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Sobolev maps on manifolds: degree, approximation, lifting

Petru Mironescu ∗

January 20th, 2007

Abstract

In this paper, we review some basic topological properties of the space X = W s,p(M ;N),
where M and N are compact Riemannian manifold without boundary. More specifically, we
discuss the following questions: can one define a degree for maps in X? are smooth or not-far-
from-being-smooth maps dense in X? can one lift S1-valued maps?

1 Introduction

Sobolev maps between manifolds appear naturally in different contexts: harmonic maps, liquid crystals
and the Ginzburg-Landau equation are some of them. In this survey, we describe what is known about
three natural questions concerning maps u : M → N in a Sobolev space X = W s,p(M ;N); here, M
and N are compact Riemannian manifold without boundary. Question 1. Does u has a degree?
Question2. Can one approximate u with smooth N -valued maps? Question 3. If N = S1, can one
write u = eıϕ, with ϕ as smooth as u? Though these questions are motivated by applications, this
paper is rather a quick introduction to research problems than applications oriented.

Degree is discussed in Section 2. Sections 2.6 and 2.7 may be viewed as an introduction to the
problem of describing the connected components of X; this is beyond the scope of this paper, and
we send the reader to the beautiful papers [BL] and [HaL2]. Section 3 deals with lifting. Section 4 is
about approximation with smooth maps. This matter is the source of additional research directions;
some of them will be addressed in Sections 4.3-4.4. We sometimes go beyond Sobolev spaces and
investigate properties of VMO or BV maps.

The aim of this paper is to give a quick overview of the existent literature. Therefore, proofs are
rather sketchy; often, ”hint” would have been more appropriate than ”proof”. However, we hope that
the main ideas are sufficiently clearly exposed. On the other hand, the bibliography is reduced to the
strict minimum; it contains only the papers that were quoted in the text.

Part of the open problems is not new. Some of them are directly inspired by the surveys [B1],
[B2]. Others raised from useful discussions with Häım Brezis, to whom the author wants to express
his gratitude.

1.1 Notations

For 0 < s <∞ and 1 ≤ p <∞, we equip the Sobolev space W s,p with the norm u 7→ ‖u‖Lp + |u|W s,p .
If s is an integer, |u|W s,p = ‖Dsu‖Lp . If not, write s = m + σ, with m integer and 0 < σ < 1. Then,
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in Rn or on an n-dimensional manifold,

|u|pW s,p =

∫ ∫
|Dmu(x)−Dmu(y)|p

|x− y|n+σp
dx dy.

In Rn, the BMO norm is ‖u‖BMO = ‖u‖L1 + |u|BMO, where

|u|BMO = sup
x

sup
r>0

∫
−
B(x,r)

∫
−
B(x,r)

|u(y)− u(z)|dy dz.

When Rn is replaced by an embedded manifold M , averages are computed on B(x, r) ∩M .
In BV, we consider the norm ‖u‖BV = ‖u‖L1 + |u|BV, where |u|BV is the total variation of the measure
Du.
If N is a compact manifold embedded into Rl and M is any smooth manifold, then W s,p(M ;N) =
{u : M → Rl ; u(x) ∈ N a. e. and |u|W s,p <∞}. One defines similarly BV(M ;N) and BMO(M ;N).
Sn is the unit sphere in Rn+1. Bn is the unit ball in Rn.
On a compact n-dimensional manifold M embedded in an Euclidean space, a mollifier is a C∞-map

(0,∞) ×M ×M 3 (ε, x, y) 7→ ρε(x, y) such that supp ρε(x, ·) ⊂ B(x, ε) ∩M ,

∫
ρε(x, y)dy = 1 and

‖Djρε‖ ≤ Cε−n−j. With some abuse of notations, we will denote

∫
u(y)ρε(x, y)dy by u ∗ ρε(x).

2 Maps from Sn into Sn

2.1 Degree

In this part, X = W s,p(Sn;Sn). The basic question we address is: can one define a degree for maps
in X? If we have in mind the way the topological degree is defined for continuous maps, the natural
strategy would be: Step 1. Prove that Sn-valued smooth maps are dense in X; Step 2. Prove that
the degree, initially defined for smooth maps, extends by density to the whole X.
It turns out that Step 1 works.

Theorem 2.1. C∞(Sn;Sn) is dense in X for each s and p.

Proof. When sp > n or s = n and p = 1, X is embedded in C0, by the Sobolev embeddings. In
this case, the proof is trivial: approximate u ∈ X by a smooth family uε = u ∗ ρε. Then |uε| → 1
uniformly. For sufficiently small ε, take vε = uε/|uε|. It is easy to see that vε → u in X.
When sp < n, this result is due to Escobedo [E] when s is not an integer; however, his proof adapts
to the case where s is an integer. Here it is how it works: fix any point x in Sn and consider, for small
ε > 0, a smooth map π = πx,ε : Sn → Sn \B(x, ε) projecting the cap B(x, ε)∩Sn onto its complement
in Sn. This can be done such that π =id outside B(x, 2ε) ∩ Sn and ‖Dkπ‖ ≤ Cε−k. If u ∈ X, then
v = vx,ε = π ◦u is still in X and has the additional property that it can be approximated by Sn-valued
smooth maps. Indeed, v takes values into Sn\B(x, ε), which is topologically like a ball. By composing
v with an appropriate diffeomorphism, we are in the situation where the map is Rn-valued, and then
approximation is standard. It remains to prove that, if we pick appropriately ε → 0 and x = x(ε),
then the corresponding v’s converge to u. Here it is where the hypothesis sp < n comes into the

picture: it implies that

∫
Sn
‖vx,ε − u‖pW s,pdx → 0 as ε → 0. This leads immediately to the desired

conclusion.
When sp = n, the idea of the proof goes back to Schoen and Uhlenbeck [SU]; their proof works for
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W 1,n(Sn;Sn) maps. The general case is due to Boutet de Monvel and Gabber (Appendix to [BGP]).
The starting point is that a map u in X belongs to VMO (=vanishing mean oscillation=the closure of

smooth maps in BMO). Analytically, this means that, with Iδ(u) = sup
x∈Sn

∫
−
B(x,δ)∩Sn

∫
−
B(x,δ)∩Sn

|u(y) −

u(z)|dy dz, we have

lim
δ→0

Iδ(u) = 0. (2.1)

(For a proof of the Sobolev embedding W s,p(Rn) ↪→ VMO when sp = n, see, e. g., [BNI], Section I.2).
Next, the key ingredient is that, for VMO(Sn;Sn) maps, we have

|uε| → 1 uniformly as ε→ 0. (2.2)

Indeed, if y ∈ B(x, ε) ∩ Sn, then |u(y)− uε(x)| ≤ C

∫
−
B(x,ε)∩Sn

|u(y)− u(z)|dz. Thus

1− |uε(x)| =
∫
−
B(x,ε)∩Sn

(|u(y)| − |uε(x)|)dy ≤ C

∫
−
B(x,ε)∩Sn

∫
−
B(x,ε)∩Sn

|u(y)− u(z)|dy dz,

and the last integral tends to 0 uniformly in x as ε→ 0.
For further use, we note that the above argument implies that, if u ∈VMO(Sn;F ), where F is any
set, then

dist(uε(x), F )→ 0 uniformly in x as ε→ 0. (2.3)

Once (2.2) is proved, one may proceed as in the case of continuous maps.

Troubles come from Step 2. The following result essentially due to Brezis and Nirenberg [BNI].

Theorem 2.2. There is a degree (equivalently: the degree of smooth maps is continuous with respect
to the W s,p-norm) in X if and only if sp ≥ n.

Proof. When sp > n or s = n and p = 1, we deal with continuous maps, so that we are done.
When sp < n, we may construct a sequence of smooth maps of degree 1 converging in X to a
constant; this implies that the degree of smooth maps does not pass to the limits. The construction is
the following: fix a smooth map v : Rn → Sn, of degree one and equal to a constant P at infinity. Since
sp < n, the scaled maps vε(x) = v(x/ε) tend to P in W s,p as ε→ 0. By stereographic projection, we
may transport these maps on Sn and obtain a sequence of maps of degree 1 and converging to P in
X.
It remains to study the limiting case sp = n. Here, VMO comes again into the picture: maps in
VMO(Sn; Sn) do have a degree, i. e. the degree of smooth maps is continuous for BMO convergence.
This is Theorem 1 in [BNI]. The argument there applies to the case where Sn is replaced by arbitrary
compact oriented manifolds. We will present in the next section a different approach, tailored for
Sn-valued maps.

2.2 Formulae for the degree of VMO maps

In this part, maps u are in VMO(Sn;Sn). If u is smooth, then there are two ways of computing its
degree:

deg u =

∫
−
Sn

det(Du, u) (2.4)
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and

deg u =

∫
−
Bn+1

Jac v. (2.5)

In the first formula, u is considered as an Rn+1-valued map, Du stands for the tangential jacobian
matrix and the determinant is (n+ 1)× (n+ 1). In the second one, v : Bn+1 → Rn+1 is any Lipschitz
extension of u, and Jac stands for the jacobian determinant.
It turns out that the second formula is ”the right one”, in the sense that we may use it to define
the degree even if u is merely VMO. In this case, one has to take a special extension v. The idea

is borrowed from [BBM3]. Let ũ be the harmonic extension of u and set v =

{
ũ/|ũ|, if |ũ| ≤ 1/2

2ũ, if |ũ| ≤ 1/2
.

