed
from a theoretical point of view by Kohler (1999) in order to define a procedure in the
same type of regression function estimation problem.
Let q(d, k) be the minimum of the contrast − penalized in degree with basis selection −
to go from 1 to k with d pieces; this value is thus associated to a best partition, d best
bases and a choice of d best degrees which fulfill the localization constraints.
First note that q(1, k) = p(1, k) which gives an initialization; then

(19) q(d + 1, j) = min
d≤k<j

[q(d, k) + p(k + 1, j)]

which represents 2j operations. Then a Q matrix can be filled in, with two possible
strategies:
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(1) “Off line” method: Compute the q(1, j) for j = 1, . . . , n and then do a recursion
on d using (19). The drawback of the method is that the actualization (i.e. if some
more observations are available and so n increases), everything must be done again
whereas it is clear that only changes in the last column are useful.

(2) “In line” method: Assume that you have built (q(d, j))1≤d≤j≤n and you want to
increase n and compute the q(d, n + 1), d = 1, . . . , n + 1. Then as q(1, n + 1) =
p(1, n + 1) and

q(d + 1, n + 1) = min
d≤k<n+1

[q(d, k) + p(k + 1, n + 1)] ,

you only need to compute the p(k + 1, n + 1), 1 ≤ k ≤ n, the q(d, k) being already
known.

The first part of the work, namely the computation of the coefficients p(i, ℓ) requires
O(n3rmax) elementary operations, and the dynamical programming part requires O(n2Dmax)
operations. The global complexity of the algorithm is therefore of the order

n3rmax + n2Dmax.

The implemented method is the former (off line), but for an actualization purpose, the
latter method is preferable.

Now, on the last column of Q, there are the q(d, n)’s, 1 ≤ d ≤ n, which are the minima
of the contrast penalized in degree, to go from 1 to n with d pieces. Thus the last thing
to do is to choose

D̂ = arg min
d=1,...,n

[

q(d, n) + c1 ln

(

n − 1
d − 1

)

+ c2 ln(d)c3

]

.

Of course, the involved partitions must be stored, and not only their number of pieces.
As a summary, let us give the steps of the algorithm:

Proposition 2. A model is selected by the algorithm following the steps:

1. On any interval I = [i/n, (j + 1)/n[, compute pBs (i, j) =
s
∑

t=0

[

j−i
∑

k=0

Yk+iB
I
t (k)

]2

for

1 ≤ i ≤ j ≤ n, 0 ≤ s ≤ rmax, and for BI
t = Cheb

ℓ(I)
t and BI

t = Trig
ℓ(I)
t (see Section 3.3.1

and 3.3.2),

2. Compute pB(i, j) = min
1≤s≤rmax

(

σ2(c4s + c5 ln(s)c6) − pBs (i, j)
)

for 1 ≤ i ≤ j ≤ n,

3. Compute p(i, j) = minB∈{Cheb,Trig} pB(i, j),

4. Initialize q(1, k) = p(1, k) for 1 ≤ k ≤ n, and compute recursively for 1 ≤ d ≤ n− 1,

q(d + 1, n) = min
d≤k<n

[q(d, k) + p(k + 1, n)] ,

5. Then choose D̂ = arg min
d=1,...,n

[

q(d, n) + c1 ln

(

n − 1
d − 1

)

+ c2 ln(d)c3

]

.
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The positions of the knots of the involved partitions as well as the selected degrees in
step 2 and bases in step 3 must be stored.

4.3. A fast version of the algorithm. We have also implemented a quick but approx-
imated version of the algorithm, with complexity of order Doptrmaxn

2. We must admit
that other algorithms, like those based on wavelets for example, have a lower complexity,
of the order O(n log2(n)). This is a drawback of our procedure.
Let us now describe our fast procedure. We construct iteratively a sequence of partitions
defined by 0 = at

0 < at
1 < · · · < at

Dt−1 < at
Dt

= 1 using the following scheme.

• We start at time t = 0 with D0 = 1, i.e. with the partition with a unique interval.
• At time t of the procedure,

– we first check, when Dt > 3, if the penalized contrast decreases when removing
one at

j for j = 1, . . . , Dt − 1 from the partition at time t. If some such points
exist, we consider the one implying the most significant decrease.

– Next, we check if the penalized contrast decreases when adding one point a
in between the at

j’s for j = 0, . . . , Dt of the partition at time t. If some such
points exist, we consider the one implying the most important decrease.

