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To identify the product failure rate grade under diverse configuration and operation conditions, a new
conditional Bayesian networks (CBN) model is brought forward. By indicating the conditional indepen-
dence relationship between attribute variables given the target variable, this model could provide an
effective approach to classify the grade of failure rate. Furthermore, on the basis of the CBN model, the
procedure of building product failure rate grade classifier is elaborated with modeling and application.
At last, a case study is carried out and the results show that, with comparison to other Bayesian networks

classifiers and traditional decision tree C4.5, the CBN model not only increases the total classification
accuracy, but also reduces the complexity of network structure.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, maintenance has been playing a more and more
important role in industrial fields due to the high demand for sys-
tem safety, operational efficiency and life cycle cost control. In
China, we cooperated with some aircraft corporations to develop
a maintenance management system for years. This maintenance
system daily collects bulky failure data during the airplane opera-
tion which is in different formats. The challenge faced currently is
how to discover the potential failure knowledge from these data
for prediction and decision making.

Data mining, which is also referred to as knowledge discovery,
means the process of extracting nontrivial, implicit, previously
unknown and potentially useful information from databases
(Witten & Frank, 2005). Depending on the types of knowledge
derived, mining approaches may be classified as association rules
mining, clustering, classification, prediction and others. In the area
of product failure data mining, it has been used widely for the
purpose of failure prediction, failure classification, and failure asso-
ciation. Al-Garni, Jamal, Ahmad, Al-Garni, and Tozan (2006) devel-
oped an artificial neural network (ANN) model for predicting the
failure rate of De Havilland Dash-8 airplane tires utilizing the two
layer feed-forward back-propagation algorithm. Using 6 years of
data, the results show that the failure rate predicted by the ANN is
closer to the actual data than the failure rate predicted by the Wei-
bull regression model. Chen, Tseng, and Wang (2005) defined the
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root-cause machine set identification problem of analyzing correla-
tions between combinations of machines and the defective products
and then proposed the Root-cause Machine Identifier (RMI) method
using the technique of associating rule mining to solve the problem
efficiently and effectively. Han, Kim, and Sohn (2007) applied
sequential association rules to extract the failure patterns and fore-
cast failure sequences of Republic of Korea Air Force (ROKAF) air-
crafts for various combinations of aircraft types, location, mission
and season, which could improve the utilization of aircrafts by prop-
erly forecasting the future demand of aircraft spare parts.

Because of the variety of each failure dataset and the diversity
of each knowledge discovery mission, researchers have to build
proper data mining models and processes according to the charac-
teristic of target dataset and request. In this study, we limit the
focus to product failure rate classification. Traditional product fail-
ure rate enactment is used to theoretically calculate the system
reliability thanks to a static mathematical formula that ignores
the actual application of each batch of products. Using the histor-
ical product failure data, we could provide a more accurate and
effective classification of failure rate according to the configuration
and operation. With such results, this model could satisfy the
expectations of maintenance scheduling, spare parts supply chain
management and product operation optimization.

From recent classification literature, with the characteristics of
causality and conditional independence, the Bayesian networks
(BN) have been recommended as a comprehensive method of indi-
cating relationships among and influences of variables in system
reliability domains (Boudali & Dugan, 2005; Langseth & Portinale,
2007; Mahadevan, Zhang, & Smith, 2001; Muller, Suhner, & lung,
2008; Weber & Jouffe, 2006). It is a powerful technique for han-
dling system uncertainty and it shows a high performance in