When u ∈VMO, we have

|ũ(x)| → 1 uniformly as |x| → 1. (2.6)

This is proved in [BNII], Appendix 3. Though the rigorous proof is delicate, the result is intuitively
clear: if Pr is the Poisson kernel (so that ũ = u ∗ Pr), then in some sense Pr is close to a mollifier
ρ1−r, so that morally this result is similar to (2.2). This implies that the right-hand side of (2.5) is
well-defined. Indeed, near Sn, v is Sn-valued, and thus its jacobian determinant vanishes. On the
other hand, far away from Sn, v is Lipschitz. We may now try to define deg u as the right-hand side
of (2.5). Note that, when u is smooth, v is Lipschitz, so that we fall back to the classical degree. The
following result completes the proof of Theorem 2.2 and incidentally gives, for Sn-valued maps, an
alternative proof of Theorem 1 in [BNI].

Proposition 2.1. The map u 7→
∫
−
Bn+1

Jac v is continuous in VMO(Sn;Sn).

Proof. Consider a sequence {uk} converging in VMO to some u. Then there is a fixed r < 1 such
that the corresponding harmonic extensions satisfy |ũk(x)| ≥ 1/2 and |ũ(x)| ≥ 1/2 whenever |x| ≥ r.
To prove this, it suffices to check that the argument leading to (2.6) yields uniform estimates when
applied to a convergent sequence. Thus, with obvious notations, we have

deg uk =
1

|Bn+1|

∫
B(0,r)

Jac vk →
1

|Bn+1|

∫
B(0,r)

Jac v = deg u,

since ũk → ũ in C1(B(0, r)).

2.3 Estimates for the degree

Here, X = W s,p(Sn;Sn) and sp ≥ n (so that the degree exists). A natural question is whether it is
possible to estimate this degree in terms of the W s,p-norm. Before giving the answer, let us consider
the more familiar situation where maps are continuous or better. If u is merely continuous, then there
is no possible estimate, since the sup norm of u is always 1, while its degree can be any integer; the
same argument shows that there is no estimate for the degree of VMO maps. However, if u is slightly
better, then there is a control; for example, if u is Hölder continuous, then its degree is controlled by
its Hölder semi-norm (this can be shown as in the proof of Theorem 2.3 below). In view of the Sobolev
embeddings, we would thus expect the following: if sp > n, there is a control, while, if sp = n, there
isn’t. Surprisingly, the answer is [BBM3]
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Theorem 2.3. If sp = n, then

|deg u| ≤ C|u|pW s,p . (2.7)

Consequently, if sp > n there is an estimate of the degree in terms of |u|W s,p.

Second assertion follows simply from the first one and Sobolev.

Proof. The case s = n and p = 1 is easy to treat (using (2.4)), so that we may assume p > 1.
We start with a simple remark: if we know how to prove this result when s is small, then we know
how to prove it for all s. This follows from the Gagliardo-Nirenberg type embedding

W s,p ∩ L∞ ↪→ W r,q if sp = rq and 0 < r < s, (2.8)

valid except when s is an integer, p = 1 and r > s− 1 is not an integer.
The case p = 1 being settled, it thus suffices to treat the case s < 1. We rely on (2.5). Let, for x ∈ Sn,
r = rx ∈ (0, 1) be the smallest ρ such that |ũ(tx)| > 1/2 for t ∈ (ρ, 1). Thus the set where the jacobian
of v does not vanish is contained in U = {ρx ; x ∈ Sn, ρ < rx}. Since ũ is the harmonic extension of a
map of modulus 1, we have |Dũ(y)| ≤ C(1−|y|)−1 and thus |Jac v(y)| ≤ C(1−|y|)−(n+1). Integration

of this inequality over U yields |deg u| ≤ C

∫
Sn

(1 − rx)
−ndx. Next, with Ix denoting the segment

connecting x to rxx, we have either rx = 0 or

1/2 ≤ |u(x)− ũ(rxx)| ≤ (1− rx)n/p|ũ|Cn/p(Ix) ≤ C(1− rx)n/p|ũ|W (n+1)/p,p(Ix).

Thus

(1− rx)−n ≤ C|ũ|p
W (n+1)/p,p(Ix)

+ 1. (2.9)

Integrating this inequality yields, with the help of trace theory, that |deg u| ≤ C|u|pW s,p +C ′. Finally,
it is easy to get rid of C ′ by noting that, when the semi-norm of u is small, u is close in VMO to a
constant, and thus its degree vanishes.

There is a challenging question concerning estimate (2.7). We state it for S1, though it also makes
sense for Sn.

Open Problem 1. Let 1 < p <∞. Set

C = inf{I =

∫
S1

∫
S1

|u(x)− u(y)|p

|x− y|2
dx dy = |u|p

W 1/p,p(S1)
; u : S1 → S1, deg u = 1}.

Is C attained? Which are the optimal functions?

Note that C > 0. The answer is easy to give when p = 2 (and unknown when p 6= 2). Indeed, when

p = 2 and u =
∑

ane
ınθ, an easy computation yields I = 4π2

∑
|n||an|2, while deg u =

∑
n|an|2

(see Section 2.4). Thus I ≥ 4π2. Equality requires an = 0 when n < 0. Thus u is the boundary
value of a holomorphic map. It is easy to see that the holomorphic maps in the unit disk that are of
modulus 1 and degree 1 on the unit circle are precisely the Moebius transforms. Thus C = 4π2 and
optimal maps are Moebius transforms.
Note that this problem lacks of compactness, which explains why it may be difficult to handle: if
{uk} is a minimizing sequence, then up to some subsequence {uk} converges weakly in W 1/p,p to
some u. However, weak convergence does not guarantees that the degree of u is 1 (take, e. g.,

uk(e
ıθ) =

{
eıkθ, if 0 ≤ θ ≤ 1/k

1, otherwise
, which has degree 1 and weakly converges to the constant 1). Thus

it is unclear whether the infimum is attained.
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2.4 Maps from S1 into S1: an explicit degree formula

Throughout this section, u : S1 → S1. If u is smooth and u =
∑

ane
ınθ, then (2.5) reads

deg u =
∑

n|an|2; (2.10)

this was first noted by Brezis. On the other hand, as we saw right after Open Problem 1, |u|2
H1/2 ∼∑

|n||an|2. Using this remark and the continuity of the degree in H1/2 (Theorem 2.2), we find

Proposition 2.2. Degree formula (2.10) is valid when u ∈ H1/2(S1;S1).
Consequently, (2.10) holds if u ∈ W 1/p,p for 1 < p < 2.

Last statement is simply a consequence of the Gagliardo-Nirenberg inequality.
In a survey paper [B1], Brezis asked several challenging questions about formula (2.10). Question 1:
since degree makes sense when u is merely continuous (or even VMO), can one give a meaning to the
right-hand side of (2.10) in order to recover deg u from |an|? Soon after, this answer revealed to be
(presumably) negative (Korevaar [Ko]). This suggested some more ”modest” questions. Question 2:

if u =
∑

ane
ınθ, v =

∑
bne

ınθ are continuous maps such that |an| = |bn|, is it true that deg u = deg

v? Answer: no (Bourgain and Kozma). Question 3: same as Question 2 if u, v ∈ W 1/p,p and p > 2.
This is partially open.

Back to Question 1: the absolute convergence of the series
∑

n|an|2 is equivalent to u ∈ H1/2.

Nevertheless, one may still hope give a meaning to its sum. Commonly used summation procedures

consist in taking either S = lim
k→∞

k∑
−k

n|an|2 or T = lim
r→1−

∑
r|n|n|an|2. Korevaar’s result concerns

these two procedures.

Theorem 2.4. If u ∈ C0(S1;S1), then S or T could be any real number, or even not exist.

The proof is explicit: given α ∈ R, Korevaar exhibits a map u such that S = α (or T = α). Of
course, one may imagine some other summation procedure, but Korevaar’s construction will probably
take care of it.
Concerning Question 3, the first answer was obtained for Hölder maps in an unpublished work of
Kahane. In the setting of Sobolev spaces, Brezis [B2] proved the following variant of Kahane’s result.

Theorem 2.5. If u ∈ W 1/3,3, then

deg u = lim
ε→0

∑
n6=0

sin2 nε

nε2
|an|2. (2.11)

Consequently, the answer to Question 3 is positive when p ≤ 3.

Proof. We assume u continuous; the general case requires some more subtle consideration on lifting,
developed in Section 3. Write u = zdeıψ, where d =deg u and ψ is continuous. It is easy to see that
ψ ∈ W 1/3,3. The starting point is the identity

Im

∫ 2π

0

u(eı(θ+h))u(eıθ)dθ = 2π
∑
|an|2 sinnh =

∫ 2π

0

sin(dh+ ψ(eı(θ+h))− ψ(eıθ))dθ.