– If only one such points exist, we follow the associated strategy.
– If two such points exist, we choose the strategy which leads to the most

important decrease.
– If no such point exists, the procedure stops.

During the procedure, on each involved interval, the best basis (Chebyshev or trigono-
metric polynomials), the best degrees and the best coefficients are chosen. The interest
of such a procedure is that it requires only comparisons between

γ̂B
[a,b[(r) + penn,c1,c2(Dt) + penn,c4,c5,c6(r)

and

γ̂B′

[a,c[(r
′) + γ̂B′′

[c,b[(r
′′) + penn,c1,c2(Dt + 1) + penn,c4,c5,c6(r

′) + penn,c4,c5,c6(r
′′).

Without the potential “removing step”, this procedure is like the expansion phase of a
CART procedure, see Breiman et al. (1984). In that way, this procedure is related to the
CART-type procedure proposed by Kohler (1999), except that he does not consider either
the possibility of removing some points from the partition.

5. Empirical results

5.1. Risks and calibration. First we take for the penalty as defined in Proposition 1,
s2 = σ2, c1 = c4 = 2. Concerning the determination of c1, . . . , c6, we determined them as
follows, using the test functions (and some others, to avoid over-fitting) described below.
With the notations of formula (8), we took c4 = 2 to be in accordance with standard
Akaike criterion from an asymptotic point of view. For c5 and c6, we followed some ideas
developed by Birgé and Rozenholc (2002) for the choice of the number of bins of an
histogram in density estimation. This question is similar to the choice of the degree in
polynomial regression. For c1 and c2, the problem amounts to the choice of an irregular
partition when the degree is fixed, for example to zero. We used a rough optimization on
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the square (c1, c2) ∈ [0, 5] × [0, 5] to fix our choice. In any case, we claim that our global
choice is satisfactory even if probably not optimal. This choice is the following:

c1 = c2 = c4 = c5 = 2, c3 = c6 = 2.5.

Secondly, we use a set of 16 test functions with very different shapes and regularity.
The test functions are given in Figure 1. Functions 1 to 4 and 7 to 14 are the same as the
ones used by Antoniadis et al. (2002), functions 1 to 14 come from the Wavelab toolbox
developed by Donoho (see Buckheit et al. (1995)) and functions 15 and 16 have been
added in order to test also the estimators for some regular functions.

Signal 1 Signal 2 Signal 3 Signal 4

Signal 5 Signal 6 Signal 7 Signal 8

Signal 9 Signal 10 Signal 11 Signal 12

Signal 13 Signal 14 Signal 15 Signal 16

Figure 1. Test functions.

Third, we consider different levels (namely 3, 5, 7 , 10) of noise which are evaluated in
terms of a signal to noise ratio, denoted by s2n, and computed as

s2n =

√

√

√

√

√

1

n

n
∑

i=1

(f(i/n) − f̄)2

σ2
, f̄ =

1

n

n
∑

i=1

f(i/n).

Lastly, the performances are usually compared to a reference value called an oracle.
This oracle is the lowest value of the risk. It is computed by using the fact that, in the
simulation study, the true function is known, and that, if all the estimates are computed,
the one with the smallest risk can be found, as well as its associated risk. In other words
in this case, we would have to compute all ‖f − f̂‖2

n, for some known f and all possible f̂ ,
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for all the sample paths. This can be done for regular models but would imply much too
heavy computations for the general models considered here. Therefore, another reference
must be found to evaluate our estimator.

Before giving the details about the wavelet methods, let us explain the reference we
use. The index wj denotes the wavelet method number j where 48 wavelet methods are

considered and f̂wj
denotes the estimate of f obtained by using the method wj explained

below. We generate K (K = 100) samples with length n (n = 128, 512) in the regression

model, and denote by f̂ (k) an estimate of f (computed with any method, f̂
(k)
wj with the

method wj) based on the kth sample. Then

ℓ2
2(f, f̂ (k)) =

1

n

n
∑

i=1

(f − f̂ (k))2(i/n),

and

E∗[ℓ2
2(f, f̂)] =

1

K

K
∑

k=1

ℓ2
2(f, f̂ (k)).

We use the following ratios

(20) R2(f) =
E∗
[

minj=1,...,48 ℓ2
2(f, f̂wj

)
]

E∗
[

ℓ2
2(f, f̃)

] .

