Sobolev maps on manifolds: degree, approximation, lifting - Archive ouverte HAL Access content directly
Journal Articles Contemporary mathematics Year : 2007

Sobolev maps on manifolds: degree, approximation, lifting

Abstract

In this paper, we review some basic topological properties of the space $X = W^{s,p}(M ; N)$, where $M$ and $N$ are compact Riemannian manifold without boundary. More specifically, we discuss the following questions: can one define a degree for maps in $X$? Are smooth or not-far-from-being-smooth maps dense in $X$? Can one lift ${\mathbb S}^1$-valued maps?
Fichier principal
Vignette du fichier
sobolev_spaces_survey_20070120.pdf (331.01 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00747679 , version 1 (31-10-2012)

Identifiers

Cite

Petru Mironescu. Sobolev maps on manifolds: degree, approximation, lifting. Contemporary mathematics, 2007, 446 (Perspectives in nonlinear partial differential equations), pp.413-436. ⟨10.1090/conm/446/08642⟩. ⟨hal-00747679⟩
628 View
1439 Download

Altmetric

Share

Gmail Facebook X LinkedIn More