A second order Taylor expansion of sin(dh+ ψ(eı(θ+h))− ψ(eıθ)) yields∣∣∣∣∑ |an|2 sinnh− dh
∣∣∣∣ ≤ C|h|2 + C

∫ 2π

0

|ψ(eı(θ+h))− ψ(eıθ)|3dθ.
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Integrating this inequality over h ∈ (0, 2ε) and dividing the result by 2ε2 lead to∣∣∣∣∑
n6=0

sin2 nε

nε2
|an|2 − d

∣∣∣∣ ≤ Cε+
C

ε2

∫ 2ε

0

∫ 2π

0

|ψ(eı(θ+h))− ψ(eıθ)|3dθ dh.

Using the fact that ψ ∈ W 1/3,3, it is easy to see that the right-hand side of the above inequality tends
to 0 with ε.

In some sense, the above result is optimal: Kahane [Ka] proved that, if u ∈ W 1/p,p for some p > 3,
then the limit in (2.11) may be any real number. However, this still leaves the following

Open Problem 2. For p > 3, can one compute the degree of u =
∑

ane
ınθ ∈ W 1/p,p in terms of

|an|?

2.5 Another degree

As we saw in Sections 2.1-2.2, one may prove existence of a degree first by establishing density of
smooth maps, next by using (2.5). Yet there is another natural way to do it: assume that the integrals
in (2.4) or (2.5) make sense, take this as the definition of the degree, and then prove that the result is
an integer. This approach was taken by Esteban and Müller [EM]. In what follows, it is convenient
to consider u not as a map from Sn into Rn+1, but rather as an Sn-valued map. With this in mind,
the jacobian matrix of u is n× n, and (2.4) rewrites

deg u =

∫
−
Sn

Jac u. (2.12)

Theorem 2.6. Assume that u ∈ W 1,n−1(Sn;Sn) is such that all the (n − 1) × (n − 1) minors of its
jacobian matrix are in Ln/(n−1). Then the right-hand side of (2.12) is an integer.

Note that the hypotheses imply that Jac u ∈ L1. The argument relies essentially on the area
formula of Federer: if Jac u ∈ L1, then there is an integer-valued L1-function d on Sn such that∫
f ◦ u(x) Jac u(x)dx =

∫
f(y)d(y)dy whenever f : Sn → R is smooth. The theorem amounts then

to proving that d is constant.
The VMO degree and the degree defined in the above theorem are not related: if u ∈ VMO, we
need not have u ∈ W 1,n−1. Conversely, a map that satisfies the assumptions of the theorem need
not belong to VMO: pick a map ψ ∈ W 1,1(S2; (−1/2, 1/2)) which does not belong to VMO, and set
u = (ψ,

√
1− ψ2, 0), which is S2-valued. Then the first order minors of u are in L1, since ψ ∈ W 1,1,

while its jacobian determinant vanishes, since u is S1-valued. Clearly, u does not belong to VMO.
This leaves us with the following very vague question.

Open Problem 3. Is there a ”unified” degree theory?

The above theorem was generalized by Giaquinta, Modica and Souček [GMS1]. We do not quote
here their result, which needs notions of cartesian currents to be stated.

2.6 Degree beyond VMO

Let u be a map from Sn × (0, 1)k into Sn. If u is continuous, then one may define a degree of u as
follows: fix any λ ∈ (0, 1)k and set deg u =deg u(·, λ). By homotopical invariance of the degree, this
definition does not depend on λ and yields a degree which is continuous for the sup norm. The same
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can be done if u ∈ W s,p, with sp ≥ n + k. Indeed, by Gagliardo-Nirenberg we may assume s < 1.
By trace theory, λ 7→ u(·, λ) is continuous from (0, 1)k into W s−k/p,p, and thus into VMO. The degree
being continuous for the BMO norm, we derive that deg u(·, λ) does not depend on λ. Thus we may
define a degree in W s,p if W s,p embeds into VMO (which is the same as sp ≥ n+k). It turns out that
the condition sp ≥ n+ k can be relaxed. In special cases, the following result was obtained by White
[W]; see also Rubinstein and Sternberg [RS]. The general case is taken from [BLMN].

Theorem 2.7. Assume that sp ≥ n + 1. Let u ∈ W s,p(Sn × (0, 1)k; Sn). Then there is an integer d
such that deg u(·, λ) = d for a. e. λ ∈ (0, 1)k.
Thus, we may define the degree of u as this integer.
In addition, the condition sp ≥ n+ 1 is optimal and the degree is continuous for the W s,p-norm.

Proof. The case k = 1 is settled by the discussion at the beginning at this section. Assume thus
k ≥ 2.
Note that, for a. e. λ, u(·, λ) ∈ W s,p ⊂VMO, so that the map ψ given by ψ(λ) =deg u(·, λ) is defined
a. e. With some work, one may prove that ψ is measurable. For a. e. t1, . . . , ti−1, ti+1, . . . tk ∈ (0, 1),
the map u(·, t1, . . . , ti−1, ·, ti+1, . . . tk) is in W s,p. If this is the case, then ψ(t1, . . . , ti−1, ·, ti+1, . . . tk) is
constant a. e. (cf the case k = 1). Existence of the degree follows from the following elementary

Lemma 2.1. Let ψ : (0, 1)k → R be a measurable function such that for a. e. t1, . . . , ti−1, ti+1, . . . tk ∈
(0, 1), the map ψ(t1, . . . , ti−1, ·, ti+1, . . . tk) is constant a. e. Then ψ is constant a. e.

To prove continuity of degree, let uk → u in W s,p. Possibly after passing to a subsequence, we then
have uk(·, λ) → u(·, λ) in W s,p for a. e. λ. We conclude using continuity of the degree in VMO.
Incidentally, this proves continuity for the W r,q-norm as soon as rq ≥ n.
To prove optimality, let k = 1, e ∈ Sn and u(x, λ) = (x−2λe)/|x−2λe|. Then u ∈ W s,p if sp < n+ 1,

while deg u(·, λ) =

{
1, if λ < 1/2

0, if λ > 1/2
.

2.7 General manifolds

One may define a degree for VMO maps from M into N , provided these manifolds have same dimen-
sion, are compact, oriented and without boundary. Density of smooth maps in VMO(M ;N) follows
from (2.3). Existence of degree was proved by Brezis and Nirenberg [BNI].

Theorem 2.8. The map C∞(M ;N) 3 u 7→deg u is continuous for the BMO norm.

Their proof does not use integral formulae for the degree; yet, this can probably be done this way.
The above result allows to state, e. g., Theorem 2.7 for maps from M × (0, 1)k into N . It is also
plausible that Theorems 2.3 and 2.6 are still valid for maps from M into N .
For a map u from Sn into itself, one of the interests of the degree is that it describes the homotopy
class of u: Hopf’s theorem asserts that if two continuous maps have the same degree, then they are
homotopic; this holds also for VMO [BNI]. In general, it is more natural to replace the degree with the
homotopy class. This can be done indeed: one can associate to VMO maps a homotopy class, which
is continuous with respect to BMO convergence (this is obtained by copying the proof of Theorem 1
in [BNI]). By mimicking the proof of Theorem 2.7, one may prove the following result, essentially due
to White [W] (see also [HaL2]):

Theorem 2.9. Let u ∈ W s,p(M × (0, 1)k;N), with M , N compact (but not necessarily of the same
dimension) and sp ≥dim M+1. Let, for λ ∈ (0, 1)k, d(λ) be the homotopy class of u(·, λ) in C(M ;N)
(this is well-defined when u(·, λ) ∈ W s,p, thus a. e.). Then d is constant a. e.
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We may thus define in this way [u], the homotopy class of u.
In addition, u 7→ [u] is continuous for the W s,p-convergence.

3 S1-valued maps: lifting

The question we address here is: given an S1-valued map u, can one find a lifting of u as smooth as u?
In the well-known case of continuous maps on domains in Rn, the answer is positive locally (i. e. on
balls), while globally the answer may be negative, due to the topology of the domain. In the context
of Sobolev spaces, the local problem is already interesting. We assume throughout this section that
u : C → S1, where C is the unit cube in Rn.

3.1 Lifting of Sobolev maps

Here, u ∈ W s,p, and we look for a real function ϕ ∈ W s,p such that u = eıϕ. We start with the
question of the uniqueness: if ϕ1, ϕ2 ∈ W s,p lift u, is it true that ϕ1−ϕ2 is a constant multiple of 2π?
This amounts to proving that, if ϕ : C → Z is in W s,p, then ϕ is constant.

Proposition 3.1. The only functions in W s,p(C;Z) are constants if and only if sp ≥ 1.

In special cases, this was proved by Hardt, Kinderlehrer and Lin [HKL2] and Bethuel and Demengel
[BD] . The general case is from [BLMN].