The ratios are compared to one: the higher over 1 the ratio, the better our method. If our
test functions f1, . . . f16 lead to values of R2(fi) for i = 1, . . . , 16 such that ∀i ∈ {1, . . . , 16},
R2(fi) ≥ a, then this means that, for any f ∈ {f1, . . . , f16},

E∗[ℓ2
2(f, f̃)] ≤ 1

a
E∗

[

min
j=1,...,48

ℓ2
2(f, f̂wj

)

]

.

We must emphasize that we chose diadic values of n (n = 128 = 27 or n = 512 = 29) in
order to be able to apply all wavelet methods, but our method does not require diadic
samples and can be used for any n without any change.

We present in Figure 2 an example of data set and estimated signal as performed by
our algorithm. The signal has been built with three pieces using functions 15, 8 and 6.
The fourth picture gives the variation of the residuals and shows that the algorithm has
found an estimator with four pieces, the first one is a standard polynomial with degree
6 corresponding to the estimation of the first function, the second one is a trigonometric
polynomial with degree 26 corresponding to the estimation of the second function, the
last two pieces correspond to the estimation of the third function, and are polynomials of
degree 59 and 54.

5.2. Comparison with wavelet methods.

5.2.1. Comparison with standard wavelet methods. Let us be more precise about the
wavelets. We use both the MathWorks toolbox developed by Misiti et al. (1995) and the
WaveLab toolbox developed by Buckheit et al. (1995), following the theoretical works by
Donoho (1995), Donoho and Johnstone (1994), Donoho et al. (1995). The abbreviations
below refer to the MathWorks toolbox. We use the 6 following basic wavelets: the Haar
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(D = 4) Residuals, Segmentation, Basis, Degrees
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^
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Data : N = 384 - Signal Noise Ratio = 5  (7db )
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Data and Estimate --- elapsed time = 60 s

Data
Estimate

0 0.2 0.4 0.6 0.8 1
-15

-10
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5

10

15
Signal and Estimate : L2-Error = 0.408

Signal
Estimate

Figure 2. An example of decomposition of a signal by the complete algorithm.

wavelet (well suited for step signals), two Daubechies DB4 and DB15 wavelets (well suited
for smooth signals), two symmetric wavelets abbreviated as Symmlets, sym2 and sym8,
the bi-orthogonal wavelet bior3.1 (well suited for signals with rupture). The wavelets are

associated with 4 types of threshold: the threshold
√

2 log(n) called “sqtwolog”, the min-
imax threshold called “minimaxi”, the SURE (Stein’s Unbiased Risk Estimate) threshold
called “Rigsure”, an heuristical version of SURE threshold using a correcting term for
small values of n, called “Heursure”. Lastly, we use the two standard types of threshold,



18 F. COMTE
∗

AND Y. ROZENHOLC
∗∗

10
-1

10
0

10
1

Signal 1

L 2 ra
tio

10
-1

10
0

10
1

Signal 2

10
-1

10
0

10
1

Signal 3

10
-1

10
0

10
1

Signal 4

10
-1

10
0

10
1

Signal 5

L 2 ra
tio

10
-1

10
0

10
1

Signal 6

10
-1

10
0

10
1

Signal 7

10
-1

10
0

10
1

Signal 8

10
-1

10
0

10
1

Signal 9

L 2 ra
tio

10
-1

10
0

10
1

Signal 10

10
-1

10
0

10
1

Signal 11

10
-1

10
0

10
1

Signal 12

10
-1

10
0

10
1

Signal 13

L 2 ra
tio

10
-1

10
0

10
1

Signal 14

10
-1

10
0

10
1

Signal 15

10
-1

10
0

10
1

Signal 16

E*[ min l
2
(f, f

W
j
) ]

/E*[ l
2
(f, f ) ]

~
j=1..48

^2
2

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

s2n s2n s2n s2n

s2n s2n s2n s2n

s2n s2n s2n s2n

s2n s2n s2n s2n

Figure 3. Performance ratios R2(f) relative to the 16 test functions for
K = 100 and n = 128. The greater than one, the better our algorithm.

hard and soft thresholding1. This explains the 6 ∗ 4 ∗ 2 = 48 indexes for the wavelets
methods. This is what we call in the following “standard wavelet methods”, as opposed
to some more recent methods described further.