prediction and classification tasks. Friedman, Geiger, and Goldszmidt
(1997) evaluated approaches for inducing classifiers from data,
based on the theory of learning general Bayesian networks (GBN)
and put forward a tree augmented Naive Bayes (TAN) method,
which outperforms Naive Bayes (NB), yet at the same time main-
tains the computational simplicity and robustness that character-
ize NB. Cheng and Greiner (1999) learned BN augmented Naive
Bayes (BAN) and GBN using a conditional-independence (CI) based
BN learning algorithm and evaluated the algorithms with NB and
TAN. Experimental results show that the obtained classifiers are
competitive with (or superior to) the other two classifiers. Madden
(2002) introduced a new partial Bayesian network (PBN) and de-
scribes its constructing algorithm. The algorithm constructs an
approximate Markov blanket around a classification node and the
results indicate that PBN performs better than other Bayesian net-
work classification structures on some problem domains. Because
of the variety of collected data and application domains, research-
ers also have to focus on the individual case and choose the most
effective classifier and modelling process. Baesens et al. (2004)
compared and evaluated several Bayesian network classifiers with
statistical and artificial intelligence techniques for the purpose of
classifying customers in the binary classification problem. The
experimental evidence showed that Bayesian network classifiers
offer an interesting and viable alternative for customer lifecycle
slope estimation problem.

This paper is organized as follows. In Sections 2.1 and 2.2, we
discuss the principle of Bayesian networks and common Bayesian
network classifiers. To deal with the weakness of present BN clas-
sifiers, a new conditional Bayesian network (CBN) classifier and its
modeling process are described in Sections 2.3 and 2.4. In Section
3, the case study, the performance criteria and the comparison re-
sults are presented. Finally, Section 4 concludes the paper.

2. Modeling
2.1. Bayesian networks

Bayesian networks are directed acyclic graphs (DAGs) used to
represent uncertain knowledge in artificial intelligence (Jensen,
1996). A Bayesian network is defined as a couple: BN =(S,@),
where S = (N,A) represents the network structure.

N describes the set of all the nodes in a BN. Each node repre-
sents a discrete variable having a finite number of mutually exclu-
sive states. In our example, a node may be failure cause, failure
mode or other factors.

A is the set of all edges in a BN. Each edge represents the rela-
tionship of father and child by linking two nodes. In our example,
an edge interprets as a causal relation such as failure cause node
affects failure mode node.

® represents the set of probability distributions that are associ-
ated with each node. When node is a root node (i.e. it does not have
a parent), ® corresponds to the prior probability distribution of the
node states. When a node is not a root node (i.e. when it has some
parent nodes), ® corresponds to a conditional probability distribu-
tion that quantifies the probabilistic dependency between that
node and its parents. It is represented by a conditional probability
table (CPT).

Fig. 1 illustrates the nodes, edges and probability distribution
through an example. The piston valve has one failure mode which is
locked in a closed position. The high temperature and high vibration
are two failure causes of valve locked closure, and their joint probabil-
ity of leading to a locked valve is given by CPT. At last, the closure of
valve will result in high gas pressure as a failure effect. From the
CPT of high gas pressure, we can see that this node is separated from
high temperature and high vibration by the node of valve locked close,
which means they are conditionally independent.

Through the complex application of the Bayesian probability
theory, Bayesian networks are designed to obtain probabilities of
unknown variables from known probabilistic relationships. It is be-
lieved that they are well suited for prediction and classification
research.

With the network structure and probability distributions men-
tioned in Fig. 1, it is convenient to compute the posterior probabil-
ity of target variable. For example, according to the Bayesian
theory P(A/B) = ZEPA where P(A) is prior probability, P(B/A) is
conditional probability, P(A/B) is the posterior probability, we
could compute P(C = True/G = True) by PC=Te/e-TueP(C=Tnie),

Then, we calculate the original variable probability distribu-

tions as follows:

P(C =True) =Y P(TE,V,C = True) = > _ P(TE)P(V)P(C

IEV IEV
= True/TE. V) = P(TE = True)P(V = True)P(C = True/TE
= True.V = Ture) + P(TE = True)P(V = False)P(C
= True/TE = True,V = False) + P(TE = False)P(V
= True)P(C = True/TE = False,V = Ture) + P(TE
= False)P(V = False)P(C = True/TE = False,V = False)
=0318 (1

P(G =True) = Z P(TE,V,C,G = True)
TEV.C
=Y "P(C=True/C) Y P(TE)P(V)P(C/TE, V)
c TIEV

= ZP(C)P(G = True/C) = P(C = True)P(G = True/C = Ture)
c

+ P(C = False)P(G = True/C = False) =0.3172 (2)

Finally, we got the posterior distribution easily as P(C = True/
G = True) = 280318 _ (.802.