Proof. Let Q  B be a cube. If sp < 1, then the characteristic function of Q belongs to W s,p(C;Z);
this proves the necessity of the condition sp ≥ 1.
Suppose now sp ≥ 1. Fix some i ∈ {1, . . . , n}. For almost every xj ∈ (0, 1), j 6= i, the map v given by
v(t) = u(x1, . . . , xi−1, t, xi+1, . . . , xn) belongs to W s,p((0, 1);Z). If we mollify v, (2.3) implies that the
maps vε are close to Z; since these maps are smooth, they have to be close to a fixed integer when ε
is small. Passing to the limits, we find that v is constant a.e. Lemma 2.1 implies that u is constant
a. e.

We next give an example of map with no lifting. Let u : B2 → S1, u(z) = z/|z|, which belongs to
W 1,1. We claim that u has no lifting in W 1,1. Argue by contradiction: u = eıϕ, with ϕ ∈ W 1,1. For a.
e. r ∈ (0, 1), ϕ restricted to the circle C(0, r) has a continuous representative, still denoted ϕ, such
that u = eıϕ everywhere on C(0, r). This is impossible, since on any such circle the winding number
of u is 1, while the one of eıϕ is 0.
In general, the question of existence of ϕ was settled in [BBM1].

Theorem 3.1. There is a lifting ϕ ∈ W s,p for each u ∈ W s,p except when:
a) n ≥ 2 and sp ∈ [1, 2)
or
b) n ≥ 2, s < 1 and sp ∈ [2, n).

Proof. Several cases are to be considered:
(i) When sp > n, u is continuous. We then take ϕ to be any continuous lifting of u; it is easy to see
that ϕ ∈ W s,p.
(ii) When s ≥ 1 and sp ≥ 2, the idea of the proof goes back to a paper of Carbou [C]. Assume that
ϕ exists. Since u = eıϕ, we find that Du = ıuDϕ, so that Dϕ = F , with F = −ıuDu; here it is
where the hypothesis s ≥ 1 plays a role. The idea is then to solve the equation Dϕ = F , and to
prove that the solution is essentially the one needed. One may prove that F ∈ W s−1,p; this relies
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on multiplication properties of Sobolev spaces. On the other hand, F is a closed vector field, i. e.,
∂Fi/∂xj = ∂Fj/∂xi. Formally, this is clear: if u = u1 + ıu2, then F = u1Du2 − u2Du1. Therefore (at
least if u is smooth)

∂Fi/∂xj − ∂Fj/∂xi = 2(∂u1/∂xj∂u2/∂xi − ∂u1/∂xi∂u2/∂xj). (3.1)

The rigorous justification of this equality is obtained by approximating u with smooth maps and
requires sp ≥ 2. Next the right-hand side of (3.1) vanishes. Indeed, u is S1-valued, so that Du1 and
Du2 are collinear.
A variant of Poincaré’s lemma allows then to write F = Dψ for some ψ ∈ W s,p. Finally, the map
ue−ıψ is constant (it is easy to check that its gradient vanishes), so that ϕ = ψ+C, with C appropriate
constant, is a lifting of u.
(iii) The case sp = n. In order to keep the presentation simple, we consider the special case of H1/2

maps on an interval; the general case follows the same lines. We regularize u: set v(x, ε) = u ∗ ρε(x).
By trace theory, v ∈ H1((0, 1)2). Since u ∈VMO, v has modulus close to 1 for small ε. Thus w = v/|v|
is H1 and of modulus 1 in (0, 1)× (0, δ) for small δ. In view of case (ii), we may write w = eıψ, with
ψ ∈ H1. By taking traces, we have u = eıϕ, with ϕ =tr ψ ∈ H1/2.
(iv) Cases a) or b). Explicit examples show non existence.
(v) The case sp < 1. It is the delicate one, and we refer to [BBM1] for details.

3.2 Estimates for the lifting

Once existence of lifting is established, the natural question is whether we may estimate |ϕ|W s,p in
terms of |u|W s,p . The proof of the above theorem is constructive, and yields estimates except when
we are in the critical case sp = n. Actually, in this case there is no estimate. Here is an example. Let

n = 1 (so that C = (0, 1)) and let 1 < p <∞. Let ϕk(x) =


0, if 0 < x < 1/2

2kπ(x− 1/2), if 1/2 < x < 1/2 + 1/k

2π, otherwise

and set uk = eıϕk . It is easy to see that {uk} is bounded in W 1/p,p. Since ϕk belongs to W 1/p,p, any
lifting of uk in W 1/p,p is ϕk +C, by Proposition 3.1. It is easy to see that {|ϕk|W 1/p,p} is not bounded.
Thus, in this limiting case there is no control of ϕ in terms of u.
However, the above ϕk’s are bounded in W 1,1. This suggests that there is a control of the phase, if
not in W 1/p,p, then in a space containing W 1/p,p and W 1,1. For some values of p, this was proved by
Bourgain and Brezis [BB].

Theorem 3.2. Let 1 < p ≤ 2. Then each u ∈ W 1/p,p((0, 1);S1) may be written as

u = eı(ϕ1+ϕ2), where |ϕ1|W 1,1 ≤ C|u|p
W 1/p,p and |ϕ2|W 1/p,p ≤ C|u|W 1/p,p . (3.2)

More generally, one may replace (0, 1) by (0, 1)n, but then u has to be in the closure of S1-valued
smooth maps.

Their result is stated only for p = 2, but the proof works also when 1 < p < 2.

Proof. The construction in [BB] is explicit, but not elementary; it relies on a Littlewood-Paley de-
composition of u. In one dimension, it is easy to establish a weaker form of (3.2), namely u = eıϕ,
with

|ϕ|W 1,1+W 1/p,p ≤ C(|u|W 1/p,p + |u|p
W 1/p,p). (3.3)
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For simplicity, we work only with p = 2 and u ∈ C∞, though this is not relevant. Let ϕ be any smooth
lifting of u. It suffices to prove that |ϕ′|L1+H−1/2 ≤ C(|u|H1/2 + |u|2

H1/2). By duality, this amounts to
proving∣∣∣∣ ∫ 1

0

ϕ′ζ

∣∣∣∣ ≤ C(|u|H1/2 + |u|2H1/2)(‖ζ‖L∞ + |ζ|H1/2), ∀ ζ ∈ C∞0 (0, 1). (3.4)

Using the identity ϕ′ = −ıuu′, integration by parts shows that∣∣∣∣ ∫ 1

0

ϕ′ζ

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

u′(uζ)

∣∣∣∣ ≤ |u′|H−1/2|uζ|H1/2 = |u|H1/2|uζ|H1/2 ,

and (3.4) follows from the elementary inequality |uζ|H1/2 ≤ |u|H1/2‖ζ‖L∞ + |ζ|H1/2 .
Actually, one can carry out this computation in any dimension, and find an estimate for Dϕ in
L1 + H−1/2. However, in n ≥ 2 dimensions, it is unclear whether Dϕ ∈ L1 + H−1/2 implies ϕ ∈
W 1,1 +H1/2!

Open Problem 4. Is it true that Theorem 3.2 is still valid for p > 2?

This is not known even in one dimension. An estimate weaker then (3.2) was established in
[BBM3], Theorem 0.1.

3.3 Lifting of VMO maps

This was settled in [BNI].

Theorem 3.3. Each u ∈VMO(C;S1) has a lifting ϕ ∈VMO, unique modulo constants.

Proof. Uniqueness comes from the fact that integer-valued VMO maps are constant, cf proof of
Proposition 3.1. Concerning existence, the idea is to regularize u. For small ε, say ε < ε0, the maps
vε = uε/|uε| are well-defined, of modulus 1, and depending continuously on ε. Thus we may write
vε = eıϕε , where ϕε is continuous and depends continuously on ε. For a.e. x, we have lim

ε→0
eıϕε(x) = u(x);

this implies that ϕ(x) = lim
ε→0

ϕε(x) exists a. e. and satisfies u = eıϕ. It remains to check that ϕ ∈VMO,

and the idea is to prove that the family {ϕε} is relatively compact in VMO. To explain how this is
obtained, we replace for simplicity C by Sn. With the notations in (2.1), set Mδ(u) = sup

λ≤δ
Iδ(u). The

necessary and sufficient condition for relatively compactness in VMO is lim
δ→0

sup
ε<ε0

Mδ(ϕε) = 0; see [BNI].

Now Taylor’s formula yields

|ϕε(y)− ϕε(y)| ≤ |vε(y)− vε(z)|+ 1/2|ϕε(y)− ϕε(y)|2.

Thus

Mδ(ϕε) ≤Mδ(vε) + 1/2 sup
λ≤δ

sup
x∈Sn

∫
−
B(x,λ)∩Sn

∫
−
B(x,λ)∩Sn

|ϕε(y)− ϕε(z)|2dy dz,

and the John-Nirenberg inequality implies that the last quantity in the above formula is less than
CM2

δ (ϕε). This leads to
Mδ(ϕε) ≤Mδ(vε) + CM2

δ (ϕε).

This implies easily that, for small δ, we have Mδ(ϕε) ≤ CMδ(vε). Compactness follows then from the
fact that the last supremum tends to 0 with δ, uniformly in ε, since {vε} is compact in VMO.
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A similar argument gives a proof (different from the original one) of the following result of Coifman
and Meyer [CM].