We report in Figure 3 the performances of our estimate when the maximal degree is
set to rmax = 74 and for s2n= 3, 5, 7, 10, the functions fi being as given in Figure 1,
K = 100 and n = 128. More precisely, Figure 3 plots the values obtained for R2(f)
relative to the test functions given in Figure 1. We emphasize that the ratio we compute
is very unfavorable to our method, because for each sample, we compare our risk to the
one of the best (unknown in practice) wavelet method. The ordinate of the lower point
is anyway greater than 0.65, which is relatively good since we recall that it means that,

for any f ∈ {f1, . . . , f16}, E∗[ℓ2
2(f, f̃)] ≤ 1.54E∗

[

minj=1,...,48 ℓ2
2(f, f̂wj

)
]

.

1Note that the estimation is improved by using the function “wmaxlev” to select the maximum level of
the wavelets instead of the standard level round[log

2
(n)] and we therefore use this MathWorks function

as well.
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We have also computed the risks in term of ℓ1-type error (squares are replaced by
absolute values) where we obtain the same type of results except for the functions f8 and
f16 where the results are even better: this can be explained by the fact that the ℓ1-distance
reduces the weights of the discontinuities which are inherent in our method. In addition,
the errors are centered Gaussian with known variance, but we also considered centered
uniform and Cauchy errors and the results were similar.

5.2.2. Comparison with recent wavelet methods. We also implemented for comparison
some more recent wavelet methods, already studied in Antoniadis et al. (2002) and there-
fore quite reproducible for such a test. More precisely we considered the following meth-
ods, implemented using the Gaussian Wavelet Denoising Library built by Antoniadis et
al. (2002) (see http://www.jstatsoft.org/v06/i06/), using either a Haar or a Symmlet8
filter:

W1 Coifman and Donoho (1995)’s translation invariant method using soft thresholding
(TI-soft), coded with the function “recTI” in the library,

W2 Coifman and Donoho (1995)’s translation invariant method using hard threshold-
ing (TI-hard), coded with the function “recTI” in the library,

W3 Cai (1999)’s method using a block non-overlapping thresholding estimator, re-
using the first few empirical coefficients to fill the last block, coded with the
function “recblockJS” in the library

W4 Cai (1999)’s previous method, the last few remaining empirical coefficients being
unused, coded with the function “recblockJS” in the library,

W5 Huang and Lu (2000)’s method based on nonparametric mixed-effect models,
coded with the function “recmixed” in the library,

W6 Cai and Silverman (2001)’s method using an overlapping block thresholding esti-
mator, coded with the function “recneighblock” in the library,

W7 Antoniadis and Fan (2001)’s hybrid method using a “keep”, “shrink” or “kill” rule
(SCAD),

W8 Vidakovic and Ruggeri (2000)’s bayesian adaptive multiresolution method coded
with the function “recbams” in the library.

For a more precise description of those methods, we refer to Antoniadis et al. (2002).
There are a selection of recent methods that Antoniadis et al. (2002) describe and test,
namely methods number 5, 6, 12, 13, 20, 11, 18 and 34 respectively in their Table 3.
We work first with σ = 1 assumed to be known. Moreover, in all the following of the
subsection, we use the quick version of our algorithm.

Table 1 below gives the L2-errors for the 16 test functions and signal to noise ratio s2n=5
obtained with the quick version of our method (when using Chebyshev polynomials (CP)
or both Chebyshev and trigonometric polynomials (CP/TP)) and with the other methods
W1 to W8. We must say that we did not succeed in making W8 work, but this may be an
error of ours. Besides we found out that the method of Coifman and Donoho (1995) with
hard thresholding (W2 or TI-hard) seems to be almost always better than all the other
wavelet methods. Our method behaves very well and is in general better than all the
other methods. Even when we do not have the lowest errors, we are close to it. Globally,
the CP/PT method seems to be preferable: the losses are never very important but the
gains are sometimes decisive, when compared to the wavelet methods in competition.
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Signal CP CP/TP W1 W2 W3 W4 W5 W6 W7 W8