In another case, suppose we have detected the evidence of high
temperature and low vibration, the probability of bringing a high

gas pressure is shown as:

P(G = true /TE = true, V = false) = P(G = true/C = true)
-P(C = true/TE = true, V = false) + P(G = true/C = false)
-P(C = false/TE = true,V = false)
=08x04+01%0.6=038 (3)

But with the hypothesis of conditional independence, we could
ignore the affections of (TE, V) on node G when C is detected. So, if
we already know (V = true,C = false), the result could be calculated
directly as  P(G=True/V=True,C = False) = P(G = True/C = False)
=0.1.

Because of the characteristics of causality and conditional inde-
pendence, the Bayesian network provides a comprehensive meth-
od of representing relationships and influences among variables. It
is also a powerful technique for handling uncertainty and shows a
high performance in prediction domain. In addition, by presenting
with graphical diagrams of nodes and edges, Bayesian network
models can be more easily understood than many other techniques
(Lee & Abbott, 2003).

2.2. Bayesian network classifiers

The application of Bayesian network classifiers is divided into
two stages. First, the structure and parameters of Bayesian network
are derived based on learning algorithm and some constraints. Sec-
ondly, the inference process is applied to compute the conditional
probability of the target variable and classify it into certain classes
based on the probability threshold. The time cost of classifier
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Fig. 1. A simple example of Bayesian networks.

learning and inference mainly depends on the numbers of vari-
ables and of the potential relationships among them. So it is usual
to add some relationship constraints to simplify the Bayesian net-
work learning process in actual applications.

The NB (Duda & Hart, 1973) supposes that all attribute variables
X are conditionally independent given the target variable while it
is not true in practice. The TAN (Friedman et al., 1997) makes a
great improvement by relax the NB assumption with attribute vari-
ables to form a tree. But it is unnecessary to build such a complex
structure with too many edges which could lead to the over fitting
problems. The GBN learns the structure for global optimization not
target node, so some weak but useful connections between target
node and attribute variables are dismissed for the lowest mini-
mum description length (MDL) (Friedman & Goldszmidt, 1996)
score function. Because the target node is conditionally indepen-
dent to all other variables given its MB, it could not apply all the
useful information hidden in the dataset.

2.3. Conditional Bayesian network classifier

From the descriptions of traditional Bayesian networks classifi-
ers, we could find that they all have their own weakness when
dealing with different classification missions. We propose a new
kind of Bayesian network classifier building algorithm named as
conditional Bayesian networks (CBN). The CBN could utilize the
conditional independence relationships among attribute variables
given the target variable effectively. It could not only enhance
the classification accuracy, but also lower the network structure
complexity at the same time.

With a dataset including variables set, a DAG could be learned
from it, see Fig. 2. If there is an arc from node X to node Y, then we
name X as the parent node of Y (N;’) while Y is the child node of X
(NE). The other parent nodes of a node's child node are spouse nodes

(Nf._,) like node J. The set of all the child nodes and parent nodes of
one node X is called neighbor nodes (N}, = (N}, NY)) and all the child
nodes, parent nodes and spouse nodes of one node X are called its
Markov Blanket nodes (NﬁB = (Nf.f, NE, Nf._,)) When a node has no
parent node, it is called root node while a node without child node
is named as leaf node. The ancestor nodes of a node are defined as
its parent nodes and the parent nodes’ ancestor nodes
(Nf{ = (Nf.f: N?ﬁ: . )) like nodes A and E. The descendent nodes of
anode are defined as its child nodes and the child nodes’ descendent

nodes (Nﬁ = (Ng: N )) like nodes N, Y and P.