Theorem 3.4. There is some δ > 0 such that, if u ∈BMO(C;S1) and |u|BMO ≤ δ, then u = eıϕ, with
|ϕ|BMO ≤ C|u|BMO.

Note that a BMO map always has a BMO lifting: for example, its main argument is in BMO. The
point in this theorem is that, if u is close (in BMO) to a constant, then the phase ϕ is controlled in
BMO by u.

3.4 Lifting in BV

When u ∈BV(Ω;S1), u has a lifting in BV (Giaquinta, Modica and Souček [GMS2]); here, Ω could
be any smooth domain or manifold. This result was sharpened by Dávila and Ignat [DI].

Theorem 3.5. For u ∈BV(Ω;S1), there is some ϕ ∈BV such that u = eıϕ and

|ϕ|BV ≤ 2|u|BV. (3.5)

The constant 2 is optimal.

Proof. The constant 2 cannot be improved. Indeed, let u be the identity on S1 and let ϕ be a
BV lifting of u. Then ϕ has to jump somewhere, say at 1. Since u = eıϕ a. e., this implies that

|ϕ(1+) − ϕ(1−)| ≥ 2π. On the other hand, the variation of ϕ on S1 \ {1} is at least

∫
S1
|Du| = 2π.

Consequently, the total variation of ϕ is at least 4π, while the one of u is 2π.
Concerning (3.5), we give a proof when u is smooth; this case is of interest only when Ω is not simply
connected, for otherwise we may write u = eıϕ with ϕ smooth and |Dϕ| = |Du|. Let arg be the
principal argument (which has a jump at π) and set, for α ∈ [0, 2π), θα(z) =arg(zeı(π−α)), which has
a jump at α. If eıα is a regular value of u, then ϕα = θα(u) jumps by 2π on the smooth level set
Lα = u−1(eıα). Outside this set, ϕα is smooth and |Dϕα| = |Du|. Thus,

|ϕα|BV = 2π|Lα|+ |u|BV, (3.6)

where the measure of Lα is the (n− 1)-dimensional Hausdorff measure. The idea is that, for some α,
ϕα will satisfy (3.5). To see, this, we integrate (3.6) over α ∈ [0, 2π) and find, with the help of the
co-area formula, that ∫ 2π

0

|ϕα|BVdα = 2π

∫ 2π

0

|Lα|dα + 2π|u|BV = 4π|u|BV,

This gives immediately the existence of an appropriate α.

The heart of the proof in [DI] is to establish the inequality

∫ 2π

0

|ϕα|BVdα ≤ 4π|u|BV when u is merely

BV; the argument relies heavily on the structure of BV maps.

3.5 Lifting when there is no lifting

Throughout this section, n ≥ 2. If u ∈ W 1,1(C;S1), then u may not have a lifting in W 1,1, by Theorem
3.1. However, by Theorem 3.5 u has a lifting in BV, which is a slightly larger space. Another example
in the same vein is [BBM2]
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Theorem 3.6. Each u ∈ H1/2((0, 1)2;S1) has a lifting in H1/2+BV.

Using Theorem 3.2 and results form Alberti, Baldo and Orlandi [ABO], one could more generally
prove that maps in W 1/p,p((0, 1)n;S1) have a lifting in in W 1/p,p+BV when 1 < p ≤ 2. However, this
is not known when p > 2.

Open Problem 5. Is it true that, for each s, p and n, a map in W s,p((0, 1)n;S1) has a lifting in
W s,p+BV?

3.6 Lifting in covering spaces

One could envision, more generally, maps u from C into some smooth compact manifold N . If Z is a
universal cover of N and π is the projection of Z onto N , a natural question is whether we may write
u = π ◦ ϕ, with ϕ as smooth as u. In VMO, this was answered by Brezis and Nirenberg [BNI].

Theorem 3.7. Each u ∈VMO(C;N) may be written as u = π ◦ ϕ, with ϕ ∈VMO(C;Z).

The proof is identical to the one of Theorem 3.3.

Open Problem 6. Find the analog of Theorem 3.1 when S1 and R are replaced by N and Z.

The case sp ≥ n can be treated as in the proof of Theorem 3.1. Probably, the same holds for
sp < 1. It is unclear how to deal with the remaining case 1 ≤ sp < n. Some partial results on this
question were obtained by Chiron in an unpublished work.

4 Approximation

In this section, M and N are compact Riemannian manifolds without boundary, respectively n and
k-dimensional. In order to simplify the presentation, we will sometimes replace M by Rn or a domain
in Rn. Set X = W s,p(M ;N).
A natural question is whether Y = C∞(M ;N) is dense in X. VMO arguments imply that the answer
is yes if sp ≥ n. Therefore, in the remaining part of this section we assume that sp < n. Under
this assumption, in general the answer is no [SU]: let u : B2 → S1, u(z) = z/|z|. Then u ∈ W 1,1,
but u cannot be approximated in W 1,1 by smooth S1-valued maps. Argue by contradiction: let
{uk} ⊂ C∞(B2; S1) converge to u in W 1,1. Up to a subsequence, {uk} will converge to u in W 1,1 (thus
uniformly) on almost each circle C(0, r) with 0 < r < 1. For any such r, the degrees of uk on C(0, r)
(which are zero) tend to the degree of u on C(0, r) (which is one)!
Far from closing the subject, this example opens
Direction 1. Characterize s, p,M and N for which Y is dense.
Direction 2. Find ”almost smooth” maps that are dense in X.
Direction 3. Characterize the closure of Y in X.

4.1 Approximation methods

We explore here Direction 2. In many situations, it is known that maps in X can be approximated
with maps that are smooth except a ”small” set A : A could be a finite number of points, or curves,. . .,
up to a finite union of smooth (n− 1)-dimensional submanifolds of M . We describe below the main
approximation methods and the results that can be obtained via them.

13



4.1.1 Projection method

It was first devised, in a different context, by Federer and Fleming [FF]. For approximation pur-
poses, it was first used by Hardt, Kinderlehrer and Lin [HKL1]. This method requires N = Sk (or
homeomorphic to Sk). It works as follows: let u ∈ X and uε = u ∗ ρε. The idea is to project uε
(which is Rk+1-valued) onto Sk. For this purpose, let a ∈ Rk+1 with |a| < 1/2 and let πa be the
projection of Rk \ {a} onto Sk: thus πa(x) = a + λ(x − a), where λ > 0 satisfies |a + λ(x − a)| = 1.
Let uε,a = πa ◦ uε. (Note that, if |uε| happens to be close to 1, then uε,a is close to uε and thus to
u.) Almost each a is a regular value for uε. For such a, uε,a is smooth outside the level set u−1

ε (a),
which is (n − k − 1)-dimensional if n > k, empty if n ≤ k. Hopefully, if we choose well a = a(ε),
then vε = uε,a(ε) will converge to u in W s,p, providing thus an approximation of u with maps that are
smooth outside (n− k − 1)+-dimensional submanifolds of M .
This is true if n ≤ k [E]; the proof is the same as the one of Theorem 2.1. When n > k, partial
answers are known when k ≤ sp < k + 1.

Theorem 4.1. Assume that n > k and k ≤ sp < k + 1, and set l = n− k − 1. Then the class

R = {u ∈ C∞(M \ A; Sk) ; A = l-dimensional submanifold of M}

is dense in X when:
a) [BZ] s is an integer;
b) [BBM2] s < 1;
c) [Bo] 1 < s < 2.

Actually, [BZ] deals only with s = 1, but their method works for integer s. On the other hand,
[BBM2] treats only the case s = 1/2, p = 2, k = 1 but the proof applies to each s < 1 and k. It is
very plausible that Bousquet’s method [Bo] gives that the above theorem holds for each s. The most
delicate case is sp = k; for non integer s, the first result in this direction was obtained by Rivière [R].

Proof. We only treat the case s = 1 (and thus k ≤ p < k + 1); the case where s is not an integer is
more tricky. It is easy to see that |Dπa(x)| ≤ C/|x− a| uniformly in x and a; therefore,

|Duε,a| ≤ C|Duε|/|uε − a|. (4.1)

Since uε is smooth, this implies that, for a regular value of uε, we have |Duε,a(x)| ≤ Cε,a/dist(x,A),
where A = Aε,a = u−1

ε (a). Since A is smooth and l-dimensional, we obtain uε,a ∈ W 1,p (and even
better). Let B = B(0, 3/4) ⊂ Rk+1 and let K = Kε,a = u−1

ε,a(B). Outside B, we are far away form a,
and thus πa is Lipschitz uniformly in a. Since u = πa ◦ u, we have uε,a − u = πa ◦ uε − πa ◦ u; from
this, we find easily that ‖uε,a − u‖W 1,p(M\K) → 0 with ε, and this holds uniformly in a. The choice
of a comes into the picture when we want to prove convergence in K. If we integrate (4.1) over Kε,a,
then in a, we find∫ ∫

K

|Duε,a|pdx da ≤ C

∫ ∫
K

|Duε|p/|uε − a|pdx da ≤ C

∫ ∫
K

|Duε|pdx da; (4.2)

the last inequality holds since p < k + 1, and thus

∫
Bk+1

|a − x|−pda ≤ C < ∞. Using the fact that

|Kε,a| → 0 with ε, it follows that the last term in (4.2) tends to 0. Thus, we may pick regular values
a such that ‖uε,a − u‖W 1,p(K) → 0 .

