Identifying product failure rate based on a conditional Bayesian network classifier - Archive ouverte HAL
Article Dans Une Revue Expert Systems with Applications Année : 2011

Identifying product failure rate based on a conditional Bayesian network classifier

Résumé

To identify the product failure rate grade under diverse configuration and operation conditions, a new conditional Bayesian networks (CBN) model is brought forward. By indicating the conditional independence relationship between attribute variables given the target variable, this model could provide an effective approach to classify the grade of failure rate. Furthermore, on the basis of the CBN model, the procedure of building product failure rate grade classifier is elaborated with modeling and application. At last, a case study is carried out and the results show that, with comparison to other Bayesian networks classifiers and traditional decision tree C4.5, the CBN model not only increases the total classification accuracy, but also reduces the complexity of network structure.
Fichier principal
Vignette du fichier
ESWA_2012_-_Cai_Sun_Si_Yannou.pdf (3.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00748716 , version 1 (25-03-2013)

Identifiants

Citer

Zhiqiang Cai, Shudong Sun, Shubin Si, Bernard Yannou. Identifying product failure rate based on a conditional Bayesian network classifier. Expert Systems with Applications, 2011, 38 (5), pp.5036-5043. ⟨10.1016/j.eswa.2010.09.146⟩. ⟨hal-00748716⟩
123 Consultations
186 Téléchargements

Altmetric

Partager

More