Fig. 2. An example of variables set and its directed acyclic graph.

For the purpose of describing the principle, algorithm and build-
ing process of CBN easily, we defined some other kinds of nodes.

Definition 1. Among all the original variables, the nodes that are
independent of the learned Bayesian network, which means there
is no arc to connect them, are defined as independent nodes (N;),
like node K.

Definition 2. In a BN, the nodes that are connected with node X
with edges are called the BN nodes of node X (N,). When we
delete one node Y and its edges from the BN, thé rest nodes
connected with X are named as X's non-Y BN nodes (NgN_Y).

Definition 3. The N}'s descendent nodes which do not belong to
Niv

nodes set (X,va, NS NS ONG :Ng)“c") are defined as sideward nodes
(w2 :Ng§:N§¢(x:NfV,N§,N§:N§5V,N§V)), like node F in Fig. 3.

They have at least one common ancestor node with node X.

Definition 4. The non-X BN nodes of N¥ which do not belong to
nodes set (X: NSNS N N N Ngé'“) are defined as non ances-
tor nodes (N, = N3 N & (X N3, N5 N NG NG NE) ) like
nodes B and G in Fig. 3. Normally, they are the spouse nodes of
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Fig. 3. Three kinds of connection relationships.

ancestor nodes and the spouse nodes’ family member. So they do
not have a kinship with node X.

Definition 5. All the non-X BN nodes of N, which do not belong to
nodes set (X, Nﬁ,, Nﬁ, N’s‘, Nf)“{", Ng)‘f‘”, N’;)“{") are defined as non descen-
dent nodes (N = Ny Nip # (XN, NS NS NS NG NS ),
like nodes C, H and M in Fig. 3.

All conditional independence statements can be derived from a
BN structure by using the rules of directed separation (Charniak,
1991). In a BN, a path P between X and Y represents a set of nodes
with edges connecting them from X to Y. There are three kinds of
connections between a random variable Z and its two immediate
neighbors in the path, X and Y. The three possibilities are shown
in Fig. 4 and correspond to the possible combinations of arrow
directions from Z to X and Y. In the first case, all the edges are in
the same direction; in the second case, both are leaving Z; and in
the third, both point at Z. We can name Z as a linear, diverging
or converging node in a path P depending on the situations accord-
ing to Fig. 3.

The description of a block condition in the path is as below. A
path P from X to Y is blocked with respect to the evidence nodes
Z if Z has the property that either.

(1) There is at least one linear node in P that belongs to Z.

(2) There is at least one diverging node in P that belongs to Z.

(3) There is a converging node in P, it and its descendent nodes
do not belong to Z.

If all the paths between X and Y are blocked by Z, then we may
say that Z directed separate X and Y, which means that X is condi-
tionally independent of Y given Z, marked as X LY|Z.

According to the description of conditional independence, we
give the definition of CBN and infer some deductions for the pur-
pose of building a CBN.

Definition 6. For a node X in the nodes set and the learned BN, its
conditional Bayesian network is defined as CBN* = (N{gy. AXn).
The nodes set N, include X, N&; and the set of nodes which are
conditionally independent with Nﬁm given X; the edges
setAlgyinclude the edges in N, the edges from X to all condi-
tionally independent nodes and the edges among the conditionally
independent nodes themselves.

Deduction 1. With a BN learned from nodes set and a node X in it,
N, are conditionally independent with Nﬁs given X.

Because any node in N; does not connect with the BN with arc
and could not form a path to Ni, Ni; could not affect it given X.

NB e

TYPE USE

GBN

CBN

POVER GEAR_BOX

Fig. 4. The structures of learned Bayesian network classifiers.

Deduction 2. With a BN learned from nodes set and the node X in
it, node X's NX, are conditionally independent with NJ,, given X.