It is natural to try to remove the assumption sp < k + 1 in Theorem 4.1. However, the natural
conjecture is that the singular set should be not (n− k − 1), but rather (n− [sp]− 1)-dimensional.
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Open Problem 7. Assume that n > k + 1 and k + 1 ≤ sp < n, and let l = n − [sp] − 1. Is it true
that the class

R = {u ∈ C∞(M \ A; Sk) ; A = finite union of l-dimensional submanifolds of M}

is dense in X?
Same question when Sk is replaced by an arbitrary N .

In view of the projection method, it is a bit surprising that k has to be replaced by [sp]. We will
see why in Sections 4.1.2 and 4.1.3.
The answer to Open Problem 7 is yes when k = 1 [BBM4]. Actually, in this case C∞(M ;S1) is dense
in X.

4.1.2 Good and bad cubes method

It is due to Bethuel [Be2] and works for s = 1 (and thus p < n). For simplicity, we let M = Rn.
We treat here the case n− 1 < p < n. We will show that maps in W 1,p(Rn;N) can be approximated
with maps smooth except at a finite number of points.
Fix ε > 0 and y ∈ (0, ε)n. The cubes C = Cm,ε,y = y + εm + (0, ε)n, with m ∈ Zn, cover Rn; let
F = Fε,y be the collection of these cubes. The (n− 1)-dimensional skeleton Cn−1 of F is the union of
the faces of the cubes. The (n− 2)-skeleton Cn−2 is the union of the boundaries of these faces, and so
on. The 0-skeleton C0 is formed simply by the vertexes of the cubes.
By Fubini, one may find y = y(ε) such that |u|W 1,p(Cn−1) ≤ C/ε. For such y, u is in W 1,p (thus Hölder
continuous) on Cn−1. The idea is to approximate u on each cube C without modifying u on ∂C, and
to glue these approximations. The way the approximation is performed on C depends on how much
u oscillates on C.
With δ > 0 small, a cube C is ”bad” (=u oscillates a lot on C) if |u|W 1,p(C) ≥ δεn−p+1 or |u|W 1,p(∂C) ≥
δεn−p−1; the choice of y implies that the union A = Aε of bad cubes is small (its measure tends to 0
with ε). The remaining cubes are ”good”.
On a bad cube, the main care is to construct a map with few singularities and not too large norm; since

there are few bad cubes, this will suffice. E. g., one may consider a solution v of min

{∫
C

|Dw|p ; w :

C → N,w = u on ∂C

}
; thus v has less energy than u. By a deep regularity result [HL], v is continuous

in C except finitely many points in C. It is easy to see that

∫
A

|Du−Dv|p → 0.

If C is good and δ sufficiently small, then the image of ∂C is contained in some small ball B, by
the Sobolev embeddings; the center of B will depend on C, but not its radius r. If B̃ is the ball
concentric to B and twice larger, it is possible to project N on B̃ ∩ N through a map Φ, Lipschitz
uniformly in B (flatten locally N , next take the nearest point projection; this is where smallness of
balls is needed). On C, we approximate u with v1 = Φ ◦u, which agrees with u on ∂C. The map v1 is
B̃-valued. Morally, this means that v1 is Rk-valued; a standard technique allows then to approximate
v1 with a continuous map v agreeing with u on ∂C. (A similar argument appeared in the proof of
Theorem 2.1.) One has to check next that v1 is close to u. These two maps differ only on the set D
where Φ(u(x)) 6= u(x). If x ∈ D and if C is the good cube containing x, then

|u|W 1,p(E) ≥ δεn−p−1, where E = {z ∈ C ; zn = xn}. (4.3)

Argue by contradiction: if not, u(E) is contained in a ball of size r (by Sobolev embeddings), and this
ball intersects B, since u(∂E) ⊂ B. Thus u(E) ⊂ B̃! The choice of y and (4.3) imply that |D| → 0,
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so that |u− v1|W 1,p(D) ≤ C|u|W 1,p(D) → 0.
To summarize, u has been approximated with maps v that are continuous except finitely many points.
By further mollifying v, one may find an approximation with maps which are C∞ except a finite set.
The remaining case 1 ≤ p ≤ n− 1 requires additional ingredients. For a relatively short proof in this
case, see Hang and Lin [HaL2], Section 6. The result obtained through this method is

Theorem 4.2. Let 1 ≤ p < n =dim M and l = n− [p]− 1. Then

R = {u ∈ C∞(M \ A;N) ; A = finite union of l-dimensional submanifolds of M}

is dense in W 1,p(M ;N).

Gluing is a key ingredient in the proof. In W 1,p, this works since two W 1,p maps defined on
neighbor cubes which have the same trace on their common face are in W 1,p of the union of cubes.
This leaves the hope of adapting this argument in W s,p for s < 1 + 1/p; when s > 1 + 1/p, higher
order traces appear, and the method needs to be supplemented with entirely new ideas.

4.1.3 Homogeneous extensions method

This works only for s < 1 and is taken from [BBM4]. We explain it when M = Rn and sp is not an
integer. Let m = [sp]. For a. e. y, the restriction of u to the m-skeleton Cm of Fε,y is in W s,p, thus
continuous. For any such y, we define uy = uy,ε as follows: on Cm, uy = u. Assuming uy defined on Cj,
j < n, we proceed to define uy on an arbitrary face F of Cj+1. If z is the center of F and t ∈ ∂F , we
take uy ≡ uy(t) on the whole segment from z to t. (This is the ”homogeneous extension” technique.)
We extend in the same way uy from Cn−1 to Rn, and we end with a map defined in Rn. If, for example,
m = n − 1, then uy is continuous except at the centers of the cubes C. In general, uy is continuous
except a countable union of (n−m− 1)-planes. Next, the key ingredient is the estimate∫

−
(0,ε)n
|uy,ε − u|pW s,pdy → 0 as ε→ 0,

valid when sp < n and s < 1. It implies that we may find y = y(ε) such that uy(ε),ε → u in W s,p.
Further mollification allows to replace the uy’s by maps that are C∞ outside a countable union of
(n−m− 1) planes, and thus prove the following

Theorem 4.3. Let sp < n =dim M , s < 1 and l = n− [sp]− 1. Then

R = {u ∈ C∞(M \ A;N) ; A = finite union of l-dimensional submanifolds of M}

is dense in W s,p(M ;N).

Since gluing is part of the method, one may hope to use it for s < 1 + 1/p. This will not work,
even for s = 1: for u ∈ C∞0 \ {0}, we have |D(uy − u)|Lp ≥ C > 0.

4.2 Density of smooth maps

We step forward Direction 1: density of Y = C∞(M ;N) in X = W s,p(M ;N). The main known result
concerns W 1,p. It was obtained in [Be2], but both the statement and the proof were incomplete. The
corrected result is due to Hang and Lin [HaL2]. It is simple to state only when n− 1 ≤ p < n.

Theorem 4.4. Let n − 1 ≤ p < n =dim M . Then Y = C∞(M ;N) is dense in X = W 1,p(M ;N) if
and only if the homotopy group πn−1(N) is trivial.
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Proof. Assume that πn−1(N) 6= {0}; we will construct a map u which cannot be approximated with
smooth maps. There is a map v ∈ C∞(Bn−1;N), identically equal to a constant C near Sn−2, and
such that v is not homotopic to a constant. After locally flattening M , we may assume that M
contains Bn. Let D (respectively E) be the cone with vertex the North Pole (respectively South Pole)
of Sn−1 and base Bn−1, and set F = D ∪ E. On each horizontal slice S of F , we may transport v by
translation and dilation. If u is the map obtained in this way, then, for −1 < t < 1, the restriction of
u to F ∩ {xn = t} is smooth and not homotopic to a constant. We extend u to M with the value C
outside F ; then u ∈ W 1,p. Assume now by contradiction that Y is dense in X. Possibly after passing
to a subsequence, we find {uk} ⊂ C∞(M ;N) such that, on a. e. S, uk → u in W 1,p, thus in VMO.
The homotopy class being stable with respect to VMO convergence (cf Section 2.7), we find that, for
large k, uk |S is not homotopic to a constant, which is absurd.
Conversely, assume that πn−1(N) = {0}. It suffices to prove that maps in R can be approximated by
smooth maps. We explain the method when u has only one singularity; in the general case, we apply
this procedure near each singular point. We may assume that M contains Bn, and that the singular
point is the origin. For 0 < r < 1, we extend u from S(0, r) to B(0, r) by homogeneous extension
(thus the extension vr is constant on rays). Let ur be the map that equals u outside B(0, r) and vr
inside B(0, r). By a Fubini type argument, there is a sequence rn → 0 such that urn → u in W 1,p.
It suffices thus to consider maps u which are smooth in M \ B(0, r) and homogeneous in B(0, r);
assume, e. g., that r = 1. The map v = u|Sn−1 is smooth and, as a continuous map, homotopic to a
constant C. By regularization, there is a homotopy H ∈ C∞([0, 1] × Sn−1;N) such that H(·, 1) = v

and H(·, t) = C for t ≤ 1/2. For 0 < ε < 1 , we define uε(x) =

{
u(x) outside B(0, ε)

H(t|x|/ε, x/|x|) in B(0, ε)
.