1 0.077 0.098
∗ 1.856 0.423• 0.798 0.817 0.472 0.947 0.866 0.871

2 0.313 0.361
∗ 2.421 0.404• 0.769 0.785 0.506 0.820 0.977 0.871

3 0.061 0.063
∗ 0.207 0.108• 0.198 0.228 0.135 0.216 0.148 0.856

4 0.197 0.202 0.805 0.174∗• 0.251 0.282 0.238 0.197 0.335 0.857
5 0.582 0.563

∗ 4.337 0.651• 0.724 0.746 0.670 0.677 1.600 0.883
6 1.001 1.003

∗ 8.506 1.601 1.492 1.474 4.788 1.406• 3.816 4.050
7 0.010 0.012

∗ 0.552 0.133• 0.388 0.405 0.193 0.416 0.285 0.860
8 0.168 0.059

∗ 0.596 0.072• 0.239 0.256 0.273 0.253 0.398 0.864
9 0.050 0.053

∗ 0.377 0.080• 0.159 0.177 0.143 0.198 0.159 0.859
10 0.113 0.091 0.313 0.084∗• 0.127 0.154 0.120 0.135 0.181 0.859
11 0.087 0.087 0.200 0.052∗• 0.108 0.140 0.088 0.082 0.091 0.856
12 0.084 0.083 0.235 0.050∗• 0.085 0.117 0.094 0.080 0.106 0.858
13 0.181 0.141 0.891 0.136• 0.258 0.269 0.234 0.246 0.365 0.867
14 0.057 0.052 0.176 0.062∗• 0.097 0.096 0.073 0.096 0.084 0.857
15 0.027 0.027

∗ 0.203 0.071• 0.156 0.175 0.136 0.166 0.122 0.856
16 0.156 0.076

∗ 0.735 0.118• 0.233 0.251 0.255 0.227 0.357 0.868

Table 1. L2-errors for s2n= 5, n = 512, CP is our method when considering piecewise
Chebyshev polynomials only, CP/TP is our method when considering both Chebyshev and
trigonometric (piecewise) polynomials, W1 to W8 are the wavelet methods described above

with Symmlet8 filter. σ = 1 is known. • gives the best wavelet method, ∗ gives the best
method between CP/TP and W1-W8.

Since we found the method of Coifman and Donoho (1995) with hard thresholding
(TI-hard) to be the better one, we present a more precise comparison of our results with
theirs in Figure 4, in order to illustrate the influence of the choice of the filter (either the
Symmlet8 filter or the Haar filter) in the wavelet methods. Our method does not require
such a choice, which seems to be sometimes decisive (Signals 7 and 8).

Lastly, we compared our method with others when σ is unknown. We implemented
our method using a preliminary estimator of σ2 based on the mean square residuals
obtained with an estimator of the regression function computed on a regular model with
D = [n/ ln(n)] intervals in the subdivision and degree r = 3. This estimator is used
for the penalization procedure. The estimate of f is then used to re-evaluate σ and to
initialize a second penalization. For the test functions 5 and 6, it appears clearly that
almost no method makes the job in this case, neither wavelets, nor ours. The only good
wavelet method is Huang and Lu (2000)’s method W5 which is never better than the
other wavelet methods for the other signals. Note that the test functions 5 and 6 are not
used by Antoniadis et al. (2002) in their experiments. In the other cases again and as
shown by the results given in Table 2, one of the better wavelet methods remains Coifman
and Donoho (1995)’s method, contrary to Antoniadis et al. (2002)’s conclusion that the
best method highly depends on the type of the signal function. Note that we gave for
this method the results using both the Symmlet8 and the Haar filter.
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Figure 4. Comparison of the L2-errors for the 16 test functions and the
four s2n, of our method, using both Chebyshev and trigonometric polyno-
mials (thick curve) and Coifman and Donoho (1995)’s method for the Haar
(dashed curve) and the Symmlet8 filters (thin curve). K = 100, n = 512,
σ = 1 known.

Signal CP/TP W1 W2 W2H W3 W4 W5 W6 W7 W8

1 0.092
∗ 2.08 0.494 0.111• 0.914 0.934 0.470 1.070 0.976 0.871

2 0.367
∗ 2.990 0.461 0.385• 0.946 0.960 0.510 1.030 1.200 0.871

3 0.063
∗ 0.209 0.111• 0.120 0.201 0.230 0.136 0.217 0.149 0.856

4 0.206 0.873 0.187∗• 0.461 0.274 0.305 0.240 0.215 0.365 0.857
5 4.690 11.4 2.57 16.1 2.38 2.38 0.694∗• 2.4 5.98 0.884
6 23.1 23.7 23.5 23.6 23.6 22.8 0.986∗• 23.6 23.1 4.05
7 0.013