For any node in Nﬁ,\, because the BN does not have a loop in it,
all the paths from the node to (Nﬁ,N’C‘, Nf._,) will have at least one

converging node in (N?,Nﬁ,N?a,Ngﬁ"). Since (N;‘,Nﬁ,N?{’{‘”,Ngf")
do not belong to X, we could say that X directed separate Nj,

and (Nﬁ:N’C‘:Nﬁ,). It is proven that N}, are independent with
(Ng:N“C‘,Nﬁ,) given node X.

Deduction 3. With a BN learned from nodes set and the node X in
it, node X's Nxp, are conditionally independent with Niy given X.

For any node in NY,,, because the BN does not have a loop in it,
all the paths from the node to (Nf.f,N’C‘, Nf._,) will have at least one

converging node in (N;NE:N?J‘S":NBJ‘SV). Since (N?NE,N?J‘S":NEE")



do not belong to X, we could say that X directed separate NﬁD and

(Nﬁ,N’é,Nﬁ,). Then any node in set NX, is independent with

(Nf.f, N, Nf,,) given node X.

Generally speaking, when we learn a directed acyclic graph
form dataset, there are still some nodes which are conditionally
independent with the target node’s MB given target node. These
nodes could also provide part mutual information for a more effec-
tive classification.

24. Product failure rate classification modeling

There are two main kinds of prediction technologies in machine
prognostics. The most obvious and widely used prognostic is to
predict the remaining useful life (RUL) before a failure occurs given
the current machine condition and operation profile. Second it
would be more interesting to predict the probability that a ma-
chine operates without a fault or a failure up to some future time
given the current machine condition and operation profile (Jardine,
Lin, & Banjevic, 2006). In our research, we focus on classification of
product failure rate when a series of products with diverse config-
urations operate in different conditions. With this prediction, it
could provide solid support for maintenance decision making,
spare parts supply chain management and product optimization.

The procedure of built product failure rate classification model
based on Bayesian networks is as shown below.

1. For the whole product family of a company, choose the ith
series product (P, i=1,2,...) as the object of product failure
rate classification.

2. According to P, search the related failure records from his-
tory failure database (including product configuration and
application information variables set C, product failure rate
variable R). Each record is marked as D;: = (CJ':, Rj:): j=
1,2,...,n.

3. To avoid training over fitting and perform well for new
record, randomly divide failure dataset D; into two parts.
While 2/3 of the dataset are used as a training set D, . for
learning the classifier, the remaining 1/3 are used as a test

set D}, for testing the general behavior of the classifier.

4. With the product failure rate R as target node, based on the

train set D}, , learn the Bayesian networks classifier’s struc-

ture G and compute the conditional probability distributions
® with Munteanu's EQ algorithm (Munteanu & Bendou,

2001).

Table 1
Variables used in the case study.
Variables Name States
Target variable FAILURE_RATE  HIGH, LOW
Attribute variables COUNTRY C1,C2,C3, C4,C5,C6, C7,C8, 09, C10
TYPE V1,V2,V3,v4, V5
USE S, P
AIR_CON YES, NO
POWER P1, P2, P3, P4
GEAR_BOX HAND, AUTO
Table 2
Data set characteristics.
Data set size 235
Training set size 156
Test set size 79
Number of attributes 6

5. For the learned BN, set the failure rate node as the target
node and search the nodes set (NﬁA,NﬁD,N;) according to
their definitions.

6. Lock the nodes set (R, Ny, Nf,, NﬁD,N;) and delete all other
nodes and their edges.

7. According to the deductions before, (me, NRp. N;) are condi-

tionally independent with Nf;; given R. So adding edges from
R to every node in nodes set (NﬁA,NﬁD:N;) does not affect

the original conditional independence relationship.
8. Use the Maximum Likelihood Estimation (MLE) algorithm to
update the conditional probability distributions of

(NﬁA, NYp. N;) resulting from the added edges.

Finally, the CBN model for product failure rate classification
is built and we could test and implement it for the practical
applications.