It is easy to see that uε → u in W 1,p. Since the uε’s are continuous, they can be approximated with
smooth maps.

When 1 ≤ p < n − 1, the condition π[p](N) = {0} is necessary, but not sufficient for density; we
send to [HaL2], Section 6 for details.

Open Problem 8. Find, for arbitrary s, p M and N such that sp < n =dim M , a necessary and
sufficient condition for the density of Y in X.

The answer is known when s < 1 [BBM4], and the density condition depends on the value of sp.
For example, the analog of Theorem 4.4 is

Theorem 4.5. Assume that n− 1 ≤ sp < n. Then Y is dense in X if and only if πn−1(N) = 0.

The answer is also known when N = S1 [BBM4]:

Theorem 4.6. Assume that N = S1. Then Y is dense in X except when n ≥ 2 and 1 ≤ sp < 2.

We emphasize the fact that even for the space W 2,p the answer is not known. It is quite likely
that understanding this case will unblock the general situation.

4.3 The singular set of a map

Assume that Y is not dense in X, but that we are able to approximate a map u ∈ X with maps uk
in the class R. Question: can one ”pass to the limits” the singular sets of the uk’s? If so, one has a
natural notion of singular set of u, and can even dream of proving that u is in the closure of Y if and
only its singular set is empty. (Thus this question is related to Direction 3.) Most of the work in his
direction has been done when N = Sk. Except at the very end of this this section, we let N = Sk. To
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start with, we take n = k+ 1 and M = Sk+1; however, M could be any (k+ 1)-dimensional manifold.
The maps we consider are W 1,p, with k ≤ p < k + 1. (When p is not in this range, Y is dense in X.)
Actually, it suffices to know how to pass to the limits the singular set when u ∈ W 1,k; we take thus
p = k. In this case, R consists of maps u smooth outside some finite set A = A(u). To each a ∈ A,
we may associate a degree, defined as the degree of u on a small geodesic sphere around a on Sn,
positively oriented with respect to the outward normal at a; this integer is independent of the small
sphere and will be denoted deg (u, a). Brezis, Coron and Lieb [BCL] discovered the fact that the

singular set A can be obtained from u via an analytic formula. More specifically, if T = Tu =
∑
a∈A

deg

(u, a)δa and ck = 1/|Sk|, then the action of the distribution T is given by

T (ζ) = −ck
∑∫

Sk+1

∂jζ det(∂1u, . . . , ∂j−1u, u, ∂j+1u, . . . , ∂k+1u). (4.4)

Here, the derivatives are computed in an orthogonal positively oriented frame. Note that the right-
hand side of (4.4) makes sense for u ∈ W 1,k. If we endow W 1,∞(Sk+1;R) with the semi-norm ζ 7→
‖Dζ‖L∞ , then T given by (4.4) lies in (W 1,∞)∗, and depends continuously on u. Since each u may be
approximated by maps in R, one may intuitively think of T as an infinite sum of Dirac masses. This
is indeed correct.

Proposition 4.1. For u ∈ W 1,p(Sk+1;Sk), one may write Tu =
∑

(δPi
− δNi

), for two sequences

{Pi}, {Ni} ⊂ Sk+1 such that |Pi −Ni| <∞.

Proof. Assume u ∈ R. Then
∑
a∈A

deg (u, a) = 0. This may be seen either from topological considera-

tions, or by noting that T (1) = 0. Thus the points in A counted with the multiplicity of their degree
(a point with degree 2 appears twice as a ”positive point”, a point with degree −1 appears once as
a ”negative point”, a point of degree 0 does not appear at all) form a list P1, . . . Pm, N1, . . . , Nm of
positive and negative points, the positive points being as many as the negative ones. With the points

in A listed in this way, we have T (ζ) =
m∑
i=1

(ζ(Pi)− ζ(Ni)). The key ingredient is the following sup-inf

inequality devised in [BCL]:

sup

{ m∑
i=1

(ζ(Pi)− ζ(Ni)) ; |Dζ| ≤ 1

}
= inf

σ∈Sm

∑
d(Pi, Nσ(i)); (4.5)

here, d is the geodesic distance on Sk+1 and Sm is the mth symmetric group.
Formula (4.4) gives |Tu(ζ)| ≤ C‖Du‖k

Lk‖Dζ‖L∞ . In view of (4.5), T may be written as T (ζ) =∑
(ζ(Pi)− ζ(Ni)) with

∑
d(Pi, Ni) ≤ C‖Du‖k

Lk . A Cauchy sequences argument, combined with the

fact that the geodesic distance is equivalent to the Euclidean one, allows to conclude.

It is tempting to consider the set {Pi} ∪ {Ni} as the singular set of u. This is not realistic, since
there is a high degree of non uniqueness in the choice of these points; see Ponce [P1] for a thorough
discussion on the infinite sums of Dirac masses. In a somehow non intuitive way, one has to identify
the singular set of u with the distribution Tu; when u ∈ R, Tu can further be identified with a set of
points.
Proposition 4.1 has a converse [ABO]: given sequences {Pi}, {Ni} ⊂ Sk+1 such that |Pi − Ni| < ∞,

there is a map u ∈ W 1,k(Sk+1;Sk) such that Tu =
∑

(δPi
− δNi

). The map u is explicitly constructed

using the ”dipole construction” in [BCL]. All the above results can be summed in the following
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Proposition 4.2. The map u 7→ Tu is continuous from W 1,k(Sk+1;Sk) into (W 1,∞)∗, and its range is{∑
finite

(δPi
− δNi

)

}(W 1,∞)∗

.

It turns out that one may define Tu for u ∈ W s,p when k ≤ sp < k + 1 [BBM3]. By Sobolev and
Gagliardo-Nirenberg, it suffices to consider the case sp = k, s < 1.

Theorem 4.7. Assume that sp = k and s < 1. Then the map u 7→ Tu, initially defined for
u ∈ R, extends by density as a continuous map from W s,p(Sk+1;Sk) into (W 1,∞)∗, and its range

is

{∑
finite

(δPi
− δNi

)

}(W 1,∞)∗

.

Proof. Formula (4.4) does not make sense for u ∈ W s,p. The idea is to find another formula for Tu;

this is very much in the spirit of Section 2.2. We take v as there, i. e., v =

{
ũ/|ũ|, if |ũ| ≤ 1/2

2ũ, if |ũ| ≤ 1/2
,

with ũ the harmonic extension of u. Let also ξ be any smooth extension of ζ to Bk+2. For u
in W 1−1/(k+1),k+1 ∩ W 1,k, u smooth outside a finite set (call such a u a good map), we have, with
dk = (k + 1)ck,

Tu(ζ) = dk
∑

(−1)k+jdet(∂1v, . . . , ∂j−1v, ∂j+1v, . . . , ∂k+2v)∂jξ; (4.6)

this can be easily checked for smooth u, next by approximation. Since good maps are dense in
W s,p(Sk+1;Sk), it suffices to prove that the right-hand side of (4.6) depends continuously on u and ξ;
this is done as in the proof of Theorem 2.3. Finally, the range of u 7→ Tu is determined by adapting
the dipole construction.

While the above result allows to define Tu in W s,p if k < sp < k+ 1, it says nothing about the set
of all the Tu’s.

Open Problem 9. Assume that k < sp < k + 1. Characterize the distributions T which are of the
form T = Tu for some u ∈ W s,p(Sk+1; Sk).

The answer is not known even when s = 1. Partial results were obtained, for k = 1, by Bousquet

[Bo]. E. g., we may find u ∈ W 1,p(S2;S1) such that T = Tu if and only if T ∈
{∑

finite

(δPi
− δNi

)

}(W 1,p/(p−1))∗

.

Presumably, in W 1,p(Sk+1;Sk) the range of u 7→ Tu is

{∑
finite

(δPi
− δNi

)

}(W 1,kp/(kp−1))∗

.

The following result, due to Bethuel [Be1], suggests that Tu really describes the singular set of u.

Theorem 4.8. Let u ∈ X = W 1,k(Sk+1;Sk). Then u ∈ Y if and only if Tu = 0.

Proof. When u ∈ C∞, we have Tu = 0; by continuity, Tu = 0 if u ∈ Y . The key ingredient in the
proof of the converse is the following result, whose proof relies on an explicit construction similar to
the dipole one.