∗ 0.571 0.140 0.026• 0.404 0.420 0.192 0.437 0.295 0.86
8 0.060

∗ 0.610 0.073• 0.290 0.243 0.260 0.275 0.259 0.402 0.864
9 0.052

∗ 0.390 0.081 0.064• 0.167 0.184 0.144 0.208 0.164 0.859
10 0.090 0.319 0.083∗• 0.104 0.128 0.154 0.120 0.136 0.182 0.859
11 0.088 0.204 0.053∗• 0.066 0.110 0.142 0.089 0.083 0.092 0.856
12 0.088 0.240 0.050∗• 0.123 0.085 0.117 0.094 0.080 0.107 0.858
13 0.150 0.913 0.136∗• 0.181 0.265 0.274 0.233 0.250 0.373 0.867
14 0.053

∗ 0.179 0.063• 0.072 0.098 0.097 0.074 0.096 0.084 0.857
15 0.028

∗ 0.206 0.073• 0.084 0.158 0.177 0.138 0.169 0.124 0.856
16 0.080

∗ 0.751 0.118• 0.427 0.239 0.258 0.256 0.234 0.362 0.868

Table 2. L2-errors for s2n= 5, n = 512, and σ = 1 is unknown. CP/TP is our method when
considering both Chebyshev and trigonometric piecewise polynomials, W1 to W8 are the

wavelet methods described above with Symmlet8 filter, W2H is the method W2 when using
the Haar filter. •: best wavelet method, ∗: best method.
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5.3. Comparison of the complete and fast algorithms. We have described in Section
4.3 an accelerated version of our complete algorithm, but we had to test if the performances
of this method were indeed of the same order as the standard one, and nevertheless
appreciably faster.

Signal
↓

/ Ratio → s2n = 3 s2n = 5 s2n = 7 s2n = 10

Risk Time Risk Time Risk Time Risk Time

1 1.55 0.24 1.53 0.25 1.37 0.25 1.46 0.25
2 0.93 0.18 0.95 0.18 0.96 0.17 0.99 0.16
3 1.05 0.10 1.00 0.11 1.01 0.12 1.00 0.14
4 0.95 0.13 0.95 0.13 0.96 0.14 0.96 0.14
5 0.99 0.19 1.00 0.19 0.99 0.18 0.98 0.18
6 0.99 0.19 1.00 0.20 0.99 0.20 1.00 0.21
7 1.00 0.13 1.00 0.14 1.00 0.14 1.00 0.14
8 0.97 0.08 0.98 0.08 0.98 0.08 1.00 0.08
9 0.96 0.11 0.96 0.13 0.96 0.13 0.95 0.13
10 0.93 0.13 1.04 0.14 1.04 0.15 1.21 0.15
11 1.03 0.10 1.11 0.12 1.10 0.13 1.03 0.14
12 1.00 0.13 1.04 0.13 1.07 0.13 1.09 0.13
13 0.93 0.17 0.97 0.17 0.98 0.16 1.01 0.16
14 0.95 0.10 0.94 0.10 0.92 0.10 0.94 0.10
15 0.96 0.05 0.98 0.05 1.00 0.06 0.99 0.07
16 1.04 0.13 1.04 0.13 1.14 0.13 1.08 0.13

Table 3. Quick and complete algorithm comparison : Risk ratio and CPU Time ratio, ratio =
Quick / complete, n = 512 and K = 100.

We give in Table 3 above the estimation performances in term of R2(f) (with respect
to the 48 standard wavelet methods) and in term of CPU time (for the same samples) of
the accelerated algorithm compared to the standard one.

It appears that except for the first signal, which is better identified by the complete al-
gorithm, the quick algorithm performs very well both in term of risk (which was expected)
and time (which was the aim). More precisely and if we except Signal 1, there is essen-
tially no loss in term of risk when using the quick algorithm, but it is between five and
twenty times faster for a sample with size n = 512. This effect naturally increases with
the sample size. As a conclusion, it is clear that both the standard and the accelerated
algorithm work very well.

5.4. Compression performances. We already computed the complexity of our algo-
rithm so that it is clear that even in its quick version, it remains slower than wavelet
methods. But it has two decisive advantages with respect to those methods, in addition
to its completely automatic feature: first, it performs very well whatever the type of sig-
nal, and particularly when discontinuities arise, and secondly, its compression properties
are reasonably good, and in particular much better in many cases than wavelets, which
was not expected.