9. According to the performance evaluation criteria, test the
performance of learned CBN classifier with test set DI,
and compare the results with other classifiers.

10. Input the new product configuration and application record
C,.enw into CBN classifier and calculate the posterior probabil-
ity distribution of target variable R to set its failure rate R,

3. Case study
3.1. Data set

The data we used for case study are all gathered from a French
product manufacturer in a certain period (Ben Ahmed, Beranger, &
Geslin, 2008). It describes the failure rate of product with different
configurations and application conditions. The target variable is
failure rate and the attribute variables include COUNTRY, TYPE,
USE, AIR_CON, POWER and GEAR_BOX, see Table 1. Because of
commercial confidence, we replace the original attribute variables
states with corresponding symbols. To avoid over fitting, we split
the data set according to process before and the detailed character-
istics are shown in Table 2.

3.2. Evaluation criteria for classification

The confusion matrix (Hand, Mannila, & Smyth, 2001) is
undoubtedly the most commonly used criteria for measuring per-
formance of classifiers which is defined as P=[py], i,j=1.2,....n.
Number n represents the number of classes and pj; represents the
number of records which have been predicted to be in class j but
which are actually in class i. Wheni =j, pj means the number of
correct classification records and the total accuracy of model is

n
Total = —;51..”— Besides accuracy, we use classification precision

E|=1 EJ:'IPU

Py = ff"fT, i,j=1,2,....n and classification  reliability
T

Rj =<2, ij=1.2,... nto describe distributions of true-posi-
Ey=1pﬂ'

tive rate, true-negative rate, false-positive rate and false-negative
rate in detail.

Because the target variable has only two states, we also apply
Receiver Operating Characteristic (ROC) to estimate the classifica-
tion results. By moving the classification threshold, it could get
coordinate points with true-positive rate as Y-axis and false-posi-
tive rate as X-axis. With a ROC curve connecting these points, we
could evaluate the classifiers by comparing the curve to the 45°
straight line and computing the area under the ROC curve (AUR-
QC). It is calculated according to the curve displayed at the top of
the graphic and represents the surface under the ROC curve di-
vided by the total surface. If the curve is far from the 45° straight



Table 3

Comparision of classifiers’ accuracy.

Classifiers  Criteria True- False- True- False- Total
positive negative negative positive accuracy
(%) (%) (%) (%) (%)
NB Precision 65.96 34.04 78.12 21.88 70.89
Reliability 81.58 39.02 60.98 18.42
TAN Precision 7234 27.66 93.75 6.25 81.01
Reliability 94.44 30.23 69.77 5.56
GBN Precision 78.72 21.28 78.12 21.88 78.48
Reliability 84.09 28.57 71.43 15.91
CBN Precision 76.6 234 93.75 6.25 83.54
Reliability 94.74 26.83 73.17 5.26
C4.5 Precision 80.85 19.15 65.63 3437 74.68
Reliability ~ 77.55 30 70 2245

line, it means that the AUROC is larger and the performance of clas-
sifier is better (Bamber, 1975).

Moreover, the Bayesian network classifiers predict the target
class label with its own probability, so the evaluation of the model
could also be realized by using the gain curve and the lift curve
(Bayesia Limited Company, 2010a). Cumulative gain curve and lift
curve are graphical representations of the advantage of using a pre-
dictive model by measuring the difference between the results ob-
tained with and without classifier model. The information can be
used to determine whether we should use this model or one sim-
ilar to it in the future.

The gain curve is generated by sorting the test individuals
according to the target value probability returned by the classifier
in the increasing order. We draw it using the actual positive rates
to see how much the classifier model would have helped in this sit-
uation. The X-axis represents the rate of individuals that are taken
into account. The Y-axis represents the rate of individuals with the
target value that have been identified as such. In the gain curve,
the yellow! line represents the percentage of individuals that have
the target value in fact; the blue curve represents the gain curve of
a pure random policy; the red curve represents the gain curve cor-
responding to the classifier. The Gini Index is computed according
to the curve and displayed at the top of the graphic. It means the
ratio of the surface under the red curve and above the blue curve
divided by the surface above the blue curve. This interactive curve
is not only an evaluation tool, but also a decision support tool that
allows defining the best probability threshold by balancing gains
and costs of the classification result.