Lemma 4.1. If A is the singular set of u ∈ R, then there is a map v ∈ W 1,k(Sk+1;Sk), locally
Lipschitz outside A, such that deg (v, a) = 0, a ∈ A, and ‖D(u− v)‖kLk ≤ C‖Tu‖(W 1,∞)∗.
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Restricted to a small geodesic sphere S around some a ∈ A, the above v has degree 0; thus v|S
is homotopic to a constant. The proof of Theorem 4.4 shows that v ∈ Y . Lemma 4.1 implies that
dist(u, Y ) ≤ C‖Tu‖1/k

(W 1,∞)∗ (here, the distance is computed with respect to the W 1,k-semi-norm). By

continuity, this inequality holds for each u ∈ W 1,k. This completes the proof.

The proof of Lemma 4.1 works only for p = k. It can be adapted in W s,p, but only if sp = k (see,
e. g., [BBM2]). This leaves us with the following

Open Problem 10. Assume that k ≤ sp < k + 1 and let u ∈ W s,p(Sk+1;Sk). Is it true that u ∈ Y if
and only if Tu = 0?

The answer is yes when s ≤ 1 Ponce [P2] or when k = 1 [Bo].
We next consider maps in W 1,k(Sn; Sk), with n > k + 1. In this case, the singular set of a map

u ∈ R is an (n − k − 1)-dimensional manifold A. We may still associate to u an object Tu, but this
time it acts on (n − k − 1)-forms (=sections of Λn−k−1(T ∗(Sn)), not on functions. For simplicity, we
explain how this is done when n = k + 2. (In higher dimensions, the ideas are the same [JS], [HaL1],
[ABO].) The singular set A of u is a finite union of compact simple curves. To start with, assume
that A consists of only one curve, say Γ. We choose an orientation on Γ and let τ be the tangent
unit vector positively oriented on Γ. We may define the degree of u around Γ as follows: we take an
(n − 1)-submanifold P of Sn, transversal to Γ at some point x, and oriented positively with respect
to Γ (i. e., the orientation on Tx(Γ) × Tx(P ) is the positive one on Sn). This orientation induces a
positive orientation on small geodesic spheres S on P around x. We define deg(u,Γ) =deg u|S; this
integer does not depend on x or S. Then the object associated to u is T = Tu =deg(u,Γ)τδΓ, with
δΓ the Dirac mass on Γ (=the 1-dimensional Hausdorff measure restricted to Γ). When A = ∪Γi, we

let T =
∑

deg(u,Γi)τδΓi
. This object acts on 1-forms, i. e. on smooth sections ω of the cotangent

bundle to Sn through the formula T (ω) =
∑

deg(u,Γi)

∫
Γi

< ω, τ > ds. (In case of p-dimensional

manifolds, p ≥ 2, one defines similarly T through the formula T (ω) =
∑

deg(u,Γi)

∫
Γi

< ω, τ >;

here, τ is a unit p-vector positively oriented, and ω is a p-form.)

If we write, in an orthogonal positively oriented frame, ω =
∑

ωidxi and we set ωij = ∂iωj − ∂jωi,
then the analog of (4.4) is

T (ω) = −ck
∑
i<j

∫
Sn
ωijdet(∂1u, .., ∂i−1u, u, ∂i+1u, .., ∂j−1u, ∂j+1u, .., ∂nu). (4.7)

If u is a good map, then we also have an analog of (4.6): with v as in (4.6), Ω a smooth extension of
ω, and ai = dk(−1)k+i,

T (ω) =
∑
i<j

ai

∫
Bn+1

Ωijdet(∂1v, .., ∂i−1v, ∂i+1v, .., ∂j−1v, ∂j+1v, .., ∂n+1v). (4.8)

Recall that, in case of point singularities, positive and negative points in A are in equal number.
This may be translated as A = ∂C, where C is a union of curves in Sn, each one with starting point
a negative point and endpoint a positive point. Here, the boundary has to be understood in the
distributions sense: if we orientate each curve from the negative to the positive point, then it defines
a current (still denoted C) as above, and the equality A = ∂C means Tu(ζ) = C(dζ), ∀ ζ. The
counterpart of these properties in the case of curves is that that the Γi’s are closed, which in turn
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implies that we may write Tu = ∂S, where this time S is the current associated to a finite union of
surfaces. The analog of (4.4) is

sup{Tu(ω) ; |dω| ≤ 1} = inf{|S| ; ∂S = T}; (4.9)

here, |S| stands for the mass (=surface) of S. Once the parallel between the two situations is estab-
lished, the counterpart of Proposition 4.2 is [ABO]

Theorem 4.9. The map u 7→ Tu is continuous from W 1,k(Sk+2;Sk) into the dual of Lipschitz 1-forms,
and its range is {∂S ; S is a rectifiable surface}.

The delicate part of the proof is the construction of u when S is given; this is done by adapting
carefully the dipole construction. A similar statement holds in higher dimensions.
A straightforward adaptation of the proof of Theorem 4.7 gives the existence of Tu when u ∈ W s,p and
sp = k. Thus one may consider Open Problems 9 and 10 when Sk+1 is replaced by Sn, with n ≥ k+ 2.
We end this section by considering the case where Sk is replaced by a general k-dimensional manifold
N . If n = k+1 and M is n-dimensional, then maps u with point singularities are dense in W 1,k(M ;N).
If A is the singular set of u, it is natural to associate to a ∈ A a homotopy class [u](a), namely the
class of u restricted on a small geodesic sphere around a. The proof of Theorem 4.4 shows that u ∈ Y
if and only if [u](a) is trivial for each a. It is not known whether one can associate to u a distribution
that ”hears” the singularities of u.

Open Problem 11. Is there a way to associate to a map u with point singularities a distribution Tu
supported in the singular set of u, depending continuously on the W 1,k-norm and such that Tu = 0 if
and only if u ∈ Y ?

4.4 Relaxed energy

Though the questions raised in this section make sense for general manifolds M and N , we shall
consider only M = Sk+1 and N = Sk; even this special case is not well-understood. If k ≤ sp < k+ 1,
then smooth maps are not dense in X = W s,p(Sk+1;Sk). However, one may hope weak density of
smooth maps, i. e., that given u ∈ X, there is a sequence {uk} of smooth maps, bounded in X, and
such that uk → u a. e. There is no weak density if sp > k. Indeed, let u(x′, xk+2) = x′/|x′|, which
is singular at the poles of Sk+1. Argue by contradiction and assume that there is a sequence {uk} as
above. Then, up to some subsequence, on a. e. geodesic sphere S around the North Pole of Sk+1, we
have uk → u in W s,k/s(S), and thus in VMO. This leads to a contradiction, since the degree of u on S
is 1, while the one of the uk’s is 0. In view of this example, from now on sp = k. The relaxed energy
introduced by Bethuel, Brezis and Coron [BBC] is ”the least energy required to approximate u”:

Erel(u) = inf{lim inf |uk|pW s,p ; {uk} ⊂ C∞(Sk+1;Sk), uk → u a.e.}. (4.10)

Clearly, Erel(u) ≥ |u|pW s,p . If R is dense, then the relaxed energy is always finite; this relies on a dipole
construction. It is very likely that R is always dense (cf the discussion after Theorem 4.1). The exact
formula of the relaxed energy is known only when s = 1, p = k. This formula is related to the singular
set of u and establishes a bridge between Directions 2 and 3. If u ∈ R, let L(u) be the right-hand
side of (4.5). In a suggestive way, L(u) is called the minimal connection between the negative points
Ni and the positive points Pi [BCL]. For a general u, L(u) is defined as ‖Tu‖(W 1,∞)∗ .

Theorem 4.10. In W 1,k(Sk+1;Sk), we have

Erel(u) = ‖Du‖pLp + |Sk|kk/2L(u). (4.11)
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Proof. For k ≥ 2, this result is from [BBC]. We take k = 2; when k > 2, the argument is similar.
Inequality ≤ in (4.11) is established, for u ∈ R, via the explicit construction of a sequence {uk} such
that uk → u a. e. and ‖Duk‖2

L2 → ‖Du‖2
L2 + 8π2L(u). By density, such a sequence exists also for a

general u. For ≥, the key argument is that, for fixed ζ with |Dζ| ≤ 1, the map u 7→ ‖Du‖2
L2 +8π2Tu(ζ)

is lower semi-continuous on the convex set of H1-maps of modulus ≤ 1. By taking the supremum over
ζ, this implies that u 7→ ‖Du‖2

L2 + 8π2L(u) is lower semi-continuous. Thus, for any sequence {uk}
such that uk ⇀ u, we have

‖Du‖2
L2 + 8π2L(u) ≤ lim inf(‖Duk‖2

L2 + 8π2L(uk)) = lim inf ‖Duk‖2
L2 . (4.12)

This argument does not apply when k = 1; in this case, this result was proved using a different method
in [GMS2]; for an elementary proof, we refer to [BMP].

Nothing is known when s 6= 1. We end with the following challenging

Open Problem 12. Assume that 0 < s < 1 and sp = k. Prove that, for u ∈ W s,p(Sk+1; Sk), we have
Erel(u) = |u|pW s,p + CL(u), where C depends only on s and k.

The only hint towards this question is the fact that, when k = 1, we have Erel(u)− |u|pW s,p ∼ L(u)
[BBM2].
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