Therefore, we also made a simple comparison of the standard wavelet methods and of
our algorithm in terms of their compression performances. For each estimated function,
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Figure 5. Error ratio in function of the compression ratio. The ratios are
our method over all wavelet methods (dotted lines correspond to levels 1).
K = 100 samples with length n = 128 and s2n=5.

we compute three types of code lengths: an “integer length” which is a number of integers,
namely the number of nonzero wavelet coefficients for the wavelet methods, Nintw, and
twice the chosen number D of intervals in the Chebyshev piecewise polynomials method
NintCP (1 integer for D, D integers for each degree rd, D − 1 integers for the length of
the intervals), a “real length” which is the number of real coefficients of the developments
for each method, Nrealw and NrealCP , and a global length, Nw and NCP , defined in
both cases as (Nint/4)+Nreal to take into account the fact that an integer is four times
smaller than a real number in terms of code length. Figure 5 above plots the error ratios

R(j)(f) = E∗
[

ℓ2
2(f, f̂wj

)
]

/E∗
[

ℓ2
2(f, f̃)

]

in function of the global length ratios Nwj/NCP

where j is the index of the wavelet method, for f taken as each signal of Figure 1 and for
s2n= 5. We can see that both the estimation and the compression performances of our



24 F. COMTE
∗

AND Y. ROZENHOLC
∗∗

algorithm are most of the time better than wavelet methods since both ratios are higher
than 1. Signals 5 and 6 are the only one for which the wavelets are better but it appears
that they are better either in term of risk or in term of compression, but not both; on the
contrary for the other signals, our method is better in terms of both risk and compression
performance.

Nrealwj/NrealCP Nintwj/NintCP Nwj/NCP
s2n s2n s2n

Signal 3 5 7 10 3 5 7 10 3 5 7 10

1 2,57 2,05 2,09 2,22 1,61 1,20 1,24 1,26 2,30 1,79 1,84 1,93
2 2,92 2,89 1,52 1,47 4,32 4,20 2,35 2,44 3,13 3,08 1,64 1,59
3 2,85 3,57 3,33 3,24 5,25 6,46 6,31 7,30 3,14 3,92 3,68 3,64
4 2,23 2,12 2,11 1,20 7,61 8,72 9,74 6,86 2,59 2,50 2,50 1,44
5 1,47 1,01 1,17 1,06 16,74 12,58 14,98 13,64 1,80 1,23 1,43 1,29
6 1,13 1,16 1,19 1,22 28,89 33,98 35,01 36,30 1,40 1,44 1,47 1,52
7 2,35 2,26 2,40 2,36 1,32 1,33 1,35 1,34 2,03 1,98 2,08 2,05
8 1,64 2,33 2,55 2,43 9,06 18,00 21,97 22,10 1,96 2,83 3,10 2,95
9 1,35 3,71 3,55 2,80 1,80 5,56 5,69 4,94 1,42 3,97 3,84 3,06
10 3,00 4,97 5,19 5,75 4,80 6,87 6,26 6,27 3,24 5,26 5,37 5,84
11 2,18 4,72 4,85 4,68 3,54 8,07 8,89 8,84 2,36 5,15 5,33 5,17
12 4,43 3,15 4,67 4,50 8,79 7,48 11,41 11,52 4,92 3,57 5,30 5,12
13 3,50 3,67 3,68 1,85 5,10 5,40 5,63 2,93 3,73 3,92 3,95 1,99
14 3,40 2,49 2,46 6,11 5,49 4,53 4,68 12,79 3,68 2,73 2,72 6,82
15 2,09 3,45 3,14 3,21 3,42 6,41 6,04 6,85 2,26 3,80 3,47 3,59
16 1,40 1,61 1,83 1,97 9,95 13,01 15,99 18,50 1,69 1,95 2,23 2,40

Table 4. Compression performances for the three ratios in function of the s2n and of the
signal for K = 100 samples with length n = 128.

We give also in Table 4 the means (on the K samples) of the ratios: mean of Nrealwj

divided by mean of NrealCP , mean of Nintwj divided by mean of NintCP and mean
of Nwj divided by mean of NCP , for the index j corresponding to the best wavelet in
term of approximation performance for each sample path; we also distinguish between the
values s2n of the signal to noise ratios. We can see that all ratios are greater than 1, which
means that our method is better in term of compression that all standard wavelets. In
addition, the compression improvement of our algorithm increases when the s2n increases.
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