The lift curve comes from the gain curve and highlights the
improvement between the result returned by the current classifier
and the result using no model. The X-axis represents the rate of test
individuals that are taken into account. The Y-axis represents the
lift factor defined as the ratio between the rate of the targeted pop-
ulation obtained with the current policy and the rate obtained with
the random policy. The larger the lift factor value the better the
accuracy, for a given model.

3.3. Simulation results

According to the modeling process listed in Section 2.4, we
learn and test the data set with NB, CBN and GBN algorithms with
BayesiaLab (Bayesia Limited Company, 2010b). The structures of
four learned Bayesian network classifiers are show in Fig. 4. The
confusion matrixes of classification results are listed in Table 3.
For the purpose of comparison, we also train the decision tree
induction algorithm C4.5 with Matlab toolbox. The Gain curves
and Lift curves of all Bayesian network classifiers are shown in Figs.

! For interpretation of color in Figs. 4-7, the reader is referred to the web version of
this article.

5 and 6, respectively. The ROC curves of each Bayesian network
classifiers are shown as in Fig. 7.

From Table 3, we could see that the NB performs poorest with
an accuracy of 70.89%. It is because its assumption ignores of the
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Fig. 5. The gain curves of four learned BN classifiers.
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Fig. 6. The lift curves of four learned BN classifiers.

relationships among attributes variables. The C4.5's result is mod-
erate with 74.68% and still has a gap with the better ones. The GBN
works better, but it pays more attention on full structure optimiza-
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Fig. 7. The ROC curves of four learned BN classifiers.

tion and balance between the precision and complexity. The TAN
gets a good result of 81.01% since it relaxes the conditional inde-
pendence assumption by considering the edges between attribute



Table 4
The structure complexity of BN classifiers.

BN classifiers Nodes Edges
NB 7 6
TAN 7 7
GBN 3 2
CBN 5 4

nodes. The CBN gets the highest score of 83.54% since it not only
considers the conditional independence between attribute vari-
ables but also dismisses the useless direct relationships between
attribute variables.

In the aspect of AURQC, the areas of TAN and GBN are almost
the same but are much larger than NB’s 77.06%. The AUROC of
CBN is the best and reaches 85.70%. For the criteria of Gain curve
and the Lift curve, the CBN also gets the highest performance with
28.9% in Gini index and 1.41 in mean Lift comparing to other three
normal BN classifiers.

Besides, as shown in Fig. 4 and Table 4, the GBN classifier has
the simplest structure with only three nodes and two edges be-
cause of a lowest MDL score. The TAN model has the most complex
structure since it considers the relationship between the attribute
nodes on the basis of a NB classifier. The CBN's structure complex-
ity is in between with five nodes and four edges for an effective but
economical utilization of all variables” information.

4. Conclusions

The paper proposes a new kind of conditional Bayesian net-
work classifier on the basis of traditional NB, TAN and GBN model.
The principle, algorithm and modeling of CBN are described in de-
tails to guide the application of identifying the product failure
rate. Because it considers the conditional independence between
attribute nodes and target node’s Markov Blanket given the target
node, the CBN could provide a more effective classification result.
The case study shows that, with comparison to the BN classifiers
and decision tree C4.5 classifier, the CBN got the highest perfor-
mance in the all criteria of total accuracy, AUROC, Gini index
and mean Lift.

Although the GBN classifier had the simplest network structure,
the CBN made an acceptable balance between network complexity
and promotion of classification performance. It may satisfy the
expectations for maintenance decision making, spare parts supply
chain management and product configuration optimization.
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